1cabdff1aSopenharmony_ci/* 2cabdff1aSopenharmony_ci * Copyright (c) CMU 1993 Computer Science, Speech Group 3cabdff1aSopenharmony_ci * Chengxiang Lu and Alex Hauptmann 4cabdff1aSopenharmony_ci * Copyright (c) 2005 Steve Underwood <steveu at coppice.org> 5cabdff1aSopenharmony_ci * Copyright (c) 2009 Kenan Gillet 6cabdff1aSopenharmony_ci * Copyright (c) 2010 Martin Storsjo 7cabdff1aSopenharmony_ci * 8cabdff1aSopenharmony_ci * This file is part of FFmpeg. 9cabdff1aSopenharmony_ci * 10cabdff1aSopenharmony_ci * FFmpeg is free software; you can redistribute it and/or 11cabdff1aSopenharmony_ci * modify it under the terms of the GNU Lesser General Public 12cabdff1aSopenharmony_ci * License as published by the Free Software Foundation; either 13cabdff1aSopenharmony_ci * version 2.1 of the License, or (at your option) any later version. 14cabdff1aSopenharmony_ci * 15cabdff1aSopenharmony_ci * FFmpeg is distributed in the hope that it will be useful, 16cabdff1aSopenharmony_ci * but WITHOUT ANY WARRANTY; without even the implied warranty of 17cabdff1aSopenharmony_ci * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18cabdff1aSopenharmony_ci * Lesser General Public License for more details. 19cabdff1aSopenharmony_ci * 20cabdff1aSopenharmony_ci * You should have received a copy of the GNU Lesser General Public 21cabdff1aSopenharmony_ci * License along with FFmpeg; if not, write to the Free Software 22cabdff1aSopenharmony_ci * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 23cabdff1aSopenharmony_ci */ 24cabdff1aSopenharmony_ci 25cabdff1aSopenharmony_ci/** 26cabdff1aSopenharmony_ci * @file 27cabdff1aSopenharmony_ci * G.722 ADPCM audio encoder 28cabdff1aSopenharmony_ci */ 29cabdff1aSopenharmony_ci 30cabdff1aSopenharmony_ci#include "libavutil/avassert.h" 31cabdff1aSopenharmony_ci#include "libavutil/channel_layout.h" 32cabdff1aSopenharmony_ci#include "avcodec.h" 33cabdff1aSopenharmony_ci#include "codec_internal.h" 34cabdff1aSopenharmony_ci#include "encode.h" 35cabdff1aSopenharmony_ci#include "internal.h" 36cabdff1aSopenharmony_ci#include "g722.h" 37cabdff1aSopenharmony_ci#include "libavutil/common.h" 38cabdff1aSopenharmony_ci 39cabdff1aSopenharmony_ci#define FREEZE_INTERVAL 128 40cabdff1aSopenharmony_ci 41cabdff1aSopenharmony_ci/* This is an arbitrary value. Allowing insanely large values leads to strange 42cabdff1aSopenharmony_ci problems, so we limit it to a reasonable value */ 43cabdff1aSopenharmony_ci#define MAX_FRAME_SIZE 32768 44cabdff1aSopenharmony_ci 45cabdff1aSopenharmony_ci/* We clip the value of avctx->trellis to prevent data type overflows and 46cabdff1aSopenharmony_ci undefined behavior. Using larger values is insanely slow anyway. */ 47cabdff1aSopenharmony_ci#define MIN_TRELLIS 0 48cabdff1aSopenharmony_ci#define MAX_TRELLIS 16 49cabdff1aSopenharmony_ci 50cabdff1aSopenharmony_cistatic av_cold int g722_encode_close(AVCodecContext *avctx) 51cabdff1aSopenharmony_ci{ 52cabdff1aSopenharmony_ci G722Context *c = avctx->priv_data; 53cabdff1aSopenharmony_ci int i; 54cabdff1aSopenharmony_ci for (i = 0; i < 2; i++) { 55cabdff1aSopenharmony_ci av_freep(&c->paths[i]); 56cabdff1aSopenharmony_ci