xref: /third_party/ffmpeg/libavcodec/h264dec.h (revision cabdff1a)
1/*
2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * H.264 / AVC / MPEG-4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
26 */
27
28#ifndef AVCODEC_H264DEC_H
29#define AVCODEC_H264DEC_H
30
31#include "libavutil/buffer.h"
32#include "libavutil/intreadwrite.h"
33#include "libavutil/mem_internal.h"
34
35#include "cabac.h"
36#include "error_resilience.h"
37#include "h264_parse.h"
38#include "h264_ps.h"
39#include "h264_sei.h"
40#include "h2645_parse.h"
41#include "h264chroma.h"
42#include "h264dsp.h"
43#include "h264pred.h"
44#include "h264qpel.h"
45#include "h274.h"
46#include "mpegutils.h"
47#include "rectangle.h"
48#include "videodsp.h"
49
50#define H264_MAX_PICTURE_COUNT 36
51
52/* Compiling in interlaced support reduces the speed
53 * of progressive decoding by about 2%. */
54#define ALLOW_INTERLACE
55
56#define FMO 0
57
58/**
59 * The maximum number of slices supported by the decoder.
60 * must be a power of 2
61 */
62#define MAX_SLICES 32
63
64#ifdef ALLOW_INTERLACE
65#define MB_MBAFF(h)    (h)->mb_mbaff
66#define MB_FIELD(sl)  (sl)->mb_field_decoding_flag
67#define FRAME_MBAFF(h) (h)->mb_aff_frame
68#define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
69#define LEFT_MBS 2
70#define LTOP     0
71#define LBOT     1
72#define LEFT(i)  (i)
73#else
74#define MB_MBAFF(h)      0
75#define MB_FIELD(sl)     0
76#define FRAME_MBAFF(h)   0
77#define FIELD_PICTURE(h) 0
78#undef  IS_INTERLACED
79#define IS_INTERLACED(mb_type) 0
80#define LEFT_MBS 1
81#define LTOP     0
82#define LBOT     0
83#define LEFT(i)  0
84#endif
85#define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
86
87#ifndef CABAC
88#define CABAC(h) (h)->ps.pps->cabac
89#endif
90
91#define CHROMA(h)    ((h)->ps.sps->chroma_format_idc)
92#define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
93#define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
94
95#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
96#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
97
98/**
99 * Memory management control operation.
100 */
101typedef struct MMCO {
102    MMCOOpcode opcode;
103    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
104    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
105} MMCO;
106
107typedef struct H264Picture {
108    AVFrame *f;
109    ThreadFrame tf;
110
111    AVFrame *f_grain;
112
113    AVBufferRef *qscale_table_buf;
114    int8_t *qscale_table;
115
116    AVBufferRef *motion_val_buf[2];
117    int16_t (*motion_val[2])[2];
118
119    AVBufferRef *mb_type_buf;
120    uint32_t *mb_type;
121
122    AVBufferRef *hwaccel_priv_buf;
123    void *hwaccel_picture_private; ///< hardware accelerator private data
124
125    AVBufferRef *ref_index_buf[2];
126    int8_t *ref_index[2];
127
128    int field_poc[2];       ///< top/bottom POC
129    int poc;                ///< frame POC
130    int frame_num;          ///< frame_num (raw frame_num from slice header)
131    int mmco_reset;         /**< MMCO_RESET set this 1. Reordering code must
132                                 not mix pictures before and after MMCO_RESET. */
133    int pic_id;             /**< pic_num (short -> no wrap version of pic_num,
134                                 pic_num & max_pic_num; long -> long_pic_num) */
135    int long_ref;           ///< 1->long term reference 0->short term reference
136    int ref_poc[2][2][32];  ///< POCs of the frames/fields used as reference (FIXME need per slice)
137    int ref_count[2][2];    ///< number of entries in ref_poc         (FIXME need per slice)
138    int mbaff;              ///< 1 -> MBAFF frame 0-> not MBAFF
139    int field_picture;      ///< whether or not picture was encoded in separate fields
140
141/**
142 * H264Picture.reference has this flag set,
143 * when the picture is held for delayed output.
