1/* 2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder 3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> 4 * 5 * This file is part of FFmpeg. 6 * 7 * FFmpeg is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2.1 of the License, or (at your option) any later version. 11 * 12 * FFmpeg is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with FFmpeg; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 20 */ 21 22/** 23 * @file 24 * H.264 / AVC / MPEG-4 part10 codec. 25 * @author Michael Niedermayer <michaelni@gmx.at> 26 */ 27 28#ifndef AVCODEC_H264DEC_H 29#define AVCODEC_H264DEC_H 30 31#include "libavutil/buffer.h" 32#include "libavutil/intreadwrite.h" 33#include "libavutil/mem_internal.h" 34 35#include "cabac.h" 36#include "error_resilience.h" 37#include "h264_parse.h" 38#include "h264_ps.h" 39#include "h264_sei.h" 40#include "h2645_parse.h" 41#include "h264chroma.h" 42#include "h264dsp.h" 43#include "h264pred.h" 44#include "h264qpel.h" 45#include "h274.h" 46#include "mpegutils.h" 47#include "rectangle.h" 48#include "videodsp.h" 49 50#define H264_MAX_PICTURE_COUNT 36 51 52/* Compiling in interlaced support reduces the speed 53 * of progressive decoding by about 2%. */ 54#define ALLOW_INTERLACE 55 56#define FMO 0 57 58/** 59 * The maximum number of slices supported by the decoder. 60 * must be a power of 2 61 */ 62#define MAX_SLICES 32 63 64#ifdef ALLOW_INTERLACE 65#define MB_MBAFF(h) (h)->mb_mbaff 66#define MB_FIELD(sl) (sl)->mb_field_decoding_flag 67#define FRAME_MBAFF(h) (h)->mb_aff_frame 68#define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME) 69#define LEFT_MBS 2 70#define LTOP 0 71#define LBOT 1 72#define LEFT(i) (i) 73#else 74#define MB_MBAFF(h) 0 75#define MB_FIELD(sl) 0 76#define FRAME_MBAFF(h) 0 77#define FIELD_PICTURE(h) 0 78#undef IS_INTERLACED 79#define IS_INTERLACED(mb_type) 0 80#define LEFT_MBS 1 81#define LTOP 0 82#define LBOT 0 83#define LEFT(i) 0 84#endif 85#define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h)) 86 87#ifndef CABAC 88#define CABAC(h) (h)->ps.pps->cabac 89#endif 90 91#define CHROMA(h) ((h)->ps.sps->chroma_format_idc) 92#define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2) 93#define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3) 94 95#define IS_REF0(a) ((a) & MB_TYPE_REF0) 96#define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT) 97 98/** 99 * Memory management control operation. 100 */ 101typedef struct MMCO { 102 MMCOOpcode opcode; 103 int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num) 104 int long_arg; ///< index, pic_num, or num long refs depending on opcode 105} MMCO; 106 107typedef struct H264Picture { 108 AVFrame *f; 109 ThreadFrame tf; 110 111 AVFrame *f_grain; 112 113 AVBufferRef *qscale_table_buf; 114 int8_t *qscale_table; 115 116 AVBufferRef *motion_val_buf[2]; 117 int16_t (*motion_val[2])[2]; 118 119 AVBufferRef *mb_type_buf; 120 uint32_t *mb_type; 121 122 AVBufferRef *hwaccel_priv_buf; 123 void *hwaccel_picture_private; ///< hardware accelerator private data 124 125 AVBufferRef *ref_index_buf[2]; 126 int8_t *ref_index[2]; 127 128 int field_poc[2]; ///< top/bottom POC 129 int poc; ///< frame POC 130 int frame_num; ///< frame_num (raw frame_num from slice header) 131 int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must 132 not mix pictures before and after MMCO_RESET. */ 133 int pic_id; /**< pic_num (short -> no wrap version of pic_num, 134 pic_num & max_pic_num; long -> long_pic_num) */ 135 int long_ref; ///< 1->long term reference 0->short term reference 136 int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice) 137 int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice) 138 int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF 139 int field_picture; ///< whether or not picture was encoded in separate fields 140 141/** 142 * H264Picture.reference has this flag set, 143 * when the picture is held for delayed output. 