xref: /third_party/ffmpeg/libavcodec/g723_1dec.c (revision cabdff1a)
1/*
2 * G.723.1 compatible decoder
3 * Copyright (c) 2006 Benjamin Larsson
4 * Copyright (c) 2010 Mohamed Naufal Basheer
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file
25 * G.723.1 compatible decoder
26 */
27
28#include "libavutil/channel_layout.h"
29#include "libavutil/mem.h"
30#include "libavutil/opt.h"
31
32#define BITSTREAM_READER_LE
33#include "acelp_vectors.h"
34#include "avcodec.h"
35#include "celp_filters.h"
36#include "celp_math.h"
37#include "codec_internal.h"
38#include "get_bits.h"
39#include "internal.h"
40#include "g723_1.h"
41
42#define CNG_RANDOM_SEED 12345
43
44/**
45 * Postfilter gain weighting factors scaled by 2^15
46 */
47static const int16_t ppf_gain_weight[2] = {0x1800, 0x2000};
48
49static const int16_t pitch_contrib[340] = {
50    60,     0,  0,  2489, 60,     0,  0,  5217,
51     1,  6171,  0,  3953,  0, 10364,  1,  9357,
52    -1,  8843,  1,  9396,  0,  5794, -1, 10816,
53     2, 11606, -2, 12072,  0,  8616,  1, 12170,
54     0, 14440,  0,  7787, -1, 13721,  0, 18205,
55     0, 14471,  0, 15807,  1, 15275,  0, 13480,
56    -1, 18375, -1,     0,  1, 11194, -1, 13010,
57     1, 18836, -2, 20354,  1, 16233, -1,     0,
58    60,     0,  0, 12130,  0, 13385,  1, 17834,
59     1, 20875,  0, 21996,  1,     0,  1, 18277,
60    -1, 21321,  1, 13738, -1, 19094, -1, 20387,
61    -1,     0,  0, 21008, 60,     0, -2, 22807,
62     0, 15900,  1,     0,  0, 17989, -1, 22259,
63     1, 24395,  1, 23138,  0, 23948,  1, 22997,
64     2, 22604, -1, 25942,  0, 26246,  1, 25321,
65     0, 26423,  0, 24061,  0, 27247, 60,     0,
66    -1, 25572,  1, 23918,  1, 25930,  2, 26408,
67    -1, 19049,  1, 27357, -1, 24538, 60,     0,
68    -1, 25093,  0, 28549,  1,     0,  0, 22793,
69    -1, 25659,  0, 29377,  0, 30276,  0, 26198,
70     1, 22521, -1, 28919,  0, 27384,  1, 30162,
71    -1,     0,  0, 24237, -1, 30062,  0, 21763,
72     1, 30917, 60,     0,  0, 31284,  0, 29433,
73     1, 26821,  1, 28655,  0, 31327,  2, 30799,
74     1, 31389,  0, 32322,  1, 31760, -2, 31830,
75     0, 26936, -1, 31180,  1, 30875,  0, 27873,
76    -1, 30429,  1, 31050,  0,     0,  0, 31912,
77     1, 31611,  0, 31565,  0, 25557,  0, 31357,
78    60,     0,  1, 29536,  1, 28985, -1, 26984,
79    -1, 31587,  2, 30836, -2, 31133,  0, 30243,
80    -1, 30742, -1, 32090, 60,     0,  2, 30902,
81    60,     0,  0, 30027,  0, 29042, 60,     0,
82     0, 31756,  0, 24553,  0, 25636, -2, 30501,
83    60,     0, -1, 29617,  0, 30649, 60,     0,
84     0, 29274,  2, 30415,  0, 27480,  0, 31213,
85    -1, 28147,  0, 30600,  1, 31652,  2, 29068,
86    60,     0,  1, 28571,  1, 28730,  1, 31422,
87     0, 28257,  0, 24797, 60,     0,  0,     0,
88    60,     0,  0, 22105,  0, 27852, 60,     0,
89    60,     0, -1, 24214,  0, 24642,  0, 23305,
90    60,     0, 60,     0,  1, 22883,  0, 21601,
91    60,     0,  2, 25650, 60,     0, -2, 31253,
92    -2, 25144,  0, 17998
93};
94
95/**
96 * Size of the MP-MLQ fixed excitation codebooks
97 */
98static const int32_t max_pos[4] = {593775, 142506, 593775, 142506};
99
100/**
101 * 0.65^i (Zero part) and 0.75^i (Pole part) scaled by 2^15
102 */
103static const int16_t postfilter_tbl[2][LPC_ORDER] = {
104    /* Zero */
105    {21299, 13844,  8999,  5849, 3802, 2471, 1606, 1044,  679,  441},
106    /* Pole */
107    {24576, 18432, 13824, 10368, 7776, 5832, 4374, 3281, 2460, 1845}
108};
109
110static const int cng_adaptive_cb_lag[4] = { 1, 0, 1, 3 };
111
112static const int cng_filt[4] = { 273, 998, 499, 333 };
113
114static const int cng_bseg[3] = { 2048, 18432, 231233 };
115
116static av_cold int g723_1_decode_init(AVCodecContext *avctx)
117{
118    G723_1_Context *s = avctx->priv_data;
119
120    avctx->sample_fmt     = AV_SAMPLE_FMT_S16P;
121    if (avctx->ch_layout.nb_channels < 1 || avctx->ch_layout.nb_channels > 2) {
122        av_log(avctx, AV_LOG_ERROR, "Only mono and stereo are supported (requested channels: %d).\n",
123               avctx->ch_layout.nb_channels);
124        return AVERROR(EINVAL);
125    }
126    for (int ch = 0; ch < avctx->ch_layout.nb_channels; ch++) {
127        G723_1_ChannelContext *p = &s->ch[ch];
128
129        p->pf_gain = 1 << 12;
130
131        memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
132        memcpy(p->sid_lsp,  dc_lsp, LPC_ORDER * sizeof(*p->sid_lsp));
133
134        p->cng_random_seed = CNG_RANDOM_SEED;
135        p->past_frame_type = SID_FRAME;
136    }
137
138    return 0;
139}
140
141/**
142 * Unpack the frame into parameters.