av_freep(&c->node_buf[i]); 57cabdff1aSopenharmony_ci av_freep(&c->nodep_buf[i]); 58cabdff1aSopenharmony_ci } 59cabdff1aSopenharmony_ci return 0; 60cabdff1aSopenharmony_ci} 61cabdff1aSopenharmony_ci 62cabdff1aSopenharmony_cistatic av_cold int g722_encode_init(AVCodecContext * avctx) 63cabdff1aSopenharmony_ci{ 64cabdff1aSopenharmony_ci G722Context *c = avctx->priv_data; 65cabdff1aSopenharmony_ci 66cabdff1aSopenharmony_ci c->band[0].scale_factor = 8; 67cabdff1aSopenharmony_ci c->band[1].scale_factor = 2; 68cabdff1aSopenharmony_ci c->prev_samples_pos = 22; 69cabdff1aSopenharmony_ci 70cabdff1aSopenharmony_ci if (avctx->frame_size) { 71cabdff1aSopenharmony_ci /* validate frame size */ 72cabdff1aSopenharmony_ci if (avctx->frame_size & 1 || avctx->frame_size > MAX_FRAME_SIZE) { 73cabdff1aSopenharmony_ci int new_frame_size; 74cabdff1aSopenharmony_ci 75cabdff1aSopenharmony_ci if (avctx->frame_size == 1) 76cabdff1aSopenharmony_ci new_frame_size = 2; 77cabdff1aSopenharmony_ci else if (avctx->frame_size > MAX_FRAME_SIZE) 78cabdff1aSopenharmony_ci new_frame_size = MAX_FRAME_SIZE; 79cabdff1aSopenharmony_ci else 80cabdff1aSopenharmony_ci new_frame_size = avctx->frame_size - 1; 81cabdff1aSopenharmony_ci 82cabdff1aSopenharmony_ci av_log(avctx, AV_LOG_WARNING, "Requested frame size is not " 83cabdff1aSopenharmony_ci "allowed. Using %d instead of %d\n", new_frame_size, 84cabdff1aSopenharmony_ci avctx->frame_size); 85cabdff1aSopenharmony_ci avctx->frame_size = new_frame_size; 86cabdff1aSopenharmony_ci } 87cabdff1aSopenharmony_ci } else { 88cabdff1aSopenharmony_ci /* This is arbitrary. We use 320 because it's 20ms @ 16kHz, which is 89cabdff1aSopenharmony_ci a common packet size for VoIP applications */ 90cabdff1aSopenharmony_ci avctx->frame_size = 320; 91cabdff1aSopenharmony_ci } 92cabdff1aSopenharmony_ci avctx->initial_padding = 22; 93cabdff1aSopenharmony_ci 94cabdff1aSopenharmony_ci if (avctx->trellis) { 95cabdff1aSopenharmony_ci /* validate trellis */ 96cabdff1aSopenharmony_ci if (avctx->trellis < MIN_TRELLIS || avctx->trellis > MAX_TRELLIS) { 97cabdff1aSopenharmony_ci int new_trellis = av_clip(avctx->trellis, MIN_TRELLIS, MAX_TRELLIS); 98cabdff1aSopenharmony_ci av_log(avctx, AV_LOG_WARNING, "Requested trellis value is not " 99cabdff1aSopenharmony_ci "allowed. Using %d instead of %d\n", new_trellis, 100cabdff1aSopenharmony_ci avctx->trellis); 101cabdff1aSopenharmony_ci avctx->trellis = new_trellis; 102cabdff1aSopenharmony_ci } 103cabdff1aSopenharmony_ci if (avctx->trellis) { 104cabdff1aSopenharmony_ci int frontier = 1 << avctx->trellis; 105cabdff1aSopenharmony_ci int max_paths = frontier * FREEZE_INTERVAL; 106cabdff1aSopenharmony_ci 107cabdff1aSopenharmony_ci for (int i = 0; i < 2; i++) { 108cabdff1aSopenharmony_ci c->paths[i] = av_calloc(max_paths, sizeof(**c->paths)); 109cabdff1aSopenharmony_ci c->node_buf[i] = av_calloc(frontier, 2 * sizeof(**c->node_buf)); 110cabdff1aSopenharmony_ci c->nodep_buf[i] = av_calloc(frontier, 2 * sizeof(**c->nodep_buf)); 111cabdff1aSopenharmony_ci if (!c->paths[i] || !c->node_buf[i] || !c->nodep_buf[i]) 112cabdff1aSopenharmony_ci return AVERROR(ENOMEM); 113cabdff1aSopenharmony_ci } 