144 */ 145#define DELAYED_PIC_REF (1 << 2) 146 int reference; 147 int recovered; ///< picture at IDR or recovery point + recovery count 148 int invalid_gap; 149 int sei_recovery_frame_cnt; 150 int needs_fg; ///< whether picture needs film grain synthesis (see `f_grain`) 151 152 AVBufferRef *pps_buf; 153 const PPS *pps; 154 155 int mb_width, mb_height; 156 int mb_stride; 157} H264Picture; 158 159typedef struct H264Ref { 160 uint8_t *data[3]; 161 int linesize[3]; 162 163 int reference; 164 int poc; 165 int pic_id; 166 167 H264Picture *parent; 168} H264Ref; 169 170typedef struct H264SliceContext { 171 const struct H264Context *h264; 172 GetBitContext gb; 173 ERContext *er; 174 175 int slice_num; 176 int slice_type; 177 int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P) 178 int slice_type_fixed; 179 180 int qscale; 181 int chroma_qp[2]; // QPc 182 int qp_thresh; ///< QP threshold to skip loopfilter 183 int last_qscale_diff; 184 185 // deblock 186 int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0 187 int slice_alpha_c0_offset; 188 int slice_beta_offset; 189 190 H264PredWeightTable pwt; 191 192 int prev_mb_skipped; 193 int next_mb_skipped; 194 195 int chroma_pred_mode; 196 int intra16x16_pred_mode; 197 198 int8_t intra4x4_pred_mode_cache[5 * 8]; 199 int8_t(*intra4x4_pred_mode); 200 201 int topleft_mb_xy; 202 int top_mb_xy; 203 int topright_mb_xy; 204 int left_mb_xy[LEFT_MBS]; 205 206 int topleft_type; 207 int top_type; 208 int topright_type; 209 int left_type[LEFT_MBS]; 210 211 const uint8_t *left_block; 212 int topleft_partition; 213 214 unsigned int topleft_samples_available; 215 unsigned int top_samples_available; 216 unsigned int topright_samples_available; 217 unsigned int left_samples_available; 218 219 ptrdiff_t linesize, uvlinesize; 220 ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff 221 ptrdiff_t mb_uvlinesize; 222 223 int mb_x, mb_y; 224 int mb_xy; 225 int resync_mb_x; 226 int resync_mb_y; 227 unsigned int first_mb_addr; 228 // index of the first MB of the next slice 229 int next_slice_idx; 230 int mb_skip_run; 231 int is_complex; 232 233 int picture_structure; 234 int mb_field_decoding_flag; 235 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag 236 237 int redundant_pic_count; 238 239 /** 240 * number of neighbors (top and/or left) that used 8x8 dct 241 */ 242 int neighbor_transform_size; 243 244 int direct_spatial_mv_pred; 245 int col_parity; 246 int col_fieldoff; 247 248 int cbp; 249 int top_cbp; 250 int left_cbp; 251 252 int dist_scale_factor[32]; 253 int dist_scale_factor_field[2][32]; 254 int map_col_to_list0[2][16 + 32]; 255 int map_col_to_list0_field[2][2][16 + 32]; 256 257 /** 258 * num_ref_idx_l0/1_active_minus1 + 1 259 */ 260 unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode 261 unsigned int list_count; 262 H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs. 263 * Reordered version of default_ref_list 264 * according to picture reordering in slice header */ 265 struct { 266 uint8_t op; 267 uint32_t val; 268 } ref_modifications[2][32]; 269 int nb_ref_modifications[2]; 270 271 unsigned int pps_id; 272 273 const uint8_t *intra_pcm_ptr; 274 275 uint8_t *bipred_scratchpad; 276 uint8_t *edge_emu_buffer; 277 uint8_t (*top_borders[2])[(16 * 3) * 2]; 278 int bipred_scratchpad_allocated; 279 int edge_emu_buffer_allocated; 280 int top_borders_allocated[2]; 281 282 /** 283 * non zero coeff count cache. 284 * is 64 if not available. 285 */ 286 DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8]; 287 288 /** 289 * Motion vector cache. 290 */ 291 DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2]; 292 DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8]; 293 DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2]; 294 uint8_t direct_cache[5 * 8]; 295 296 DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4]; 297 298 ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space. 