143 *
144 * @param p           the context
145 * @param buf         pointer to the input buffer
146 * @param buf_size    size of the input buffer
147 */
148static int unpack_bitstream(G723_1_ChannelContext *p, const uint8_t *buf,
149                            int buf_size)
150{
151    GetBitContext gb;
152    int ad_cb_len;
153    int temp, info_bits, i;
154    int ret;
155
156    ret = init_get_bits8(&gb, buf, buf_size);
157    if (ret < 0)
158        return ret;
159
160    /* Extract frame type and rate info */
161    info_bits = get_bits(&gb, 2);
162
163    if (info_bits == 3) {
164        p->cur_frame_type = UNTRANSMITTED_FRAME;
165        return 0;
166    }
167
168    /* Extract 24 bit lsp indices, 8 bit for each band */
169    p->lsp_index[2] = get_bits(&gb, 8);
170    p->lsp_index[1] = get_bits(&gb, 8);
171    p->lsp_index[0] = get_bits(&gb, 8);
172
173    if (info_bits == 2) {
174        p->cur_frame_type = SID_FRAME;
175        p->subframe[0].amp_index = get_bits(&gb, 6);
176        return 0;
177    }
178
179    /* Extract the info common to both rates */
180    p->cur_rate       = info_bits ? RATE_5300 : RATE_6300;
181    p->cur_frame_type = ACTIVE_FRAME;
182
183    p->pitch_lag[0] = get_bits(&gb, 7);
184    if (p->pitch_lag[0] > 123)       /* test if forbidden code */
185        return -1;
186    p->pitch_lag[0] += PITCH_MIN;
187    p->subframe[1].ad_cb_lag = get_bits(&gb, 2);
188
189    p->pitch_lag[1] = get_bits(&gb, 7);
190    if (p->pitch_lag[1] > 123)
191        return -1;
192    p->pitch_lag[1] += PITCH_MIN;
193    p->subframe[3].ad_cb_lag = get_bits(&gb, 2);
194    p->subframe[0].ad_cb_lag = 1;
195    p->subframe[2].ad_cb_lag = 1;
196
197    for (i = 0; i < SUBFRAMES; i++) {
198        /* Extract combined gain */
199        temp = get_bits(&gb, 12);
200        ad_cb_len = 170;
201        p->subframe[i].dirac_train = 0;
202        if (p->cur_rate == RATE_6300 && p->pitch_lag[i >> 1] < SUBFRAME_LEN - 2) {
203            p->subframe[i].dirac_train = temp >> 11;
204            temp &= 0x7FF;
205            ad_cb_len = 85;
206        }
207        p->subframe[i].ad_cb_gain = FASTDIV(temp, GAIN_LEVELS);
208        if (p->subframe[i].ad_cb_gain < ad_cb_len) {
209            p->subframe[i].amp_index = temp - p->subframe[i].ad_cb_gain *
210                                       GAIN_LEVELS;
211        } else {
212            return -1;
213        }
214    }
215
216    p->subframe[0].grid_index = get_bits1(&gb);
217    p->subframe[1].grid_index = get_bits1(&gb);
218    p->subframe[2].grid_index = get_bits1(&gb);
219    p->subframe[3].grid_index = get_bits1(&gb);
220
221    if (p->cur_rate == RATE_6300) {
222        skip_bits1(&gb);  /* skip reserved bit */
223
224        /* Compute pulse_pos index using the 13-bit combined position index */
225        temp = get_bits(&gb, 13);
226        p->subframe[0].pulse_pos = temp / 810;
227
228        temp -= p->subframe[0].pulse_pos * 810;
229        p->subframe[1].pulse_pos = FASTDIV(temp, 90);
230
231        temp -= p->subframe[1].pulse_pos * 90;
232        p->subframe[2].pulse_pos = FASTDIV(temp, 9);
233        p->subframe[3].pulse_pos = temp - p->subframe[2].pulse_pos * 9;
234
235        p->subframe[0].pulse_pos = (p->subframe[0].pulse_pos << 16) +
236                                   get_bits(&gb, 16);
237        p->subframe[1].pulse_pos = (p->subframe[1].pulse_pos << 14) +
238                                   get_bits(&gb, 14);
239        p->subframe[2].pulse_pos = (p->subframe[2].pulse_pos << 16) +
240                                   get_bits(&gb, 16);
241        p->subframe[3].pulse_pos = (p->subframe[3].pulse_pos << 14) +
242                                   get_bits(&gb, 14);
243
244        p->subframe[0].pulse_sign = get_bits(&gb, 6);
245        p->subframe[1].pulse_sign = get_bits(&gb, 5);
246        p->subframe[2].pulse_sign = get_bits(&gb, 6);
247        p->subframe[3].pulse_sign = get_bits(&gb, 5);
248    } else { /* 5300 bps */
249        p->subframe[0].pulse_pos  = get_bits(&gb, 12);
250        p->subframe[1].pulse_pos  = get_bits(&gb, 12);
251        p->subframe[2].pulse_pos  = get_bits(&gb, 12);
252        p->subframe[3].pulse_pos  = get_bits(&gb, 12);
253
254        p->subframe[0].pulse_sign = get_bits(&gb, 4);
255        p->subframe[1].pulse_sign = get_bits(&gb, 4);
256        p->subframe[2].pulse_sign = get_bits(&gb, 4);
257        p->subframe[3].pulse_sign = get_bits(&gb, 4);
258    }
259
260    return 0;
261}
262
263/**
264 * Bitexact implementation of sqrt(val/2).
