xref: /third_party/ffmpeg/libavcodec/elbg.c (revision cabdff1a)
1/*
2 * Copyright (C) 2007 Vitor Sessak <vitor1001@gmail.com>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21/**
22 * @file
23 * Codebook Generator using the ELBG algorithm
24 */
25
26#include <string.h>
27
28#include "libavutil/avassert.h"
29#include "libavutil/common.h"
30#include "libavutil/lfg.h"
31#include "elbg.h"
32
33#define DELTA_ERR_MAX 0.1  ///< Precision of the ELBG algorithm (as percentage error)
34
35/**
36 * In the ELBG jargon, a cell is the set of points that are closest to a
37 * codebook entry. Not to be confused with a RoQ Video cell. */
38typedef struct cell_s {
39    int index;
40    struct cell_s *next;
41} cell;
42
43/**
44 * ELBG internal data
45 */
46typedef struct ELBGContext {
47    int64_t error;
48    int dim;
49    int num_cb;
50    int *codebook;
51    cell **cells;
52    int64_t *utility;
53    int64_t *utility_inc;
54    int *nearest_cb;
55    int *points;
56    int *temp_points;
57    int *size_part;
58    AVLFG *rand_state;
59    int *scratchbuf;
60    cell *cell_buffer;
61
62    /* Sizes for the buffers above. Pointers without such a field
63     * are not allocated by us and only valid for the duration
64     * of a single call to avpriv_elbg_do(). */
65    unsigned utility_allocated;
66    unsigned utility_inc_allocated;
67    unsigned size_part_allocated;
68    unsigned cells_allocated;
69    unsigned scratchbuf_allocated;
70    unsigned cell_buffer_allocated;
71    unsigned temp_points_allocated;
72} ELBGContext;
73
74static inline int distance_limited(int *a, int *b, int dim, int limit)
75{
76    int i, dist=0;
77    for (i=0; i<dim; i++) {
78        dist += (a[i] - b[i])*(a[i] - b[i]);
79        if (dist > limit)
80            return INT_MAX;
81    }
82
83    return dist;
84}
85
86static inline void vect_division(int *res, int *vect, int div, int dim)
87{
88    int i;
89    if (div > 1)
90        for (i=0; i<dim; i++)
91            res[i] = ROUNDED_DIV(vect[i],div);
92    else if (res != vect)
93        memcpy(res, vect, dim*sizeof(int));
94
95}
96
97static int eval_error_cell(ELBGContext *elbg, int *centroid, cell *cells)
98{
99    int error=0;
100    for (; cells; cells=cells->next)
101        error += distance_limited(centroid, elbg->points + cells->index*elbg->dim, elbg->dim, INT_MAX);
102
103    return error;
104}
105
106static int get_closest_codebook(ELBGContext *elbg, int index)
107{
108    int pick = 0;
109    for (int i = 0, diff_min = INT_MAX; i < elbg->num_cb; i++)
110        if (i != index) {
111            int diff;
112            diff = distance_limited(elbg->codebook + i*elbg->dim, elbg->codebook + index*elbg->dim, elbg->dim, diff_min);
113            if (diff < diff_min) {
114                pick = i;
115                diff_min = diff;
116            }
117        }
118    return pick;
119}
120
121static int get_high_utility_cell(ELBGContext *elbg)
122{
123    int i=0;
124    /* Using linear search, do binary if it ever turns to be speed critical */
125    uint64_t r;
126
127    if (elbg->utility_inc[elbg->num_cb - 1] < INT_MAX) {
128        r = av_lfg_get(elbg->rand_state) % (unsigned int)elbg->utility_inc[elbg->num_cb - 1] + 1;
129    } else {
130        r = av_lfg_get(elbg->rand_state);
131        r = (av_lfg_get(elbg->rand_state) + (r<<32)) % elbg->utility_inc[elbg->num_cb - 1] + 1;
132    }
133
134    while (elbg->utility_inc[i] < r) {
135        i++;
136    }
137
138    av_assert2(elbg->cells[i]);
139
140    return i;
141}
142
143/**
144 * Implementation of the simple LBG algorithm for just two codebooks
145 */
146static int simple_lbg(ELBGContext *elbg,
147                      int dim,
148                      int *centroid[3],
149                      int newutility[3],
150                      int *points,
151                      cell *cells)
152{
153    int i, idx;
154    int numpoints[2] = {0,0};
155    int *newcentroid[2] = {
156        elbg->scratchbuf + 3*dim,