144 */
145#define DELAYED_PIC_REF  (1 << 2)
146    int reference;
147    int recovered;          ///< picture at IDR or recovery point + recovery count
148    int invalid_gap;
149    int sei_recovery_frame_cnt;
150    int needs_fg;           ///< whether picture needs film grain synthesis (see `f_grain`)
151
152    AVBufferRef *pps_buf;
153    const PPS   *pps;
154
155    int mb_width, mb_height;
156    int mb_stride;
157} H264Picture;
158
159typedef struct H264Ref {
160    uint8_t *data[3];
161    int linesize[3];
162
163    int reference;
164    int poc;
165    int pic_id;
166
167    H264Picture *parent;
168} H264Ref;
169
170typedef struct H264SliceContext {
171    const struct H264Context *h264;
172    GetBitContext gb;
173    ERContext *er;
174
175    int slice_num;
176    int slice_type;
177    int slice_type_nos;         ///< S free slice type (SI/SP are remapped to I/P)
178    int slice_type_fixed;
179
180    int qscale;
181    int chroma_qp[2];   // QPc
182    int qp_thresh;      ///< QP threshold to skip loopfilter
183    int last_qscale_diff;
184
185    // deblock
186    int deblocking_filter;          ///< disable_deblocking_filter_idc with 1 <-> 0
187    int slice_alpha_c0_offset;
188    int slice_beta_offset;
189
190    H264PredWeightTable pwt;
191
192    int prev_mb_skipped;
193    int next_mb_skipped;
194
195    int chroma_pred_mode;
196    int intra16x16_pred_mode;
197
198    int8_t intra4x4_pred_mode_cache[5 * 8];
199    int8_t(*intra4x4_pred_mode);
200
201    int topleft_mb_xy;
202    int top_mb_xy;
203    int topright_mb_xy;
204    int left_mb_xy[LEFT_MBS];
205
206    int topleft_type;
207    int top_type;
208    int topright_type;
209    int left_type[LEFT_MBS];
210
211    const uint8_t *left_block;
212    int topleft_partition;
213
214    unsigned int topleft_samples_available;
215    unsigned int top_samples_available;
216    unsigned int topright_samples_available;
217    unsigned int left_samples_available;
218
219    ptrdiff_t linesize, uvlinesize;
220    ptrdiff_t mb_linesize;  ///< may be equal to s->linesize or s->linesize * 2, for mbaff
221    ptrdiff_t mb_uvlinesize;
222
223    int mb_x, mb_y;
224    int mb_xy;
225    int resync_mb_x;
226    int resync_mb_y;
227    unsigned int first_mb_addr;
228    // index of the first MB of the next slice
229    int next_slice_idx;
230    int mb_skip_run;
231    int is_complex;
232
233    int picture_structure;
234    int mb_field_decoding_flag;
235    int mb_mbaff;               ///< mb_aff_frame && mb_field_decoding_flag
236
237    int redundant_pic_count;
238
239    /**
240     * number of neighbors (top and/or left) that used 8x8 dct
241     */
242    int neighbor_transform_size;
243
244    int direct_spatial_mv_pred;
245    int col_parity;
246    int col_fieldoff;
247
248    int cbp;
249    int top_cbp;
250    int left_cbp;
251
252    int dist_scale_factor[32];
253    int dist_scale_factor_field[2][32];
254    int map_col_to_list0[2][16 + 32];
255    int map_col_to_list0_field[2][2][16 + 32];
256
257    /**
258     * num_ref_idx_l0/1_active_minus1 + 1
259     */
260    unsigned int ref_count[2];          ///< counts frames or fields, depending on current mb mode
261    unsigned int list_count;