265 */
266static int16_t square_root(unsigned val)
267{
268    av_assert2(!(val & 0x80000000));
269
270    return (ff_sqrt(val << 1) >> 1) & (~1);
271}
272
273/**
274 * Generate fixed codebook excitation vector.
275 *
276 * @param vector    decoded excitation vector
277 * @param subfrm    current subframe
278 * @param cur_rate  current bitrate
279 * @param pitch_lag closed loop pitch lag
280 * @param index     current subframe index
281 */
282static void gen_fcb_excitation(int16_t *vector, G723_1_Subframe *subfrm,
283                               enum Rate cur_rate, int pitch_lag, int index)
284{
285    int temp, i, j;
286
287    memset(vector, 0, SUBFRAME_LEN * sizeof(*vector));
288
289    if (cur_rate == RATE_6300) {
290        if (subfrm->pulse_pos >= max_pos[index])
291            return;
292
293        /* Decode amplitudes and positions */
294        j = PULSE_MAX - pulses[index];
295        temp = subfrm->pulse_pos;
296        for (i = 0; i < SUBFRAME_LEN / GRID_SIZE; i++) {
297            temp -= ff_g723_1_combinatorial_table[j][i];
298            if (temp >= 0)
299                continue;
300            temp += ff_g723_1_combinatorial_table[j++][i];
301            if (subfrm->pulse_sign & (1 << (PULSE_MAX - j))) {
302                vector[subfrm->grid_index + GRID_SIZE * i] =
303                                        -ff_g723_1_fixed_cb_gain[subfrm->amp_index];
304            } else {
305                vector[subfrm->grid_index + GRID_SIZE * i] =
306                                         ff_g723_1_fixed_cb_gain[subfrm->amp_index];
307            }
308            if (j == PULSE_MAX)
309                break;
310        }
311        if (subfrm->dirac_train == 1)
312            ff_g723_1_gen_dirac_train(vector, pitch_lag);
313    } else { /* 5300 bps */
314        int cb_gain  = ff_g723_1_fixed_cb_gain[subfrm->amp_index];
315        int cb_shift = subfrm->grid_index;
316        int cb_sign  = subfrm->pulse_sign;
317        int cb_pos   = subfrm->pulse_pos;
318        int offset, beta, lag;
319
320        for (i = 0; i < 8; i += 2) {
321            offset         = ((cb_pos & 7) << 3) + cb_shift + i;
322            vector[offset] = (cb_sign & 1) ? cb_gain : -cb_gain;
323            cb_pos  >>= 3;
324            cb_sign >>= 1;
325        }
326
327        /* Enhance harmonic components */
328        lag  = pitch_contrib[subfrm->ad_cb_gain << 1] + pitch_lag +
329               subfrm->ad_cb_lag - 1;
330        beta = pitch_contrib[(subfrm->ad_cb_gain << 1) + 1];
331
332        if (lag < SUBFRAME_LEN - 2) {
333            for (i = lag; i < SUBFRAME_LEN; i++)
334                vector[i] += beta * vector[i - lag] >> 15;
335        }
336    }
337}
338
339/**
340 * Estimate maximum auto-correlation around pitch lag.
341 *
342 * @param buf       buffer with offset applied
343 * @param offset    offset of the excitation vector
344 * @param ccr_max   pointer to the maximum auto-correlation
345 * @param pitch_lag decoded pitch lag
346 * @param length    length of autocorrelation
347 * @param dir       forward lag(1) / backward lag(-1)
348 */
349static int autocorr_max(const int16_t *buf, int offset, int *ccr_max,
350                        int pitch_lag, int length, int dir)
351{
352    int limit, ccr, lag = 0;
353    int i;
354
355    pitch_lag = FFMIN(PITCH_MAX - 3, pitch_lag);
356    if (dir > 0)
357        limit = FFMIN(FRAME_LEN + PITCH_MAX - offset - length, pitch_lag + 3);
358    else
359        limit = pitch_lag + 3;
360
361    for (i = pitch_lag - 3; i <= limit; i++) {
362        ccr = ff_g723_1_dot_product(buf, buf + dir * i, length);
363
364        if (ccr > *ccr_max) {
365            *ccr_max = ccr;
366            lag = i;
367        }
368    }
369    return lag;
370}
371
372/**
373 * Calculate pitch postfilter optimal and scaling gains.
374 *
375 * @param lag      pitch postfilter forward/backward lag
376 * @param ppf      pitch postfilter parameters
377 * @param cur_rate current bitrate
378 * @param tgt_eng  target energy
379 * @param ccr      cross-correlation
380 * @param res_eng  residual energy
381 */
382static void comp_ppf_gains(int lag, PPFParam *ppf, enum Rate cur_rate,
383                           int tgt_eng, int ccr, int res_eng)
384{
385    int pf_residual;     /* square of postfiltered residual */
386    int temp1, temp2;
387
388    ppf->index = lag;
389
390    temp1 = tgt_eng * res_eng >> 1;
391    temp2 = ccr * ccr << 1;
392
393    if (temp2 > temp1) {
394        if (ccr >= res_eng) {
395            ppf->opt_gain = ppf_gain_weight[cur_rate];
396        } else {
397            ppf->opt_gain = (ccr << 15) / res_eng *
398                            ppf_gain_weight[cur_rate] >> 15;
399        }
400        /* pf_res^2 = tgt_eng + 2*ccr*gain + res_eng*gain^2 */
401        temp1       = (tgt_eng << 15) + (ccr * ppf->opt_gain << 1);
402        temp2       = (ppf->opt_gain * ppf->opt_gain >> 15) * res_eng;
403        pf_residual = av_sat_add32(temp1, temp2 + (1 << 15)) >> 16;
404
405        if (tgt_eng >= pf_residual << 1) {
406            temp1 = 0x7fff;
407        } else {
408            temp1 = (tgt_eng << 14) / pf_residual;
409        }
410
411        /* scaling_gain = sqrt(tgt_eng/pf_res^2) */
412        ppf->sc_gain = square_root(temp1 << 16);
413    } else {
414        ppf->opt_gain = 0;
415        ppf->sc_gain  = 0x7fff;
416    }
417
418    ppf->opt_gain = av_clip_int16(ppf->opt_gain * ppf->sc_gain >> 15);
419}
420
421/**
422 * Calculate pitch postfilter parameters.