299 DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2]; 300 DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2]; 301 ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either 302 ///< check that i is not too large or ensure that there is some unused stuff after mb 303 int16_t mb_padding[256 * 2]; 304 305 uint8_t (*mvd_table[2])[2]; 306 307 /** 308 * Cabac 309 */ 310 CABACContext cabac; 311 uint8_t cabac_state[1024]; 312 int cabac_init_idc; 313 314 MMCO mmco[H264_MAX_MMCO_COUNT]; 315 int nb_mmco; 316 int explicit_ref_marking; 317 318 int frame_num; 319 int idr_pic_id; 320 int poc_lsb; 321 int delta_poc_bottom; 322 int delta_poc[2]; 323 int curr_pic_num; 324 int max_pic_num; 325} H264SliceContext; 326 327/** 328 * H264Context 329 */ 330typedef struct H264Context { 331 const AVClass *class; 332 AVCodecContext *avctx; 333 VideoDSPContext vdsp; 334 H264DSPContext h264dsp; 335 H264ChromaContext h264chroma; 336 H264QpelContext h264qpel; 337 H274FilmGrainDatabase h274db; 338 339 H264Picture DPB[H264_MAX_PICTURE_COUNT]; 340 H264Picture *cur_pic_ptr; 341 H264Picture cur_pic; 342 H264Picture last_pic_for_ec; 343 344 H264SliceContext *slice_ctx; 345 int nb_slice_ctx; 346 int nb_slice_ctx_queued; 347 348 H2645Packet pkt; 349 350 int pixel_shift; ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264 351 352 /* coded dimensions -- 16 * mb w/h */ 353 int width, height; 354 int chroma_x_shift, chroma_y_shift; 355 356 int droppable; 357 int coded_picture_number; 358 359 int context_initialized; 360 int flags; 361 int workaround_bugs; 362 int x264_build; 363 /* Set when slice threading is used and at least one slice uses deblocking 364 * mode 1 (i.e. across slice boundaries). Then we disable the loop filter 365 * during normal MB decoding and execute it serially at the end. 366 */ 367 int postpone_filter; 368 369 /* 370 * Set to 1 when the current picture is IDR, 0 otherwise. 371 */ 372 int picture_idr; 373 374 /* 375 * Set to 1 when the current picture contains only I slices, 0 otherwise. 376 */ 377 int picture_intra_only; 378 379 int crop_left; 380 int crop_right; 381 int crop_top; 382 int crop_bottom; 383 384 int8_t(*intra4x4_pred_mode); 385 H264PredContext hpc; 386 387 uint8_t (*non_zero_count)[48]; 388 389#define LIST_NOT_USED -1 // FIXME rename? 390 391 /** 392 * block_offset[ 0..23] for frame macroblocks 393 * block_offset[24..47] for field macroblocks 394 */ 395 int block_offset[2 * (16 * 3)]; 396 397 uint32_t *mb2b_xy; // FIXME are these 4 a good idea? 398 uint32_t *mb2br_xy; 399 int b_stride; // FIXME use s->b4_stride 400 401 uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1 402 403 // interlacing specific flags 404 int mb_aff_frame; 405 int picture_structure; 406 int first_field; 407 408 uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type 409 410 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */ 411 uint16_t *cbp_table; 412 413 /* chroma_pred_mode for i4x4 or i16x16, else 0 */ 414 uint8_t *chroma_pred_mode_table; 415 uint8_t (*mvd_table[2])[2]; 416 uint8_t *direct_table; 417 418 uint8_t scan_padding[16]; 419 uint8_t zigzag_scan[16]; 420 uint8_t zigzag_scan8x8[64]; 421 uint8_t zigzag_scan8x8_cavlc[64]; 422 uint8_t field_scan[16]; 423 uint8_t field_scan8x8[64]; 424 uint8_t field_scan8x8_cavlc[64]; 425 uint8_t zigzag_scan_q0[16]; 426 uint8_t zigzag_scan8x8_q0[64]; 427 uint8_t zigzag_scan8x8_cavlc_q0[64]; 428 uint8_t field_scan_q0[16]; 429 uint8_t field_scan8x8_q0[64]; 430 uint8_t field_scan8x8_cavlc_q0[64]; 431 432 int mb_y; 433 int mb_height, mb_width; 434 int mb_stride; 435 int mb_num; 436 437 // ============================================================= 438 // Things below are not used in the MB or more inner code 439 440 int nal_ref_idc; 441 int nal_unit_type; 