262    H264Ref ref_list[2][48];        /**< 0..15: frame refs, 16..47: mbaff field refs.
263                                         *   Reordered version of default_ref_list
264                                         *   according to picture reordering in slice header */
265    struct {
266        uint8_t op;
267        uint32_t val;
268    } ref_modifications[2][32];
269    int nb_ref_modifications[2];
270
271    unsigned int pps_id;
272
273    const uint8_t *intra_pcm_ptr;
274
275    uint8_t *bipred_scratchpad;
276    uint8_t *edge_emu_buffer;
277    uint8_t (*top_borders[2])[(16 * 3) * 2];
278    int bipred_scratchpad_allocated;
279    int edge_emu_buffer_allocated;
280    int top_borders_allocated[2];
281
282    /**
283     * non zero coeff count cache.
284     * is 64 if not available.
285     */
286    DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
287
288    /**
289     * Motion vector cache.
290     */
291    DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
292    DECLARE_ALIGNED(8,  int8_t, ref_cache)[2][5 * 8];
293    DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
294    uint8_t direct_cache[5 * 8];
295
296    DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
297
298    ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
299    DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
300    DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
301    ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
302    ///< check that i is not too large or ensure that there is some unused stuff after mb
303    int16_t mb_padding[256 * 2];
304
305    uint8_t (*mvd_table[2])[2];
306
307    /**
308     * Cabac
309     */
310    CABACContext cabac;
311    uint8_t cabac_state[1024];
312    int cabac_init_idc;
313
314    MMCO mmco[H264_MAX_MMCO_COUNT];
315    int  nb_mmco;
316    int explicit_ref_marking;
317
318    int frame_num;
319    int idr_pic_id;
320    int poc_lsb;
321    int delta_poc_bottom;
322    int delta_poc[2];
323    int curr_pic_num;
324    int max_pic_num;
325} H264SliceContext;
326
327/**
328 * H264Context
329 */
330typedef struct H264Context {
331    const AVClass *class;
332    AVCodecContext *avctx;
333    VideoDSPContext vdsp;
334    H264DSPContext h264dsp;
335    H264ChromaContext h264chroma;
336    H264QpelContext h264qpel;
337    H274FilmGrainDatabase h274db;
338
339    H264Picture DPB[H264_MAX_PICTURE_COUNT];
340    H264Picture *cur_pic_ptr;
341    H264Picture cur_pic;
342    H264Picture last_pic_for_ec;
343
344    H264SliceContext *slice_ctx;
345    int            nb_slice_ctx;
346    int            nb_slice_ctx_queued;
347
348    H2645Packet pkt;
349
350    int pixel_shift;    ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
351
352    /* coded dimensions -- 16 * mb w/h */
353    int width, height;
354    int chroma_x_shift, chroma_y_shift;
355
356    int droppable;
357    int coded_picture_number;
358
359    int context_initialized;
360    int flags;
361    int workaround_bugs;
362    int x264_build;
363    /* Set when slice threading is used and at least one slice uses deblocking
364     * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
365     * during normal MB decoding and execute it serially at the end.
366     */
367    int postpone_filter;
368
369    /*
370     * Set to 1 when the current picture is IDR, 0 otherwise.
371     */
372    int picture_idr;
373
374    /*
375     * Set to 1 when the current picture contains only I slices, 0 otherwise.
376     */
377    int picture_intra_only;
378
379    int crop_left;
380    int crop_right;
381    int crop_top;
382    int crop_bottom;
383
384    int8_t(*intra4x4_pred_mode);
385    H264PredContext hpc;
386
387    uint8_t (*non_zero_count)[48];
388
389#define LIST_NOT_USED -1 // FIXME rename?
390
391    /**
392     * block_offset[ 0..23] for frame macroblocks
393     * block_offset[24..47] for field macroblocks
394     */
395    int block_offset[2 * (16 * 3)];
396
397    uint32_t *mb2b_xy;  // FIXME are these 4 a good idea?