423 *
424 * @param p         the context
425 * @param offset    offset of the excitation vector
426 * @param pitch_lag decoded pitch lag
427 * @param ppf       pitch postfilter parameters
428 * @param cur_rate  current bitrate
429 */
430static void comp_ppf_coeff(G723_1_ChannelContext *p, int offset, int pitch_lag,
431                           PPFParam *ppf, enum Rate cur_rate)
432{
433
434    int16_t scale;
435    int i;
436    int temp1, temp2;
437
438    /*
439     * 0 - target energy
440     * 1 - forward cross-correlation
441     * 2 - forward residual energy
442     * 3 - backward cross-correlation
443     * 4 - backward residual energy
444     */
445    int energy[5] = {0, 0, 0, 0, 0};
446    int16_t *buf  = p->audio + LPC_ORDER + offset;
447    int fwd_lag   = autocorr_max(buf, offset, &energy[1], pitch_lag,
448                                 SUBFRAME_LEN, 1);
449    int back_lag  = autocorr_max(buf, offset, &energy[3], pitch_lag,
450                                 SUBFRAME_LEN, -1);
451
452    ppf->index    = 0;
453    ppf->opt_gain = 0;
454    ppf->sc_gain  = 0x7fff;
455
456    /* Case 0, Section 3.6 */
457    if (!back_lag && !fwd_lag)
458        return;
459
460    /* Compute target energy */
461    energy[0] = ff_g723_1_dot_product(buf, buf, SUBFRAME_LEN);
462
463    /* Compute forward residual energy */
464    if (fwd_lag)
465        energy[2] = ff_g723_1_dot_product(buf + fwd_lag, buf + fwd_lag,
466                                          SUBFRAME_LEN);
467
468    /* Compute backward residual energy */
469    if (back_lag)
470        energy[4] = ff_g723_1_dot_product(buf - back_lag, buf - back_lag,
471                                          SUBFRAME_LEN);
472
473    /* Normalize and shorten */
474    temp1 = 0;
475    for (i = 0; i < 5; i++)
476        temp1 = FFMAX(energy[i], temp1);
477
478    scale = ff_g723_1_normalize_bits(temp1, 31);
479    for (i = 0; i < 5; i++)
480        energy[i] = (energy[i] << scale) >> 16;
481
482    if (fwd_lag && !back_lag) {  /* Case 1 */
483        comp_ppf_gains(fwd_lag,  ppf, cur_rate, energy[0], energy[1],
484                       energy[2]);
485    } else if (!fwd_lag) {       /* Case 2 */
486        comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
487                       energy[4]);
488    } else {                     /* Case 3 */
489
490        /*
491         * Select the largest of energy[1]^2/energy[2]
492         * and energy[3]^2/energy[4]
493         */
494        temp1 = energy[4] * ((energy[1] * energy[1] + (1 << 14)) >> 15);
495        temp2 = energy[2] * ((energy[3] * energy[3] + (1 << 14)) >> 15);
496        if (temp1 >= temp2) {
497            comp_ppf_gains(fwd_lag, ppf, cur_rate, energy[0], energy[1],
498                           energy[2]);
499        } else {
500            comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
501                           energy[4]);
502        }
503    }
504}
505
506/**
507 * Classify frames as voiced/unvoiced.
508 *
509 * @param p         the context
510 * @param pitch_lag decoded pitch_lag
511 * @param exc_eng   excitation energy estimation
512 * @param scale     scaling factor of exc_eng
513 *
514 * @return residual interpolation index if voiced, 0 otherwise
515 */
516static int comp_interp_index(G723_1_ChannelContext *p, int pitch_lag,
517                             int *exc_eng, int *scale)
518{
519    int offset = PITCH_MAX + 2 * SUBFRAME_LEN;
520    int16_t *buf = p->audio + LPC_ORDER;
521
522    int index, ccr, tgt_eng, best_eng, temp;
523
524    *scale = ff_g723_1_scale_vector(buf, p->excitation, FRAME_LEN + PITCH_MAX);
525    buf   += offset;
526
527    /* Compute maximum backward cross-correlation */
528    ccr   = 0;
529    index = autocorr_max(buf, offset, &ccr, pitch_lag, SUBFRAME_LEN * 2, -1);
530    ccr   = av_sat_add32(ccr, 1 << 15) >> 16;
531
532    /* Compute target energy */
533    tgt_eng  = ff_g723_1_dot_product(buf, buf, SUBFRAME_LEN * 2);
534    *exc_eng = av_sat_add32(tgt_eng, 1 << 15) >> 16;
535
536    if (ccr <= 0)
537        return 0;
538
539    /* Compute best energy */
540    best_eng = ff_g723_1_dot_product(buf - index, buf - index,
541                                     SUBFRAME_LEN * 2);
542    best_eng = av_sat_add32(best_eng, 1 << 15) >> 16;
543
544    temp = best_eng * *exc_eng >> 3;
545
546    if (temp < ccr * ccr) {
547        return index;
548    } else
549        return 0;
550}
551
552/**
553 * Perform residual interpolation based on frame classification.