114cabdff1aSopenharmony_ci } 115cabdff1aSopenharmony_ci } 116cabdff1aSopenharmony_ci 117cabdff1aSopenharmony_ci ff_g722dsp_init(&c->dsp); 118cabdff1aSopenharmony_ci 119cabdff1aSopenharmony_ci return 0; 120cabdff1aSopenharmony_ci} 121cabdff1aSopenharmony_ci 122cabdff1aSopenharmony_cistatic const int16_t low_quant[33] = { 123cabdff1aSopenharmony_ci 35, 72, 110, 150, 190, 233, 276, 323, 124cabdff1aSopenharmony_ci 370, 422, 473, 530, 587, 650, 714, 786, 125cabdff1aSopenharmony_ci 858, 940, 1023, 1121, 1219, 1339, 1458, 1612, 126cabdff1aSopenharmony_ci 1765, 1980, 2195, 2557, 2919 127cabdff1aSopenharmony_ci}; 128cabdff1aSopenharmony_ci 129cabdff1aSopenharmony_cistatic inline void filter_samples(G722Context *c, const int16_t *samples, 130cabdff1aSopenharmony_ci int *xlow, int *xhigh) 131cabdff1aSopenharmony_ci{ 132cabdff1aSopenharmony_ci int xout[2]; 133cabdff1aSopenharmony_ci c->prev_samples[c->prev_samples_pos++] = samples[0]; 134cabdff1aSopenharmony_ci c->prev_samples[c->prev_samples_pos++] = samples[1]; 135cabdff1aSopenharmony_ci c->dsp.apply_qmf(c->prev_samples + c->prev_samples_pos - 24, xout); 136cabdff1aSopenharmony_ci *xlow = xout[0] + xout[1] >> 14; 137cabdff1aSopenharmony_ci *xhigh = xout[0] - xout[1] >> 14; 138cabdff1aSopenharmony_ci if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { 139cabdff1aSopenharmony_ci memmove(c->prev_samples, 140cabdff1aSopenharmony_ci c->prev_samples + c->prev_samples_pos - 22, 141cabdff1aSopenharmony_ci 22 * sizeof(c->prev_samples[0])); 142cabdff1aSopenharmony_ci c->prev_samples_pos = 22; 143cabdff1aSopenharmony_ci } 144cabdff1aSopenharmony_ci} 145cabdff1aSopenharmony_ci 146cabdff1aSopenharmony_cistatic inline int encode_high(const struct G722Band *state, int xhigh) 147cabdff1aSopenharmony_ci{ 148cabdff1aSopenharmony_ci int diff = av_clip_int16(xhigh - state->s_predictor); 149cabdff1aSopenharmony_ci int pred = 141 * state->scale_factor >> 8; 150cabdff1aSopenharmony_ci /* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */ 151cabdff1aSopenharmony_ci return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0); 152cabdff1aSopenharmony_ci} 153cabdff1aSopenharmony_ci 154cabdff1aSopenharmony_cistatic inline int encode_low(const struct G722Band* state, int xlow) 155cabdff1aSopenharmony_ci{ 156cabdff1aSopenharmony_ci int diff = av_clip_int16(xlow - state->s_predictor); 157cabdff1aSopenharmony_ci /* = diff >= 0 ? diff : -(diff + 1) */ 158cabdff1aSopenharmony_ci int limit = diff ^ (diff >> (sizeof(diff)*8-1)); 159cabdff1aSopenharmony_ci int i = 0; 160cabdff1aSopenharmony_ci limit = limit + 1 << 10; 161cabdff1aSopenharmony_ci if (limit > low_quant[8] * state->scale_factor) 162cabdff1aSopenharmony_ci i = 9; 163cabdff1aSopenharmony_ci while (i < 29 && limit > low_quant[i] * state->scale_factor) 164cabdff1aSopenharmony_ci i++; 165cabdff1aSopenharmony_ci return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i; 166cabdff1aSopenharmony_ci} 167cabdff1aSopenharmony_ci 168cabdff1aSopenharmony_cistatic void g722_encode_trellis(G722Context *c, int trellis, 169cabdff1aSopenharmony_ci uint8_t *dst, int nb_samples, 170cabdff1aSopenharmony_ci const int16_t *samples) 