157        elbg->scratchbuf + 4*dim
158    };
159    cell *tempcell;
160
161    memset(newcentroid[0], 0, 2 * dim * sizeof(*newcentroid[0]));
162
163    newutility[0] =
164    newutility[1] = 0;
165
166    for (tempcell = cells; tempcell; tempcell=tempcell->next) {
167        idx = distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX)>=
168              distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX);
169        numpoints[idx]++;
170        for (i=0; i<dim; i++)
171            newcentroid[idx][i] += points[tempcell->index*dim + i];
172    }
173
174    vect_division(centroid[0], newcentroid[0], numpoints[0], dim);
175    vect_division(centroid[1], newcentroid[1], numpoints[1], dim);
176
177    for (tempcell = cells; tempcell; tempcell=tempcell->next) {
178        int dist[2] = {distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX),
179                       distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX)};
180        int idx = dist[0] > dist[1];
181        newutility[idx] += dist[idx];
182    }
183
184    return newutility[0] + newutility[1];
185}
186
187static void get_new_centroids(ELBGContext *elbg, int huc, int *newcentroid_i,
188                              int *newcentroid_p)
189{
190    cell *tempcell;
191    int *min = newcentroid_i;
192    int *max = newcentroid_p;
193    int i;
194
195    for (i=0; i< elbg->dim; i++) {
196        min[i]=INT_MAX;
197        max[i]=0;
198    }
199
200    for (tempcell = elbg->cells[huc]; tempcell; tempcell = tempcell->next)
201        for(i=0; i<elbg->dim; i++) {
202            min[i]=FFMIN(min[i], elbg->points[tempcell->index*elbg->dim + i]);
203            max[i]=FFMAX(max[i], elbg->points[tempcell->index*elbg->dim + i]);
204        }
205
206    for (i=0; i<elbg->dim; i++) {
207        int ni = min[i] + (max[i] - min[i])/3;
208        int np = min[i] + (2*(max[i] - min[i]))/3;
209        newcentroid_i[i] = ni;
210        newcentroid_p[i] = np;
211    }
212}
213
214/**
215 * Add the points in the low utility cell to its closest cell. Split the high
216 * utility cell, putting the separated points in the (now empty) low utility
217 * cell.
218 *
219 * @param elbg         Internal elbg data
220 * @param indexes      {luc, huc, cluc}
221 * @param newcentroid  A vector with the position of the new centroids
222 */
223static void shift_codebook(ELBGContext *elbg, int *indexes,
224                           int *newcentroid[3])
225{
226    cell *tempdata;
227    cell **pp = &elbg->cells[indexes[2]];
228
229    while(*pp)
230        pp= &(*pp)->next;
231
232    *pp = elbg->cells[indexes[0]];
233
234    elbg->cells[indexes[0]] = NULL;
235    tempdata = elbg->cells[indexes[1]];
236    elbg->cells[indexes[1]] = NULL;
237
238    while(tempdata) {
239        cell *tempcell2 = tempdata->next;
240        int idx = distance_limited(elbg->points + tempdata->index*elbg->dim,
241                           newcentroid[0], elbg->dim, INT_MAX) >
242                  distance_limited(elbg->points + tempdata->index*elbg->dim,
243                           newcentroid[1], elbg->dim, INT_MAX);
244
245        tempdata->next = elbg->cells[indexes[idx]];
246        elbg->cells[indexes[idx]] = tempdata;
247        tempdata = tempcell2;
248    }
249}
250
251static void evaluate_utility_inc(ELBGContext *elbg)
252{
253    int64_t inc=0;
254
255    for (int i = 0; i < elbg->num_cb; i++) {
256        if (elbg->num_cb * elbg->utility[i] > elbg->error)
257            inc += elbg->utility[i];
258        elbg->utility_inc[i] = inc;
259    }
260}
261
262
263static void update_utility_and_n_cb(ELBGContext *elbg, int idx, int newutility)
264{
265    cell *tempcell;
266
267    elbg->utility[idx] = newutility;
268    for (tempcell=elbg->cells[idx]; tempcell; tempcell=tempcell->next)
269        elbg->nearest_cb[tempcell->index] = idx;
270}
271
272/**
273 * Evaluate if a shift lower the error. If it does, call shift_codebooks
274 * and update elbg->error, elbg->utility and elbg->nearest_cb.