554 *
555 * @param buf   decoded excitation vector
556 * @param out   output vector
557 * @param lag   decoded pitch lag
558 * @param gain  interpolated gain
559 * @param rseed seed for random number generator
560 */
561static void residual_interp(int16_t *buf, int16_t *out, int lag,
562                            int gain, int *rseed)
563{
564    int i;
565    if (lag) { /* Voiced */
566        int16_t *vector_ptr = buf + PITCH_MAX;
567        /* Attenuate */
568        for (i = 0; i < lag; i++)
569            out[i] = vector_ptr[i - lag] * 3 >> 2;
570        av_memcpy_backptr((uint8_t*)(out + lag), lag * sizeof(*out),
571                          (FRAME_LEN - lag) * sizeof(*out));
572    } else {  /* Unvoiced */
573        for (i = 0; i < FRAME_LEN; i++) {
574            *rseed = (int16_t)(*rseed * 521 + 259);
575            out[i] = gain * *rseed >> 15;
576        }
577        memset(buf, 0, (FRAME_LEN + PITCH_MAX) * sizeof(*buf));
578    }
579}
580
581/**
582 * Perform IIR filtering.
583 *
584 * @param fir_coef FIR coefficients
585 * @param iir_coef IIR coefficients
586 * @param src      source vector
587 * @param dest     destination vector
588 * @param width    width of the output, 16 bits(0) / 32 bits(1)
589 */
590#define iir_filter(fir_coef, iir_coef, src, dest, width)\
591{\
592    int m, n;\
593    int res_shift = 16 & ~-(width);\
594    int in_shift  = 16 - res_shift;\
595\
596    for (m = 0; m < SUBFRAME_LEN; m++) {\
597        int64_t filter = 0;\
598        for (n = 1; n <= LPC_ORDER; n++) {\
599            filter -= (fir_coef)[n - 1] * (src)[m - n] -\
600                      (iir_coef)[n - 1] * ((dest)[m - n] >> in_shift);\
601        }\
602\
603        (dest)[m] = av_clipl_int32(((src)[m] * 65536) + (filter * 8) +\
604                                   (1 << 15)) >> res_shift;\
605    }\
606}
607
608/**
609 * Adjust gain of postfiltered signal.
610 *
611 * @param p      the context
612 * @param buf    postfiltered output vector
613 * @param energy input energy coefficient
614 */
615static void gain_scale(G723_1_ChannelContext *p, int16_t * buf, int energy)
616{
617    int num, denom, gain, bits1, bits2;
618    int i;
619
620    num   = energy;
621    denom = 0;
622    for (i = 0; i < SUBFRAME_LEN; i++) {
623        int temp = buf[i] >> 2;
624        temp *= temp;
625        denom = av_sat_dadd32(denom, temp);
626    }
627
628    if (num && denom) {
629        bits1   = ff_g723_1_normalize_bits(num,   31);
630        bits2   = ff_g723_1_normalize_bits(denom, 31);
631        num     = num << bits1 >> 1;
632        denom <<= bits2;
633
634        bits2 = 5 + bits1 - bits2;
635        bits2 = av_clip_uintp2(bits2, 5);
636
637        gain = (num >> 1) / (denom >> 16);
638        gain = square_root(gain << 16 >> bits2);
639    } else {
640        gain = 1 << 12;
641    }
642
643    for (i = 0; i < SUBFRAME_LEN; i++) {
644        p->pf_gain = (15 * p->pf_gain + gain + (1 << 3)) >> 4;
645        buf[i]     = av_clip_int16((buf[i] * (p->pf_gain + (p->pf_gain >> 4)) +
646                                   (1 << 10)) >> 11);
647    }
648}
649
650/**
651 * Perform formant filtering.
652 *
653 * @param p   the context
654 * @param lpc quantized lpc coefficients
655 * @param buf input buffer
656 * @param dst output buffer
657 */
658static void formant_postfilter(G723_1_ChannelContext *p, int16_t *lpc,
659                               int16_t *buf, int16_t *dst)
660{
661    int16_t filter_coef[2][LPC_ORDER];
662    int filter_signal[LPC_ORDER + FRAME_LEN], *signal_ptr;
663    int i, j, k;
664
665    memcpy(buf, p->fir_mem, LPC_ORDER * sizeof(*buf));
666    memcpy(filter_signal, p->iir_mem, LPC_ORDER * sizeof(*filter_signal));
667
668    for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) {
669        for (k = 0; k < LPC_ORDER; k++) {
670            filter_coef[0][k] = (-lpc[k] * postfilter_tbl[0][k] +
671                                 (1 << 14)) >> 15;
672            filter_coef[1][k] = (-lpc[k] * postfilter_tbl[1][k] +
673                                 (1 << 14)) >> 15;
674        }
675        iir_filter(filter_coef[0], filter_coef[1], buf + i, filter_signal + i, 1);
676        lpc += LPC_ORDER;
677    }
678
679    memcpy(p->fir_mem, buf + FRAME_LEN, LPC_ORDER * sizeof(int16_t));
680    memcpy(p->iir_mem, filter_signal + FRAME_LEN, LPC_ORDER * sizeof(int));
681
682    buf += LPC_ORDER;
683    signal_ptr = filter_signal + LPC_ORDER;
684    for (i = 0; i < SUBFRAMES; i++) {
685        int temp;
686        int auto_corr[2];
687        int scale, energy;
688
689        /* Normalize */
690        scale = ff_g723_1_scale_vector(dst, buf, SUBFRAME_LEN);
691
692        /* Compute auto correlation coefficients */
693        auto_corr[0] = ff_g723_1_dot_product(dst, dst + 1, SUBFRAME_LEN - 1);
694        auto_corr[1] = ff_g723_1_dot_product(dst, dst,     SUBFRAME_LEN);
695
696        /* Compute reflection coefficient */
697        temp = auto_corr[1] >> 16;
698        if (temp) {
699            temp = (auto_corr[0] >> 2) / temp;
700        }
701        p->reflection_coef = (3 * p->reflection_coef + temp + 2) >> 2;
702        temp = -p->reflection_coef >> 1 & ~3;
703
704        /* Compensation filter */
705        for (j = 0; j < SUBFRAME_LEN; j++) {
706            dst[j] = av_sat_dadd32(signal_ptr[j],
707                                   (signal_ptr[j - 1] >> 16) * temp) >> 16;