171cabdff1aSopenharmony_ci{ 172cabdff1aSopenharmony_ci int i, j, k; 173cabdff1aSopenharmony_ci int frontier = 1 << trellis; 174cabdff1aSopenharmony_ci struct TrellisNode **nodes[2]; 175cabdff1aSopenharmony_ci struct TrellisNode **nodes_next[2]; 176cabdff1aSopenharmony_ci int pathn[2] = {0, 0}, froze = -1; 177cabdff1aSopenharmony_ci struct TrellisPath *p[2]; 178cabdff1aSopenharmony_ci 179cabdff1aSopenharmony_ci for (i = 0; i < 2; i++) { 180cabdff1aSopenharmony_ci nodes[i] = c->nodep_buf[i]; 181cabdff1aSopenharmony_ci nodes_next[i] = c->nodep_buf[i] + frontier; 182cabdff1aSopenharmony_ci memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf[i])); 183cabdff1aSopenharmony_ci nodes[i][0] = c->node_buf[i] + frontier; 184cabdff1aSopenharmony_ci nodes[i][0]->ssd = 0; 185cabdff1aSopenharmony_ci nodes[i][0]->path = 0; 186cabdff1aSopenharmony_ci nodes[i][0]->state = c->band[i]; 187cabdff1aSopenharmony_ci } 188cabdff1aSopenharmony_ci 189cabdff1aSopenharmony_ci for (i = 0; i < nb_samples >> 1; i++) { 190cabdff1aSopenharmony_ci int xlow, xhigh; 191cabdff1aSopenharmony_ci struct TrellisNode *next[2]; 192cabdff1aSopenharmony_ci int heap_pos[2] = {0, 0}; 193cabdff1aSopenharmony_ci 194cabdff1aSopenharmony_ci for (j = 0; j < 2; j++) { 195cabdff1aSopenharmony_ci next[j] = c->node_buf[j] + frontier*(i & 1); 196cabdff1aSopenharmony_ci memset(nodes_next[j], 0, frontier * sizeof(**nodes_next)); 197cabdff1aSopenharmony_ci } 198cabdff1aSopenharmony_ci 199cabdff1aSopenharmony_ci filter_samples(c, &samples[2*i], &xlow, &xhigh); 200cabdff1aSopenharmony_ci 201cabdff1aSopenharmony_ci for (j = 0; j < frontier && nodes[0][j]; j++) { 202cabdff1aSopenharmony_ci /* Only k >> 2 affects the future adaptive state, therefore testing 203cabdff1aSopenharmony_ci * small steps that don't change k >> 2 is useless, the original 204cabdff1aSopenharmony_ci * value from encode_low is better than them. Since we step k 205cabdff1aSopenharmony_ci * in steps of 4, make sure range is a multiple of 4, so that 206cabdff1aSopenharmony_ci * we don't miss the original value from encode_low. */ 207cabdff1aSopenharmony_ci int range = j < frontier/2 ? 4 : 0; 208cabdff1aSopenharmony_ci struct TrellisNode *cur_node = nodes[0][j]; 209cabdff1aSopenharmony_ci 210cabdff1aSopenharmony_ci int ilow = encode_low(&cur_node->state, xlow); 211cabdff1aSopenharmony_ci 212cabdff1aSopenharmony_ci for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) { 213cabdff1aSopenharmony_ci int decoded, dec_diff, pos; 214cabdff1aSopenharmony_ci uint32_t ssd; 215cabdff1aSopenharmony_ci struct TrellisNode* node; 216cabdff1aSopenharmony_ci 217cabdff1aSopenharmony_ci if (k < 0) 218cabdff1aSopenharmony_ci continue; 219cabdff1aSopenharmony_ci 220cabdff1aSopenharmony_ci decoded = av_clip_intp2((cur_node->state.scale_factor * 221cabdff1aSopenharmony_ci ff_g722_low_inv_quant6[k] >> 10) 222cabdff1aSopenharmony_ci + cur_node->state.s_predictor, 14); 223cabdff1aSopenharmony_ci dec_diff = xlow - decoded; 224cabdff1aSopenharmony_ci 225cabdff1aSopenharmony_ci#define STORE_NODE(index, UPDATE, VALUE)\ 226cabdff1aSopenharmony_ci ssd = cur_node->ssd + dec_diff*dec_diff;\ 227cabdff1aSopenharmony_ci /* Check for wraparound. Using 64 bit ssd counters would \ 228cabdff1aSopenharmony_ci * be simpler, but is slower on x86 32 bit. */\ 229cabdff1aSopenharmony_ci if (ssd < cur_node->ssd)\ 230cabdff1aSopenharmony_ci continue;\ 231cabdff1aSopenharmony_ci if (heap_pos[index] < frontier) {\ 232cabdff1aSopenharmony_ci pos = heap_pos[index]++;\ 233cabdff1aSopenharmony_ci av_assert2(pathn[index] < FREEZE_INTERVAL * frontier);\ 234cabdff1aSopenharmony_ci node = nodes_next[index][pos] = next[index]++;\ 235cabdff1aSopenharmony_ci node->path = pathn[index]++;\ 236cabdff1aSopenharmony_ci } else {\ 237cabdff1aSopenharmony_ci /* Try to replace one of the leaf nodes with the new \ 238cabdff1aSopenharmony_ci * one, but not always testing the same leaf position */\ 239cabdff1aSopenharmony_ci pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\ 240cabdff1aSopenharmony_ci if (ssd >= nodes_next[index][pos]->ssd)\ 241cabdff1aSopenharmony_ci continue;\ 242cabdff1aSopenharmony_ci heap_pos[index]++;\ 243cabdff1aSopenharmony_ci node = nodes_next[index][pos];\ 244cabdff1aSopenharmony_ci }\ 245cabdff1aSopenharmony_ci node->ssd = ssd;\ 246cabdff1aSopenharmony_ci node->state = cur_node->state;\ 247cabdff1aSopenharmony_ci UPDATE;\ 248cabdff1aSopenharmony_ci c->paths[index][node->path].value = VALUE;\ 249cabdff1aSopenharmony_ci c->paths[index][node->path].prev = cur_node->path;\ 250cabdff1aSopenharmony_ci /* Sift the newly inserted node up in the heap to restore \ 251cabdff1aSopenharmony_ci * the heap property */\ 252cabdff1aSopenharmony_ci while (pos > 0) {\ 253cabdff1aSopenharmony_ci int parent = (pos - 1) >> 1;\ 254cabdff1aSopenharmony_ci if (nodes_next[index][parent]->ssd <= ssd)\ 255cabdff1aSopenharmony_ci break;\ 256cabdff1aSopenharmony_ci FFSWAP(struct TrellisNode*, nodes_next[index][parent],\ 257cabdff1aSopenharmony_ci nodes_next[index][pos]);\ 258cabdff1aSopenharmony_ci pos = parent;\ 259cabdff1aSopenharmony_ci } 260cabdff1aSopenharmony_ci STORE_NODE(0, ff_g722_update_low_predictor(&node->state, k >> 2), k); 261cabdff1aSopenharmony_ci } 262cabdff1aSopenharmony_ci } 263cabdff1aSopenharmony_ci 264cabdff1aSopenharmony_ci for (j = 0; j < frontier && nodes[1][j]; j++) { 265cabdff1aSopenharmony_ci int ihigh; 266cabdff1aSopenharmony_ci struct TrellisNode *cur_node = nodes[1][j]; 267cabdff1aSopenharmony_ci 268cabdff1aSopenharmony_ci /* We don't try to get any initial guess for ihigh via 269cabdff1aSopenharmony_ci * encode_high - since there's only 4 possible values, test 270cabdff1aSopenharmony_ci * them all. Testing all of these gives a much, much larger 271cabdff1aSopenharmony_ci * gain than testing a larger range around ilow. */ 272cabdff1aSopenharmony_ci for (ihigh = 0; ihigh < 4; ihigh++) { 273cabdff1aSopenharmony_ci int dhigh, decoded, dec_diff, pos; 274cabdff1aSopenharmony_ci uint32_t ssd; 275cabdff1aSopenharmony_ci struct TrellisNode* node; 276cabdff1aSopenharmony_ci 277cabdff1aSopenharmony_ci dhigh = cur_node->state.scale_factor * 278cabdff1aSopenharmony_ci ff_g722_high_inv_quant[ihigh] >> 10; 279cabdff1aSopenharmony_ci decoded = av_clip_intp2(dhigh + cur_node->state.s_predictor, 14); 280cabdff1aSopenharmony_ci