275 *
276 * @param elbg  Internal elbg data
277 * @param idx   {luc (low utility cell, huc (high utility cell), cluc (closest cell to low utility cell)}
278 */
279static void try_shift_candidate(ELBGContext *elbg, int idx[3])
280{
281    int j, k, cont=0;
282    int64_t olderror=0, newerror;
283    int newutility[3];
284    int *newcentroid[3] = {
285        elbg->scratchbuf,
286        elbg->scratchbuf + elbg->dim,
287        elbg->scratchbuf + 2*elbg->dim
288    };
289    cell *tempcell;
290
291    for (j=0; j<3; j++)
292        olderror += elbg->utility[idx[j]];
293
294    memset(newcentroid[2], 0, elbg->dim*sizeof(int));
295
296    for (k=0; k<2; k++)
297        for (tempcell=elbg->cells[idx[2*k]]; tempcell; tempcell=tempcell->next) {
298            cont++;
299            for (j=0; j<elbg->dim; j++)
300                newcentroid[2][j] += elbg->points[tempcell->index*elbg->dim + j];
301        }
302
303    vect_division(newcentroid[2], newcentroid[2], cont, elbg->dim);
304
305    get_new_centroids(elbg, idx[1], newcentroid[0], newcentroid[1]);
306
307    newutility[2]  = eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[0]]);
308    newutility[2] += eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[2]]);
309
310    newerror = newutility[2];
311
312    newerror += simple_lbg(elbg, elbg->dim, newcentroid, newutility, elbg->points,
313                           elbg->cells[idx[1]]);
314
315    if (olderror > newerror) {
316        shift_codebook(elbg, idx, newcentroid);
317
318        elbg->error += newerror - olderror;
319
320        for (j=0; j<3; j++)
321            update_utility_and_n_cb(elbg, idx[j], newutility[j]);
322
323        evaluate_utility_inc(elbg);
324    }
325 }
326
327/**
328 * Implementation of the ELBG block
329 */
330static void do_shiftings(ELBGContext *elbg)
331{
332    int idx[3];
333
334    evaluate_utility_inc(elbg);
335
336    for (idx[0]=0; idx[0] < elbg->num_cb; idx[0]++)
337        if (elbg->num_cb * elbg->utility[idx[0]] < elbg->error) {
338            if (elbg->utility_inc[elbg->num_cb - 1] == 0)
339                return;
340
341            idx[1] = get_high_utility_cell(elbg);
342            idx[2] = get_closest_codebook(elbg, idx[0]);
343
344            if (idx[1] != idx[0] && idx[1] != idx[2])
345                try_shift_candidate(elbg, idx);
346        }
347}
348
349static void do_elbg(ELBGContext *av_restrict elbg, int *points, int numpoints,
350                    int max_steps)
351{
352    int *const size_part = elbg->size_part;
353    int i, j, steps = 0;
354    int best_idx = 0;
355    int64_t last_error;
356
357    elbg->error = INT64_MAX;
358    elbg->points = points;
359
360    do {
361        cell *free_cells = elbg->cell_buffer;
362        last_error = elbg->error;
363        steps++;
364        memset(elbg->utility, 0, elbg->num_cb * sizeof(*elbg->utility));
365        memset(elbg->cells,   0, elbg->num_cb * sizeof(*elbg->cells));
366
367        elbg->error = 0;
368
369        /* This loop evaluate the actual Voronoi partition. It is the most
370           costly part of the algorithm. */
371        for (i=0; i < numpoints; i++) {
372            int best_dist = distance_limited(elbg->points   + i * elbg->dim,
373                                             elbg->codebook + best_idx * elbg->dim,
374                                             elbg->dim, INT_MAX);
375            for (int k = 0; k < elbg->num_cb; k++) {
376                int dist = distance_limited(elbg->points   + i * elbg->dim,
377                                            elbg->codebook + k * elbg->dim,
378                                            elbg->dim, best_dist);
379                if (dist < best_dist) {
380                    best_dist = dist;
381                    best_idx = k;
382                }
383            }
384            elbg->nearest_cb[i] = best_idx;
385            elbg->error += best_dist;
386            elbg->utility[elbg->nearest_cb[i]] += best_dist;
387            free_cells->index = i;
388            free_cells->next = elbg->cells[elbg->nearest_cb[i]];
389            elbg->cells[elbg->nearest_cb[i]] = free_cells;
390            free_cells++;
391        }
392
393        do_shiftings(elbg);
394
395        memset(size_part,      0, elbg->num_cb * sizeof(*size_part));
396
397        memset(elbg->codebook, 0, elbg->num_cb * elbg->dim * sizeof(*elbg->codebook));
398
399        for (i=0; i < numpoints; i++) {
400            size_part[elbg->nearest_cb[i]]++;
401            for (j=0; j < elbg->dim; j++)
402                elbg->codebook[elbg->nearest_cb[i]*elbg->dim + j] +=
403                    elbg->points[i*elbg->dim + j];
404        }
405
406        for (int i = 0; i < elbg->num_cb; i++)
407            vect_division(elbg->codebook + i*elbg->dim,
408                          elbg->codebook + i*elbg->dim, size_part[i], elbg->dim);
409
410    } while(((last_error - elbg->error) > DELTA_ERR_MAX*elbg->error) &&
411            (steps < max_steps));
412}
413
414#define BIG_PRIME 433494437LL
415
416/**
417 * Initialize the codebook vector for the elbg algorithm.