708        }
709
710        /* Compute normalized signal energy */
711        temp = 2 * scale + 4;
712        if (temp < 0) {
713            energy = av_clipl_int32((int64_t)auto_corr[1] << -temp);
714        } else
715            energy = auto_corr[1] >> temp;
716
717        gain_scale(p, dst, energy);
718
719        buf        += SUBFRAME_LEN;
720        signal_ptr += SUBFRAME_LEN;
721        dst        += SUBFRAME_LEN;
722    }
723}
724
725static int sid_gain_to_lsp_index(int gain)
726{
727    if (gain < 0x10)
728        return gain << 6;
729    else if (gain < 0x20)
730        return gain - 8 << 7;
731    else
732        return gain - 20 << 8;
733}
734
735static inline int cng_rand(int *state, int base)
736{
737    *state = (*state * 521 + 259) & 0xFFFF;
738    return (*state & 0x7FFF) * base >> 15;
739}
740
741static int estimate_sid_gain(G723_1_ChannelContext *p)
742{
743    int i, shift, seg, seg2, t, val, val_add, x, y;
744
745    shift = 16 - p->cur_gain * 2;
746    if (shift > 0) {
747        if (p->sid_gain == 0) {
748            t = 0;
749        } else if (shift >= 31 || (int32_t)((uint32_t)p->sid_gain << shift) >> shift != p->sid_gain) {
750            if (p->sid_gain < 0) t = INT32_MIN;
751            else                 t = INT32_MAX;
752        } else
753            t = p->sid_gain * (1 << shift);
754    } else if(shift < -31) {
755        t = (p->sid_gain < 0) ? -1 : 0;
756    }else
757        t = p->sid_gain >> -shift;
758    x = av_clipl_int32(t * (int64_t)cng_filt[0] >> 16);
759
760    if (x >= cng_bseg[2])
761        return 0x3F;
762
763    if (x >= cng_bseg[1]) {
764        shift = 4;
765        seg   = 3;
766    } else {
767        shift = 3;
768        seg   = (x >= cng_bseg[0]);
769    }
770    seg2 = FFMIN(seg, 3);
771
772    val     = 1 << shift;
773    val_add = val >> 1;
774    for (i = 0; i < shift; i++) {
775        t = seg * 32 + (val << seg2);
776        t *= t;
777        if (x >= t)
778            val += val_add;
779        else
780            val -= val_add;
781        val_add >>= 1;
782    }
783
784    t = seg * 32 + (val << seg2);
785    y = t * t - x;
786    if (y <= 0) {
787        t = seg * 32 + (val + 1 << seg2);
788        t = t * t - x;
789        val = (seg2 - 1) * 16 + val;
790        if (t >= y)
791            val++;
792    } else {
793        t = seg * 32 + (val - 1 << seg2);
794        t = t * t - x;
795        val = (seg2 - 1) * 16 + val;
796        if (t >= y)
797            val--;
798    }
799
800    return val;
801}
802
803static void generate_noise(G723_1_ChannelContext *p)
804{
805    int i, j, idx, t;
806    int off[SUBFRAMES];
807    int signs[SUBFRAMES / 2 * 11], pos[SUBFRAMES / 2 * 11];
808    int tmp[SUBFRAME_LEN * 2];
809    int16_t *vector_ptr;
810    int64_t sum;
811    int b0, c, delta, x, shift;
812
813    p->pitch_lag[0] = cng_rand(&p->cng_random_seed, 21) + 123;
814    p->pitch_lag[1] = cng_rand(&p->cng_random_seed, 19) + 123;
815
816    for (i = 0; i < SUBFRAMES; i++) {
817        p->subframe[i].ad_cb_gain = cng_rand(&p->cng_random_seed, 50) + 1;
818        p->subframe[i].ad_cb_lag  = cng_adaptive_cb_lag[i];
819    }
820
821    for (i = 0; i < SUBFRAMES / 2; i++) {
822        t = cng_rand(&p->cng_random_seed, 1 << 13);
823        off[i * 2]     =   t       & 1;
824        off[i * 2 + 1] = ((t >> 1) & 1) + SUBFRAME_LEN;
825        t >>= 2;
826        for (j = 0; j < 11; j++) {
827            signs[i * 11 + j] = ((t & 1) * 2 - 1)  * (1 << 14);
828            t >>= 1;
829        }
830    }
831
832    idx = 0;
833    for (i = 0; i < SUBFRAMES; i++) {
834        for (j = 0; j < SUBFRAME_LEN / 2; j++)
835            tmp[j] = j;
836        t = SUBFRAME_LEN / 2;
837        for (j = 0; j < pulses[i]; j++, idx++) {
838            int idx2 = cng_rand(&p->cng_random_seed, t);
839
840            pos[idx]  = tmp[idx2] * 2 + off[i];
841            tmp[idx2] = tmp[--t];
842        }
843    }
844
845    vector_ptr = p->audio + LPC_ORDER;
846    memcpy(vector_ptr, p->prev_excitation,
847           PITCH_MAX * sizeof(*p->excitation));
848    for (i = 0; i < SUBFRAMES; i += 2) {
849        ff_g723_1_gen_acb_excitation(vector_ptr, vector_ptr,
850                                     p->pitch_lag[i >> 1], &p->subframe[i],
851                                     p->cur_rate);
852        ff_g723_1_gen_acb_excitation(vector_ptr + SUBFRAME_LEN,
853                                     vector_ptr + SUBFRAME_LEN,
854                                     p->pitch_lag[i >> 1], &p->subframe[i + 1],
855                                     p->cur_rate);
856
857        t = 0;
858        for (j = 0; j < SUBFRAME_LEN * 2; j++)
859            t |= FFABS(vector_ptr[j]);
860        t = FFMIN(t, 0x7FFF);
861        if (!t) {
862            shift = 0;
863        } else {
864            shift = -10 + av_log2(t);
865            if (shift < -2)
866                shift = -2;
867        }
868        sum = 0;
869        if (shift < 0) {
870           for (j = 0; j < SUBFRAME_LEN * 2; j++) {
871               t      = vector_ptr[j] * (1 << -shift);
872               sum   += t * t;
873               tmp[j] = t;
874           }
875        } else {
876           for (j = 0; j < SUBFRAME_LEN * 2; j++) {
877               t      = vector_ptr[j] >> shift;
878               sum   += t * t;
879               tmp[j] = t;