442 443 int has_slice; ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame() 444 445 /** 446 * Used to parse AVC variant of H.264 447 */ 448 int is_avc; ///< this flag is != 0 if codec is avc1 449 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4) 450 451 int bit_depth_luma; ///< luma bit depth from sps to detect changes 452 int chroma_format_idc; ///< chroma format from sps to detect changes 453 454 H264ParamSets ps; 455 456 uint16_t *slice_table_base; 457 458 H264POCContext poc; 459 460 H264Ref default_ref[2]; 461 H264Picture *short_ref[32]; 462 H264Picture *long_ref[32]; 463 H264Picture *delayed_pic[H264_MAX_DPB_FRAMES + 2]; // FIXME size? 464 int last_pocs[H264_MAX_DPB_FRAMES]; 465 H264Picture *next_output_pic; 466 int next_outputed_poc; 467 int poc_offset; ///< PicOrderCnt_offset from SMPTE RDD-2006 468 469 /** 470 * memory management control operations buffer. 471 */ 472 MMCO mmco[H264_MAX_MMCO_COUNT]; 473 int nb_mmco; 474 int mmco_reset; 475 int explicit_ref_marking; 476 477 int long_ref_count; ///< number of actual long term references 478 int short_ref_count; ///< number of actual short term references 479 480 /** 481 * @name Members for slice based multithreading 482 * @{ 483 */ 484 /** 485 * current slice number, used to initialize slice_num of each thread/context 486 */ 487 int current_slice; 488 489 /** @} */ 490 491 /** 492 * Complement sei_pic_struct 493 * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames. 494 * However, soft telecined frames may have these values. 495 * This is used in an attempt to flag soft telecine progressive. 496 */ 497 int prev_interlaced_frame; 498 499 /** 500 * Are the SEI recovery points looking valid. 501 */ 502 int valid_recovery_point; 503 504 /** 505 * recovery_frame is the frame_num at which the next frame should 506 * be fully constructed. 507 * 508 * Set to -1 when not expecting a recovery point. 509 */ 510 int recovery_frame; 511 512/** 513 * We have seen an IDR, so all the following frames in coded order are correctly 514 * decodable. 515 */ 516#define FRAME_RECOVERED_IDR (1 << 0) 517/** 518 * Sufficient number of frames have been decoded since a SEI recovery point, 519 * so all the following frames in presentation order are correct. 520 */ 521#define FRAME_RECOVERED_SEI (1 << 1) 522 523 int frame_recovered; ///< Initial frame has been completely recovered 524 525 int has_recovery_point; 526 527 int missing_fields; 528 529 /* for frame threading, this is set to 1 530 * after finish_setup() has been called, so we cannot modify 531 * some context properties (which are supposed to stay constant between 532 * slices) anymore */ 533 int setup_finished; 534 535 int cur_chroma_format_idc; 536 int cur_bit_depth_luma; 537 int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low 538 539 /* original AVCodecContext dimensions, used to handle container 540 * cropping */ 541 int width_from_caller; 542 int height_from_caller; 543 544 int enable_er; 545 ERContext er; 546 int16_t *dc_val_base; 547 548 H264SEIContext sei; 549 550 AVBufferPool *qscale_table_pool; 551 AVBufferPool *mb_type_pool; 552 AVBufferPool *motion_val_pool; 553 AVBufferPool *ref_index_pool; 554 int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 555} H264Context; 556 557extern const uint16_t ff_h264_mb_sizes[4]; 558 559/** 560 * Reconstruct bitstream slice_type. 561 */ 562int ff_h264_get_slice_type(const H264SliceContext *sl); 563 564/** 565 * Allocate tables. 566 * needs width/height 567 */ 568int ff_h264_alloc_tables(H264Context *h); 569 570int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx); 571int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl); 572void ff_h264_remove_all_refs(H264Context *h); 573 574/** 575 * Execute the reference picture marking (memory management control operations). 