398    uint32_t *mb2br_xy;
399    int b_stride;       // FIXME use s->b4_stride
400
401    uint16_t *slice_table;      ///< slice_table_base + 2*mb_stride + 1
402
403    // interlacing specific flags
404    int mb_aff_frame;
405    int picture_structure;
406    int first_field;
407
408    uint8_t *list_counts;               ///< Array of list_count per MB specifying the slice type
409
410    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
411    uint16_t *cbp_table;
412
413    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
414    uint8_t *chroma_pred_mode_table;
415    uint8_t (*mvd_table[2])[2];
416    uint8_t *direct_table;
417
418    uint8_t scan_padding[16];
419    uint8_t zigzag_scan[16];
420    uint8_t zigzag_scan8x8[64];
421    uint8_t zigzag_scan8x8_cavlc[64];
422    uint8_t field_scan[16];
423    uint8_t field_scan8x8[64];
424    uint8_t field_scan8x8_cavlc[64];
425    uint8_t zigzag_scan_q0[16];
426    uint8_t zigzag_scan8x8_q0[64];
427    uint8_t zigzag_scan8x8_cavlc_q0[64];
428    uint8_t field_scan_q0[16];
429    uint8_t field_scan8x8_q0[64];
430    uint8_t field_scan8x8_cavlc_q0[64];
431
432    int mb_y;
433    int mb_height, mb_width;
434    int mb_stride;
435    int mb_num;
436
437    // =============================================================
438    // Things below are not used in the MB or more inner code
439
440    int nal_ref_idc;
441    int nal_unit_type;
442
443    int has_slice;          ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()
444
445    /**
446     * Used to parse AVC variant of H.264
447     */
448    int is_avc;           ///< this flag is != 0 if codec is avc1
449    int nal_length_size;  ///< Number of bytes used for nal length (1, 2 or 4)
450
451    int bit_depth_luma;         ///< luma bit depth from sps to detect changes
452    int chroma_format_idc;      ///< chroma format from sps to detect changes
453
454    H264ParamSets ps;
455
456    uint16_t *slice_table_base;
457
458    H264POCContext poc;
459
460    H264Ref default_ref[2];
461    H264Picture *short_ref[32];
462    H264Picture *long_ref[32];
463    H264Picture *delayed_pic[H264_MAX_DPB_FRAMES + 2]; // FIXME size?
464    int last_pocs[H264_MAX_DPB_FRAMES];
465    H264Picture *next_output_pic;
466    int next_outputed_poc;
467    int poc_offset;         ///< PicOrderCnt_offset from SMPTE RDD-2006
468
469    /**
470     * memory management control operations buffer.
471     */
472    MMCO mmco[H264_MAX_MMCO_COUNT];
473    int  nb_mmco;
474    int mmco_reset;
475    int explicit_ref_marking;
476
477    int long_ref_count;     ///< number of actual long term references
478    int short_ref_count;    ///< number of actual short term references
479
480    /**
481     * @name Members for slice based multithreading
482     * @{
483     */
484    /**
485     * current slice number, used to initialize slice_num of each thread/context
486     */
487    int current_slice;
488
489    /** @} */
490
491    /**
492     * Complement sei_pic_struct
493     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
494     * However, soft telecined frames may have these values.
495     * This is used in an attempt to flag soft telecine progressive.
496     */
497    int prev_interlaced_frame;
498
499    /**
500     * Are the SEI recovery points looking valid.
501     */
502    int valid_recovery_point;
503
504    /**
505     * recovery_frame is the frame_num at which the next frame should
506     * be fully constructed.
507     *
508     * Set to -1 when not expecting a recovery point.
509     */
510    int recovery_frame;
511
512/**
513 * We have seen an IDR, so all the following frames in coded order are correctly
514 * decodable.
515 */
516#define FRAME_RECOVERED_IDR  (1 << 0)
517/**
518 * Sufficient number of frames have been decoded since a SEI recovery point,
519 * so all the following frames in presentation order are correct.