880           }
881        }
882
883        b0 = 0;
884        for (j = 0; j < 11; j++)
885            b0 += tmp[pos[(i / 2) * 11 + j]] * signs[(i / 2) * 11 + j];
886        b0 = b0 * 2 * 2979LL + (1 << 29) >> 30; // approximated division by 11
887
888        c = p->cur_gain * (p->cur_gain * SUBFRAME_LEN >> 5);
889        if (shift * 2 + 3 >= 0)
890            c >>= shift * 2 + 3;
891        else
892            c <<= -(shift * 2 + 3);
893        c = (av_clipl_int32(sum << 1) - c) * 2979LL >> 15;
894
895        delta = b0 * b0 * 2 - c;
896        if (delta <= 0) {
897            x = -b0;
898        } else {
899            delta = square_root(delta);
900            x     = delta - b0;
901            t     = delta + b0;
902            if (FFABS(t) < FFABS(x))
903                x = -t;
904        }
905        shift++;
906        if (shift < 0)
907           x >>= -shift;
908        else
909           x *= 1 << shift;
910        x = av_clip(x, -10000, 10000);
911
912        for (j = 0; j < 11; j++) {
913            idx = (i / 2) * 11 + j;
914            vector_ptr[pos[idx]] = av_clip_int16(vector_ptr[pos[idx]] +
915                                                 (x * signs[idx] >> 15));
916        }
917
918        /* copy decoded data to serve as a history for the next decoded subframes */
919        memcpy(vector_ptr + PITCH_MAX, vector_ptr,
920               sizeof(*vector_ptr) * SUBFRAME_LEN * 2);
921        vector_ptr += SUBFRAME_LEN * 2;
922    }
923    /* Save the excitation for the next frame */
924    memcpy(p->prev_excitation, p->audio + LPC_ORDER + FRAME_LEN,
925           PITCH_MAX * sizeof(*p->excitation));
926}
927
928static int g723_1_decode_frame(AVCodecContext *avctx, AVFrame *frame,
929                               int *got_frame_ptr, AVPacket *avpkt)
930{
931    G723_1_Context *s  = avctx->priv_data;
932    const uint8_t *buf = avpkt->data;
933    int buf_size       = avpkt->size;
934    int dec_mode       = buf[0] & 3;
935    int channels       = avctx->ch_layout.nb_channels;
936
937    PPFParam ppf[SUBFRAMES];
938    int16_t cur_lsp[LPC_ORDER];
939    int16_t lpc[SUBFRAMES * LPC_ORDER];
940    int16_t acb_vector[SUBFRAME_LEN];
941    int16_t *out;
942    int bad_frame = 0, i, j, ret;
943
944    if (buf_size < frame_size[dec_mode] * channels) {
945        if (buf_size)
946            av_log(avctx, AV_LOG_WARNING,
947                   "Expected %d bytes, got %d - skipping packet\n",
948                   frame_size[dec_mode], buf_size);
949        *got_frame_ptr = 0;
950        return buf_size;
951    }
952
953    frame->nb_samples = FRAME_LEN;
954    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
955        return ret;
956
957    for (int ch = 0; ch < channels; ch++) {
958        G723_1_ChannelContext *p = &s->ch[ch];
959        int16_t *audio = p->audio;
960
961        if (unpack_bitstream(p, buf + ch * (buf_size / channels),
962                             buf_size / channels) < 0) {
963            bad_frame = 1;
964            if (p->past_frame_type == ACTIVE_FRAME)
965                p->cur_frame_type = ACTIVE_FRAME;
966            else
967                p->cur_frame_type = UNTRANSMITTED_FRAME;
968        }
969
970        out = (int16_t *)frame->extended_data[ch];
971
972        if (p->cur_frame_type == ACTIVE_FRAME) {
973            if (!bad_frame)
974                p->erased_frames = 0;
975            else if (p->erased_frames != 3)
976                p->erased_frames++;
977
978            ff_g723_1_inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, bad_frame);
979            ff_g723_1_lsp_interpolate(lpc, cur_lsp, p->prev_lsp);
980
981            /* Save the lsp_vector for the next frame */
982            memcpy(p->prev_lsp, cur_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
983
984            /* Generate the excitation for the frame */
985            memcpy(p->excitation, p->prev_excitation,
986                   PITCH_MAX * sizeof(*p->excitation));
987            if (!p->erased_frames) {
988                int16_t *vector_ptr = p->excitation + PITCH_MAX;
989
990                /* Update interpolation gain memory */
991                p->interp_gain = ff_g723_1_fixed_cb_gain[(p->subframe[2].amp_index +
992                                                p->subframe[3].amp_index) >> 1];
993                for (i = 0; i < SUBFRAMES; i++) {
994                    gen_fcb_excitation(vector_ptr, &p->subframe[i], p->cur_rate,
995                                       p->pitch_lag[i >> 1], i);
996                    ff_g723_1_gen_acb_excitation(acb_vector,
997                                                 &p->excitation[SUBFRAME_LEN * i],
998                                                 p->pitch_lag[i >> 1],
999                                                 &p->subframe[i], p->cur_rate);
1000                    /* Get the total excitation */
1001                    for (j = 0; j < SUBFRAME_LEN; j++) {
1002                        int v = av_clip_int16(vector_ptr[j] * 2);
1003                        vector_ptr[j] = av_clip_int16(v + acb_vector[j]);
1004                    }
1005                    vector_ptr += SUBFRAME_LEN;
1006                }
1007
1008                vector_ptr = p->excitation + PITCH_MAX;
1009
1010                p->interp_index = comp_interp_index(p, p->pitch_lag[1],