576 */ 577int ff_h264_execute_ref_pic_marking(H264Context *h); 578 579int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb, 580 const H2645NAL *nal, void *logctx); 581 582void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl); 583void ff_h264_decode_init_vlc(void); 584 585/** 586 * Decode a macroblock 587 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error 588 */ 589int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl); 590 591/** 592 * Decode a CABAC coded macroblock 593 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error 594 */ 595int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl); 596 597void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl); 598 599void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl); 600void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl); 601void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl, 602 int *mb_type); 603 604void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, 605 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, 606 unsigned int linesize, unsigned int uvlinesize); 607void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, 608 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, 609 unsigned int linesize, unsigned int uvlinesize); 610 611/* 612 * o-o o-o 613 * / / / 614 * o-o o-o 615 * ,---' 616 * o-o o-o 617 * / / / 618 * o-o o-o 619 */ 620 621/* Scan8 organization: 622 * 0 1 2 3 4 5 6 7 623 * 0 DY y y y y y 624 * 1 y Y Y Y Y 625 * 2 y Y Y Y Y 626 * 3 y Y Y Y Y 627 * 4 y Y Y Y Y 628 * 5 DU u u u u u 629 * 6 u U U U U 630 * 7 u U U U U 631 * 8 u U U U U 632 * 9 u U U U U 633 * 10 DV v v v v v 634 * 11 v V V V V 635 * 12 v V V V V 636 * 13 v V V V V 637 * 14 v V V V V 638 * DY/DU/DV are for luma/chroma DC. 639 */ 640 641#define LUMA_DC_BLOCK_INDEX 48 642#define CHROMA_DC_BLOCK_INDEX 49 643 644/** 645 * Get the chroma qp. 646 */ 647static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale) 648{ 649 return pps->chroma_qp_table[t][qscale]; 650} 651 652/** 653 * Get the predicted intra4x4 prediction mode. 654 */ 655static av_always_inline int pred_intra_mode(const H264Context *h, 656 H264SliceContext *sl, int n) 657{ 658 const int index8 = scan8[n]; 659 const int left = sl->intra4x4_pred_mode_cache[index8 - 1]; 660 const int top = sl->intra4x4_pred_mode_cache[index8 - 8]; 661 const int min = FFMIN(left, top); 662 663 ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min); 664 665 if (min < 0) 666 return DC_PRED; 667 else 668 return min; 669} 670 671static av_always_inline void write_back_intra_pred_mode(const H264Context *h, 672 H264SliceContext *sl) 673{ 674 int8_t *i4x4 = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy]; 675 int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache; 676 677 AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4); 678 i4x4[4] = i4x4_cache[7 + 8 * 3]; 679 i4x4[5] = i4x4_cache[7 + 8 * 2]; 680 i4x4[6] = i4x4_cache[7 + 8 * 1]; 681} 682 683static av_always_inline void write_back_non_zero_count(const H264Context *h, 684 H264SliceContext *sl) 685{ 686 const int mb_xy = sl->mb_xy; 687 uint8_t *nnz = h->non_zero_count[mb_xy]; 688 uint8_t *nnz_cache = sl->non_zero_count_cache; 689 690 AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]); 691 AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]); 692 AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]); 693 AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]); 694 AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]); 695 AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]); 696 AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]); 697 AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]); 698 699 if (!h->chroma_y_shift) { 700 AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]); 701 AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]); 702 AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]); 703 AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]); 704 } 705} 706 707static av_always_inline void write_back_motion_list(const H264Context *h, 708 H264SliceContext *sl, 709 int b_stride, 710 int b_xy, int b8_xy, 711 int mb_type, int list) 712{ 713 int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy]; 714 int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]]; 715 AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0); 716 AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1); 717 AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2); 718 AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3); 719 if (CABAC(h)) { 720 uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy 721 : h->mb2br_xy[sl->mb_xy]]; 722 uint8_t(*mvd_src)[2] = &sl->mvd_cache[list][scan8[0]]; 723 if (IS_SKIP(mb_type)) { 724 AV_ZERO128(mvd_dst); 725 } else { 726 AV_COPY64(mvd_dst, mvd_src + 8 * 3); 727 AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0); 728 AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1); 729 AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2); 730 } 731 } 732 733 { 734 int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy]; 735 int8_t *ref_cache = sl->ref_cache[list]; 736 ref_index[0 + 0 * 2] = ref_cache[scan8[0]]; 737 ref_index[1 + 0 * 2] = ref_cache[scan8[4]]; 738 ref_index[0 + 1 * 2] = ref_cache[scan8[8]]; 739 ref_index[1 + 1 * 2] = ref_cache[scan8[12]]; 740 } 741} 742 743static av_always_inline void write_back_motion(const H264Context *h, 744 H264SliceContext *sl, 745 int mb_type) 746{ 747 const int b_stride = h->b_stride; 748 const int b_xy = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy 749 const int b8_xy = 4 * sl->mb_xy; 750 751 if (USES_LIST(mb_type, 0)) { 752 write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0); 753 } else { 754 fill_rectangle(&h->cur_pic.ref_index[0][b8_xy], 755 2, 2, 2, (uint8_t)LIST_NOT_USED, 1); 756 } 757 if (USES_LIST(mb_type, 1)) 758 write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1); 759 760 if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) { 761 if (IS_8X8(mb_type)) { 762 uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy]; 763 direct_table[1] = sl->sub_mb_type[1] >> 1; 764 direct_table[2] = sl->sub_mb_type[2] >> 1; 765 direct_table[3] = sl->sub_mb_type[3] >> 1; 766 } 767 } 768} 769 770static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl) 771{ 772 if (h->ps.sps->direct_8x8_inference_flag) 773 return !(AV_RN64A(sl->sub_mb_type) & 774 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) * 775 0x0001000100010001ULL)); 776 else 777 return !(AV_RN64A(sl->sub_mb_type) & 778 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) * 779 0x0001000100010001ULL)); 780} 781 782int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup); 783 784int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src); 785int ff_h264_replace_picture(H264Context *h, H264Picture *dst, const H264Picture *src); 786void ff_h264_unref_picture(H264Context *h, H264Picture *pic); 787 788void ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl); 789 790void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height); 791 792/** 793 * Submit a slice for decoding. 794 * 795 * Parse the slice header, starting a new field/frame if necessary. If any 796 * slices are queued for the previous field, they are decoded. 797 */ 798int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal); 799int ff_h264_execute_decode_slices(H264Context *h); 800int ff_h264_update_thread_context(AVCodecContext *dst, 801 const AVCodecContext *src); 802int ff_h264_update_thread_context_for_user(AVCodecContext *dst, 803 const AVCodecContext *src); 804 805void ff_h264_flush_change(H264Context *h); 806 807void ff_h264_free_tables(H264Context *h); 808 809void ff_h264_set_erpic(ERPicture *dst, H264Picture *src); 810 811#endif /* AVCODEC_H264DEC_H */ 812