520 */
521#define FRAME_RECOVERED_SEI  (1 << 1)
522
523    int frame_recovered;    ///< Initial frame has been completely recovered
524
525    int has_recovery_point;
526
527    int missing_fields;
528
529    /* for frame threading, this is set to 1
530     * after finish_setup() has been called, so we cannot modify
531     * some context properties (which are supposed to stay constant between
532     * slices) anymore */
533    int setup_finished;
534
535    int cur_chroma_format_idc;
536    int cur_bit_depth_luma;
537    int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
538
539    /* original AVCodecContext dimensions, used to handle container
540     * cropping */
541    int width_from_caller;
542    int height_from_caller;
543
544    int enable_er;
545    ERContext er;
546    int16_t *dc_val_base;
547
548    H264SEIContext sei;
549
550    AVBufferPool *qscale_table_pool;
551    AVBufferPool *mb_type_pool;
552    AVBufferPool *motion_val_pool;
553    AVBufferPool *ref_index_pool;
554    int ref2frm[MAX_SLICES][2][64];     ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
555} H264Context;
556
557extern const uint16_t ff_h264_mb_sizes[4];
558
559/**
560 * Reconstruct bitstream slice_type.
561 */
562int ff_h264_get_slice_type(const H264SliceContext *sl);
563
564/**
565 * Allocate tables.
566 * needs width/height
567 */
568int ff_h264_alloc_tables(H264Context *h);
569
570int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
571int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
572void ff_h264_remove_all_refs(H264Context *h);
573
574/**
575 * Execute the reference picture marking (memory management control operations).
576 */
577int ff_h264_execute_ref_pic_marking(H264Context *h);
578
579int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
580                                   const H2645NAL *nal, void *logctx);
581
582void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
583void ff_h264_decode_init_vlc(void);
584
585/**
586 * Decode a macroblock
587 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
588 */
589int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
590
591/**
592 * Decode a CABAC coded macroblock
593 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
594 */
595int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
596
597void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
598
599void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
600void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
601void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
602                                int *mb_type);
603
604void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
605                            uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
606                            unsigned int linesize, unsigned int uvlinesize);
607void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
608                       uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
609                       unsigned int linesize, unsigned int uvlinesize);
610
611/*
612 * o-o o-o
613 *  / / /
614 * o-o o-o
615 *  ,---'
616 * o-o o-o
617 *  / / /
618 * o-o o-o
619 */
620
621/* Scan8 organization:
622 *    0 1 2 3 4 5 6 7
623 * 0  DY    y y y y y
624 * 1        y Y Y Y Y
625 * 2        y Y Y Y Y
626 * 3        y Y Y Y Y
627 * 4        y Y Y Y Y
628 * 5  DU    u u u u u
629 * 6        u U U U U
630 * 7        u U U U U
631 * 8        u U U U U
632 * 9        u U U U U
633 * 10 DV    v v v v v
634 * 11       v V V V V
635 * 12       v V V V V
636 * 13       v V V V V
637 * 14       v V V V V
638 * DY/DU/DV are for luma/chroma DC.
639 */
640
641#define LUMA_DC_BLOCK_INDEX   48
642#define CHROMA_DC_BLOCK_INDEX 49
643
644/**
645 * Get the chroma qp.
646 */
647static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
648{
649    return pps->chroma_qp_table[t][qscale];
650}
651
652/**
653 * Get the predicted intra4x4 prediction mode.