1011                                                    &p->sid_gain, &p->cur_gain);
1012
1013                /* Perform pitch postfiltering */
1014                if (s->postfilter) {
1015                    i = PITCH_MAX;
1016                    for (j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
1017                        comp_ppf_coeff(p, i, p->pitch_lag[j >> 1],
1018                                       ppf + j, p->cur_rate);
1019
1020                    for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
1021                        ff_acelp_weighted_vector_sum(p->audio + LPC_ORDER + i,
1022                                                     vector_ptr + i,
1023                                                     vector_ptr + i + ppf[j].index,
1024                                                     ppf[j].sc_gain,
1025                                                     ppf[j].opt_gain,
1026                                                     1 << 14, 15, SUBFRAME_LEN);
1027                } else {
1028                    audio = vector_ptr - LPC_ORDER;
1029                }
1030
1031                /* Save the excitation for the next frame */
1032                memcpy(p->prev_excitation, p->excitation + FRAME_LEN,
1033                       PITCH_MAX * sizeof(*p->excitation));
1034            } else {
1035                p->interp_gain = (p->interp_gain * 3 + 2) >> 2;
1036                if (p->erased_frames == 3) {
1037                    /* Mute output */
1038                    memset(p->excitation, 0,
1039                           (FRAME_LEN + PITCH_MAX) * sizeof(*p->excitation));
1040                    memset(p->prev_excitation, 0,
1041                           PITCH_MAX * sizeof(*p->excitation));
1042                    memset(frame->data[0], 0,
1043                           (FRAME_LEN + LPC_ORDER) * sizeof(int16_t));
1044                } else {
1045                    int16_t *buf = p->audio + LPC_ORDER;
1046
1047                    /* Regenerate frame */
1048                    residual_interp(p->excitation, buf, p->interp_index,
1049                                    p->interp_gain, &p->random_seed);
1050
1051                    /* Save the excitation for the next frame */
1052                    memcpy(p->prev_excitation, buf + (FRAME_LEN - PITCH_MAX),
1053                           PITCH_MAX * sizeof(*p->excitation));
1054                }
1055            }
1056            p->cng_random_seed = CNG_RANDOM_SEED;
1057        } else {
1058            if (p->cur_frame_type == SID_FRAME) {
1059                p->sid_gain = sid_gain_to_lsp_index(p->subframe[0].amp_index);
1060                ff_g723_1_inverse_quant(p->sid_lsp, p->prev_lsp, p->lsp_index, 0);
1061            } else if (p->past_frame_type == ACTIVE_FRAME) {
1062                p->sid_gain = estimate_sid_gain(p);
1063            }
1064
1065            if (p->past_frame_type == ACTIVE_FRAME)
1066                p->cur_gain = p->sid_gain;
1067            else
1068                p->cur_gain = (p->cur_gain * 7 + p->sid_gain) >> 3;
1069            generate_noise(p);
1070            ff_g723_1_lsp_interpolate(lpc, p->sid_lsp, p->prev_lsp);
1071            /* Save the lsp_vector for the next frame */
1072            memcpy(p->prev_lsp, p->sid_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
1073        }
1074
1075        p->past_frame_type = p->cur_frame_type;
1076
1077        memcpy(p->audio, p->synth_mem, LPC_ORDER * sizeof(*p->audio));
1078        for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
1079            ff_celp_lp_synthesis_filter(p->audio + i, &lpc[j * LPC_ORDER],
1080                                        audio + i, SUBFRAME_LEN, LPC_ORDER,
1081                                        0, 1, 1 << 12);
1082        memcpy(p->synth_mem, p->audio + FRAME_LEN, LPC_ORDER * sizeof(*p->audio));
1083
1084        if (s->postfilter) {
1085            formant_postfilter(p, lpc, p->audio, out);
1086        } else { // if output is not postfiltered it should be scaled by 2
1087            for (i = 0; i < FRAME_LEN; i++)
1088                out[i] = av_clip_int16(2 * p->audio[LPC_ORDER + i]);
1089        }
1090    }
1091
1092    *got_frame_ptr = 1;
1093
1094    return frame_size[dec_mode] * channels;
1095}
1096
1097#define OFFSET(x) offsetof(G723_1_Context, x)
1098#define AD     AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1099
1100static const AVOption options[] = {
1101    { "postfilter", "enable postfilter", OFFSET(postfilter), AV_OPT_TYPE_BOOL,
1102      { .i64 = 1 }, 0, 1, AD },
1103    { NULL }
1104};
1105
1106
1107static const AVClass g723_1dec_class = {
1108    .class_name = "G.723.1 decoder",
1109    .item_name  = av_default_item_name,
1110    .option     = options,
1111    .version    = LIBAVUTIL_VERSION_INT,
1112};
1113
1114const FFCodec ff_g723_1_decoder = {
1115    .p.name         = "g723_1",
1116    .p.long_name    = NULL_IF_CONFIG_SMALL("G.723.1"),
1117    .p.type         = AVMEDIA_TYPE_AUDIO,
1118    .p.id           = AV_CODEC_ID_G723_1,
1119    .priv_data_size = sizeof(G723_1_Context),
1120    .init           = g723_1_decode_init,
1121    FF_CODEC_DECODE_CB(g723_1_decode_frame),
1122    .p.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
1123    .p.priv_class   = &g723_1dec_class,
1124    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
1125};
1126