dec_diff = xhigh - decoded; 281cabdff1aSopenharmony_ci 282cabdff1aSopenharmony_ci STORE_NODE(1, ff_g722_update_high_predictor(&node->state, dhigh, ihigh), ihigh); 283cabdff1aSopenharmony_ci } 284cabdff1aSopenharmony_ci } 285cabdff1aSopenharmony_ci 286cabdff1aSopenharmony_ci for (j = 0; j < 2; j++) { 287cabdff1aSopenharmony_ci FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]); 288cabdff1aSopenharmony_ci 289cabdff1aSopenharmony_ci if (nodes[j][0]->ssd > (1 << 16)) { 290cabdff1aSopenharmony_ci for (k = 1; k < frontier && nodes[j][k]; k++) 291cabdff1aSopenharmony_ci nodes[j][k]->ssd -= nodes[j][0]->ssd; 292cabdff1aSopenharmony_ci nodes[j][0]->ssd = 0; 293cabdff1aSopenharmony_ci } 294cabdff1aSopenharmony_ci } 295cabdff1aSopenharmony_ci 296cabdff1aSopenharmony_ci if (i == froze + FREEZE_INTERVAL) { 297cabdff1aSopenharmony_ci p[0] = &c->paths[0][nodes[0][0]->path]; 298cabdff1aSopenharmony_ci p[1] = &c->paths[1][nodes[1][0]->path]; 299cabdff1aSopenharmony_ci for (j = i; j > froze; j--) { 300cabdff1aSopenharmony_ci dst[j] = p[1]->value << 6 | p[0]->value; 301cabdff1aSopenharmony_ci p[0] = &c->paths[0][p[0]->prev]; 302cabdff1aSopenharmony_ci p[1] = &c->paths[1][p[1]->prev]; 303cabdff1aSopenharmony_ci } 304cabdff1aSopenharmony_ci froze = i; 305cabdff1aSopenharmony_ci pathn[0] = pathn[1] = 0; 306cabdff1aSopenharmony_ci memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes)); 307cabdff1aSopenharmony_ci memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes)); 308cabdff1aSopenharmony_ci } 309cabdff1aSopenharmony_ci } 310cabdff1aSopenharmony_ci 311cabdff1aSopenharmony_ci p[0] = &c->paths[0][nodes[0][0]->path]; 312cabdff1aSopenharmony_ci p[1] = &c->paths[1][nodes[1][0]->path]; 313cabdff1aSopenharmony_ci for (j = i; j > froze; j--) { 314cabdff1aSopenharmony_ci dst[j] = p[1]->value << 6 | p[0]->value; 315cabdff1aSopenharmony_ci p[0] = &c->paths[0][p[0]->prev]; 316cabdff1aSopenharmony_ci p[1] = &c->paths[1][p[1]->prev]; 317cabdff1aSopenharmony_ci } 318cabdff1aSopenharmony_ci c->band[0] = nodes[0][0]->state; 319cabdff1aSopenharmony_ci c->band[1] = nodes[1][0]->state; 320cabdff1aSopenharmony_ci} 321cabdff1aSopenharmony_ci 322cabdff1aSopenharmony_cistatic av_always_inline void encode_byte(G722Context *c, uint8_t *dst, 323cabdff1aSopenharmony_ci const int16_t *samples) 324cabdff1aSopenharmony_ci{ 325cabdff1aSopenharmony_ci int xlow, xhigh, ilow, ihigh; 326cabdff1aSopenharmony_ci filter_samples(c, samples, &xlow, &xhigh); 327cabdff1aSopenharmony_ci ihigh = encode_high(&c->band[1], xhigh); 328cabdff1aSopenharmony_ci ilow = encode_low (&c->band[0], xlow); 329cabdff1aSopenharmony_ci ff_g722_update_high_predictor(&c->band[1], c->band[1].scale_factor * 330cabdff1aSopenharmony_ci ff_g722_high_inv_quant[ihigh] >> 10, ihigh); 331cabdff1aSopenharmony_ci ff_g722_update_low_predictor(&c->band[0], ilow >> 2); 332cabdff1aSopenharmony_ci *dst = ihigh << 6 | ilow; 333cabdff1aSopenharmony_ci} 334cabdff1aSopenharmony_ci 335cabdff1aSopenharmony_cistatic void g722_encode_no_trellis(G722Context *c, 336cabdff1aSopenharmony_ci uint8_t *dst, int nb_samples, 337cabdff1aSopenharmony_ci const int16_t *samples) 338cabdff1aSopenharmony_ci{ 