654 */
655static av_always_inline int pred_intra_mode(const H264Context *h,
656                                            H264SliceContext *sl, int n)
657{
658    const int index8 = scan8[n];
659    const int left   = sl->intra4x4_pred_mode_cache[index8 - 1];
660    const int top    = sl->intra4x4_pred_mode_cache[index8 - 8];
661    const int min    = FFMIN(left, top);
662
663    ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
664
665    if (min < 0)
666        return DC_PRED;
667    else
668        return min;
669}
670
671static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
672                                                        H264SliceContext *sl)
673{
674    int8_t *i4x4       = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
675    int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
676
677    AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
678    i4x4[4] = i4x4_cache[7 + 8 * 3];
679    i4x4[5] = i4x4_cache[7 + 8 * 2];
680    i4x4[6] = i4x4_cache[7 + 8 * 1];
681}
682
683static av_always_inline void write_back_non_zero_count(const H264Context *h,
684                                                       H264SliceContext *sl)
685{
686    const int mb_xy    = sl->mb_xy;
687    uint8_t *nnz       = h->non_zero_count[mb_xy];
688    uint8_t *nnz_cache = sl->non_zero_count_cache;
689
690    AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
691    AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
692    AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
693    AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
694    AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
695    AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
696    AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
697    AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
698
699    if (!h->chroma_y_shift) {
700        AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
701        AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
702        AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
703        AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
704    }
705}
706
707static av_always_inline void write_back_motion_list(const H264Context *h,
708                                                    H264SliceContext *sl,
709                                                    int b_stride,
710                                                    int b_xy, int b8_xy,
711                                                    int mb_type, int list)
712{
713    int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
714    int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
715    AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
716    AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
717    AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
718    AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
719    if (CABAC(h)) {
720        uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
721                                                        : h->mb2br_xy[sl->mb_xy]];
722        uint8_t(*mvd_src)[2]  = &sl->mvd_cache[list][scan8[0]];
723        if (IS_SKIP(mb_type)) {
724            AV_ZERO128(mvd_dst);
725        } else {
726            AV_COPY64(mvd_dst, mvd_src + 8 * 3);
727            AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
728            AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
729            AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
730        }
731    }
732
733    {
734        int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
735        int8_t *ref_cache = sl->ref_cache[list];
736        ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
737        ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
738        ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
739        ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
740    }
741}
742
743static av_always_inline void write_back_motion(const H264Context *h,
744                                               H264SliceContext *sl,
745                                               int mb_type)
746{
747    const int b_stride      = h->b_stride;
748    const int b_xy  = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
749    const int b8_xy = 4 * sl->mb_xy;
750
751    if (USES_LIST(mb_type, 0)) {
752        write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
753    } else {
754        fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
755                       2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
756    }
757    if (USES_LIST(mb_type, 1))
758        write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
759
760    if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
761        if (IS_8X8(mb_type)) {
762            uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
763            direct_table[1] = sl->sub_mb_type[1] >> 1;
764            direct_table[2] = sl->sub_mb_type[2] >> 1;
765            direct_table[3] = sl->sub_mb_type[3] >> 1;
766        }
767    }
768}
769
770static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
771{
772    if (h->ps.sps->direct_8x8_inference_flag)
773        return !(AV_RN64A(sl->sub_mb_type) &
774                 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
775                  0x0001000100010001ULL));
776    else
777        return !(AV_RN64A(sl->sub_mb_type) &
778                 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
779                  0x0001000100010001ULL));
780}
781
782int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
783
784int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
785int ff_h264_replace_picture(H264Context *h, H264Picture *dst, const H264Picture *src);
786void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
787
788void ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
789
790void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
791
792/**
793 * Submit a slice for decoding.
794 *
795 * Parse the slice header, starting a new field/frame if necessary. If any
796 * slices are queued for the previous field, they are decoded.
797 */
798int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
799int ff_h264_execute_decode_slices(H264Context *h);
800int ff_h264_update_thread_context(AVCodecContext *dst,
801                                  const AVCodecContext *src);
802int ff_h264_update_thread_context_for_user(AVCodecContext *dst,
803                                           const AVCodecContext *src);
804
805void ff_h264_flush_change(H264Context *h);
806
807void ff_h264_free_tables(H264Context *h);
808
809void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);
810
811#endif /* AVCODEC_H264DEC_H */
812