418 * If numpoints <= 24 * num_cb this function fills codebook with random numbers.
419 * If not, it calls do_elbg for a (smaller) random sample of the points in
420 * points.
421 */
422static void init_elbg(ELBGContext *av_restrict elbg, int *points, int *temp_points,
423                      int numpoints, int max_steps)
424{
425    int dim = elbg->dim;
426
427    if (numpoints > 24LL * elbg->num_cb) {
428        /* ELBG is very costly for a big number of points. So if we have a lot
429           of them, get a good initial codebook to save on iterations       */
430        for (int i = 0; i < numpoints / 8; i++) {
431            int k = (i*BIG_PRIME) % numpoints;
432            memcpy(temp_points + i*dim, points + k*dim, dim * sizeof(*temp_points));
433        }
434
435        /* If anything is changed in the recursion parameters,
436         * the allocated size of temp_points will also need to be updated. */
437        init_elbg(elbg, temp_points, temp_points + numpoints / 8 * dim,
438                  numpoints / 8, 2 * max_steps);
439        do_elbg(elbg, temp_points, numpoints / 8, 2 * max_steps);
440    } else  // If not, initialize the codebook with random positions
441        for (int i = 0; i < elbg->num_cb; i++)
442            memcpy(elbg->codebook + i * dim, points + ((i*BIG_PRIME)%numpoints)*dim,
443                   dim * sizeof(*elbg->codebook));
444}
445
446int avpriv_elbg_do(ELBGContext **elbgp, int *points, int dim, int numpoints,
447                   int *codebook, int num_cb, int max_steps,
448                   int *closest_cb, AVLFG *rand_state, uintptr_t flags)
449{
450    ELBGContext *const av_restrict elbg = *elbgp ? *elbgp : av_mallocz(sizeof(*elbg));
451
452    if (!elbg)
453        return AVERROR(ENOMEM);
454    *elbgp = elbg;
455
456    elbg->nearest_cb = closest_cb;
457    elbg->rand_state = rand_state;
458    elbg->codebook   = codebook;
459    elbg->num_cb     = num_cb;
460    elbg->dim        = dim;
461
462#define ALLOCATE_IF_NECESSARY(field, new_elements, multiplicator)            \
463    if (elbg->field ## _allocated < new_elements) {                          \
464        av_freep(&elbg->field);                                              \
465        elbg->field = av_malloc_array(new_elements,                          \
466                                      multiplicator * sizeof(*elbg->field)); \
467        if (!elbg->field) {                                                  \
468            elbg->field ## _allocated = 0;                                   \
469            return AVERROR(ENOMEM);                                          \
470        }                                                                    \
471        elbg->field ## _allocated = new_elements;                            \
472    }
473    /* Allocating the buffers for do_elbg() here once relies
474     * on their size being always the same even when do_elbg()
475     * is called from init_elbg(). It also relies on do_elbg()
476     * never calling itself recursively. */
477    ALLOCATE_IF_NECESSARY(cells,       num_cb,    1)
478    ALLOCATE_IF_NECESSARY(utility,     num_cb,    1)
479    ALLOCATE_IF_NECESSARY(utility_inc, num_cb,    1)
480    ALLOCATE_IF_NECESSARY(size_part,   num_cb,    1)
481    ALLOCATE_IF_NECESSARY(cell_buffer, numpoints, 1)
482    ALLOCATE_IF_NECESSARY(scratchbuf,  dim,       5)
483    if (numpoints > 24LL * elbg->num_cb) {
484        /* The first step in the recursion in init_elbg() needs a buffer with
485        * (numpoints / 8) * dim elements; the next step needs numpoints / 8 / 8
486        * * dim elements etc. The geometric series leads to an upper bound of
487        * numpoints / 8 * 8 / 7 * dim elements. */
488        uint64_t prod = dim * (uint64_t)(numpoints / 7U);
489        if (prod > INT_MAX)
490            return AVERROR(ERANGE);
491        ALLOCATE_IF_NECESSARY(temp_points, prod, 1)
492    }
493
494    init_elbg(elbg, points, elbg->temp_points, numpoints, max_steps);
495    do_elbg (elbg, points, numpoints, max_steps);
496    return 0;
497}
498
499av_cold void avpriv_elbg_free(ELBGContext **elbgp)
500{
501    ELBGContext *elbg = *elbgp;
502    if (!elbg)
503        return;
504
505    av_freep(&elbg->size_part);
506    av_freep(&elbg->utility);
507    av_freep(&elbg->cell_buffer);
508    av_freep(&elbg->cells);
509    av_freep(&elbg->utility_inc);
510    av_freep(&elbg->scratchbuf);
511    av_freep(&elbg->temp_points);
512
513    av_freep(elbgp);
514}
515