339cabdff1aSopenharmony_ci int i; 340cabdff1aSopenharmony_ci for (i = 0; i < nb_samples; i += 2) 341cabdff1aSopenharmony_ci encode_byte(c, dst++, &samples[i]); 342cabdff1aSopenharmony_ci} 343cabdff1aSopenharmony_ci 344cabdff1aSopenharmony_cistatic int g722_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, 345cabdff1aSopenharmony_ci const AVFrame *frame, int *got_packet_ptr) 346cabdff1aSopenharmony_ci{ 347cabdff1aSopenharmony_ci G722Context *c = avctx->priv_data; 348cabdff1aSopenharmony_ci const int16_t *samples = (const int16_t *)frame->data[0]; 349cabdff1aSopenharmony_ci int nb_samples, out_size, ret; 350cabdff1aSopenharmony_ci 351cabdff1aSopenharmony_ci out_size = (frame->nb_samples + 1) / 2; 352cabdff1aSopenharmony_ci if ((ret = ff_get_encode_buffer(avctx, avpkt, out_size, 0)) < 0) 353cabdff1aSopenharmony_ci return ret; 354cabdff1aSopenharmony_ci 355cabdff1aSopenharmony_ci nb_samples = frame->nb_samples - (frame->nb_samples & 1); 356cabdff1aSopenharmony_ci 357cabdff1aSopenharmony_ci if (avctx->trellis) 358cabdff1aSopenharmony_ci g722_encode_trellis(c, avctx->trellis, avpkt->data, nb_samples, samples); 359cabdff1aSopenharmony_ci else 360cabdff1aSopenharmony_ci g722_encode_no_trellis(c, avpkt->data, nb_samples, samples); 361cabdff1aSopenharmony_ci 362cabdff1aSopenharmony_ci /* handle last frame with odd frame_size */ 363cabdff1aSopenharmony_ci if (nb_samples < frame->nb_samples) { 364cabdff1aSopenharmony_ci int16_t last_samples[2] = { samples[nb_samples], samples[nb_samples] }; 365cabdff1aSopenharmony_ci encode_byte(c, &avpkt->data[nb_samples >> 1], last_samples); 366cabdff1aSopenharmony_ci } 367cabdff1aSopenharmony_ci 368cabdff1aSopenharmony_ci if (frame->pts != AV_NOPTS_VALUE) 369cabdff1aSopenharmony_ci avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding); 370cabdff1aSopenharmony_ci *got_packet_ptr = 1; 371cabdff1aSopenharmony_ci return 0; 372cabdff1aSopenharmony_ci} 373cabdff1aSopenharmony_ci 374cabdff1aSopenharmony_ciconst FFCodec ff_adpcm_g722_encoder = { 375cabdff1aSopenharmony_ci .p.name = "g722", 376cabdff1aSopenharmony_ci .p.long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), 377cabdff1aSopenharmony_ci .p.type = AVMEDIA_TYPE_AUDIO, 378cabdff1aSopenharmony_ci .p.id = AV_CODEC_ID_ADPCM_G722, 379cabdff1aSopenharmony_ci .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SMALL_LAST_FRAME, 380cabdff1aSopenharmony_ci .priv_data_size = sizeof(G722Context), 381cabdff1aSopenharmony_ci .init = g722_encode_init, 382cabdff1aSopenharmony_ci .close = g722_encode_close, 383cabdff1aSopenharmony_ci FF_CODEC_ENCODE_CB(g722_encode_frame), 384cabdff1aSopenharmony_ci .p.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE }, 385cabdff1aSopenharmony_ci#if FF_API_OLD_CHANNEL_LAYOUT 386cabdff1aSopenharmony_ci .p.channel_layouts = (const uint64_t[]){ AV_CH_LAYOUT_MONO, 0 }, 387cabdff1aSopenharmony_ci#endif 388cabdff1aSopenharmony_ci .p.ch_layouts = (const AVChannelLayout[]){ 389cabdff1aSopenharmony_ci AV_CHANNEL_LAYOUT_MONO, { 0 } 390cabdff1aSopenharmony_ci }, 391cabdff1aSopenharmony_ci .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, 392cabdff1aSopenharmony_ci}; 393