1/* 2 * G.722 ADPCM audio encoder/decoder 3 * 4 * Copyright (c) CMU 1993 Computer Science, Speech Group 5 * Chengxiang Lu and Alex Hauptmann 6 * Copyright (c) 2005 Steve Underwood <steveu at coppice.org> 7 * Copyright (c) 2009 Kenan Gillet 8 * Copyright (c) 2010 Martin Storsjo 9 * 10 * This file is part of FFmpeg. 11 * 12 * FFmpeg is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU Lesser General Public 14 * License as published by the Free Software Foundation; either 15 * version 2.1 of the License, or (at your option) any later version. 16 * 17 * FFmpeg is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * Lesser General Public License for more details. 21 * 22 * You should have received a copy of the GNU Lesser General Public 23 * License along with FFmpeg; if not, write to the Free Software 24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 25 */ 26 27/** 28 * @file 29 * G.722 ADPCM audio codec 30 * 31 * This G.722 decoder is a bit-exact implementation of the ITU G.722 32 * specification for all three specified bitrates - 64000bps, 56000bps 33 * and 48000bps. It passes the ITU tests. 34 * 35 * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits 36 * respectively of each byte are ignored. 37 */ 38 39#include "mathops.h" 40#include "g722.h" 41 42static const int8_t sign_lookup[2] = { -1, 1 }; 43 44static const int16_t inv_log2_table[32] = { 45 2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383, 46 2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834, 47 2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371, 48 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008 49}; 50static const int16_t high_log_factor_step[2] = { 798, -214 }; 51const int16_t ff_g722_high_inv_quant[4] = { -926, -202, 926, 202 }; 52/** 53 * low_log_factor_step[index] == wl[rl42[index]] 54 */ 55static const int16_t low_log_factor_step[16] = { 56 -60, 3042, 1198, 538, 334, 172, 58, -30, 57 3042, 1198, 538, 334, 172, 58, -30, -60 58}; 59const int16_t ff_g722_low_inv_quant4[16] = { 60 0, -2557, -1612, -1121, -786, -530, -323, -150, 61 2557, 1612, 1121, 786, 530, 323, 150, 0 62}; 63const int16_t ff_g722_low_inv_quant6[64] = { 64 -17, -17, -17, -17, -3101, -2738, -2376, -2088, 65 -1873, -1689, -1535, -1399, -1279, -1170, -1072, -982, 66 -899, -822, -750, -682, -618, -558, -501, -447, 67 -396, -347, -300, -254, -211, -170, -130, -91, 68 3101, 2738, 2376, 2088, 1873, 1689, 1535, 1399, 69 1279, 1170, 1072, 982, 899, 822, 750, 682, 70 618, 558, 501, 447, 396, 347, 300, 254, 71 211, 170, 130, 91, 54, 17, -54, -17 72}; 73 74static inline void s_zero(int cur_diff, struct G722Band *band) 75{ 76 int s_zero = 0; 77 78 #define ACCUM(k, x, d) do { \ 79 int tmp = x; \ 80 band->zero_mem[k] = ((band->zero_mem[k] * 255) >> 8) + \ 81 d*((band->diff_mem[k]^cur_diff) < 0 ? -128 : 128); \ 82 band->diff_mem[k] = tmp; \ 83 s_zero += (tmp * band->zero_mem[k]) >> 15; \ 84 } while (0) 85 if (cur_diff) { 86 ACCUM(5, band->diff_mem[4], 1); 87 ACCUM(4, band->diff_mem[3], 1); 88 ACCUM(3, band->diff_mem[2], 1); 89 ACCUM(2, band->diff_mem[1], 1); 90 ACCUM(1, band->diff_mem[0], 1); 91 ACCUM(0, cur_diff * 2, 1); 92 } else { 93 ACCUM(5, band->diff_mem[4], 0); 94 ACCUM(4, band->diff_mem[3], 0); 95 ACCUM(3, band->diff_mem[2], 0); 96 ACCUM(2, band->diff_mem[1], 0); 97 ACCUM(1, band->diff_mem[0], 0); 98 ACCUM(0, cur_diff * 2, 0); 99 } 100 #undef ACCUM 101 band->s_zero = s_zero; 102} 103 104/** 105 * adaptive predictor 106 * 107 * @param cur_diff the dequantized and scaled delta calculated from the 108 * current codeword 109 */ 110static void do_adaptive_prediction(struct G722Band *band, const int cur_diff) 111{ 112 int sg[2], limit, cur_qtzd_reconst; 113 114 const int cur_part_reconst = band->s_zero + cur_diff < 0; 115 116 sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]]; 117 sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]]; 118 band->part_reconst_mem[1] = band->part_reconst_mem[0]; 119 band->part_reconst_mem[0] = cur_part_reconst; 120 121 band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) + 122 (sg[1] * 128) + (band->pole_mem[1] * 127 >> 7), -12288, 12288); 123 124 limit = 15360 - band->pole_mem[1]; 125 band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit); 126 127 s_zero(cur_diff, band); 128 129 cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) * 2); 130 band->s_predictor = av_clip_int16(band->s_zero + 131 (band->pole_mem[0] * cur_qtzd_reconst >> 15) + 132 (band->pole_mem[1] * band->prev_qtzd_reconst >> 15)); 133 band->prev_qtzd_reconst = cur_qtzd_reconst; 134} 135 136static inline int linear_scale_factor(const int log_factor) 137{ 138 const int wd1 = inv_log2_table[(log_factor >> 6) & 31]; 139 const int shift = log_factor >> 11; 140 return shift < 0 ? wd1 >> -shift : wd1 << shift; 141} 142 143void ff_g722_update_low_predictor(struct G722Band *band, const int ilow) 144{ 145 do_adaptive_prediction(band, 146 band->scale_factor * ff_g722_low_inv_quant4[ilow] >> 10); 147 148 // quantizer adaptation 149 band->log_factor = av_clip((band->log_factor * 127 >> 7) + 150 low_log_factor_step[ilow], 0, 18432); 151 band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11)); 152} 153 154void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh, 155 const int ihigh) 156{ 157 do_adaptive_prediction(band, dhigh); 158 159 // quantizer adaptation 160 band->log_factor = av_clip((band->log_factor * 127 >> 7) + 161 high_log_factor_step[ihigh&1], 0, 22528); 162 band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11)); 163} 164