1/* 2 * Copyright (C) 2007 Vitor Sessak <vitor1001@gmail.com> 3 * 4 * This file is part of FFmpeg. 5 * 6 * FFmpeg is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * FFmpeg is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with FFmpeg; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 19 */ 20 21/** 22 * @file 23 * Codebook Generator using the ELBG algorithm 24 */ 25 26#include <string.h> 27 28#include "libavutil/avassert.h" 29#include "libavutil/common.h" 30#include "libavutil/lfg.h" 31#include "elbg.h" 32 33#define DELTA_ERR_MAX 0.1 ///< Precision of the ELBG algorithm (as percentage error) 34 35/** 36 * In the ELBG jargon, a cell is the set of points that are closest to a 37 * codebook entry. Not to be confused with a RoQ Video cell. */ 38typedef struct cell_s { 39 int index; 40 struct cell_s *next; 41} cell; 42 43/** 44 * ELBG internal data 45 */ 46typedef struct ELBGContext { 47 int64_t error; 48 int dim; 49 int num_cb; 50 int *codebook; 51 cell **cells; 52 int64_t *utility; 53 int64_t *utility_inc; 54 int *nearest_cb; 55 int *points; 56 int *temp_points; 57 int *size_part; 58 AVLFG *rand_state; 59 int *scratchbuf; 60 cell *cell_buffer; 61 62 /* Sizes for the buffers above. Pointers without such a field 63 * are not allocated by us and only valid for the duration 64 * of a single call to avpriv_elbg_do(). */ 65 unsigned utility_allocated; 66 unsigned utility_inc_allocated; 67 unsigned size_part_allocated; 68 unsigned cells_allocated; 69 unsigned scratchbuf_allocated; 70 unsigned cell_buffer_allocated; 71 unsigned temp_points_allocated; 72} ELBGContext; 73 74static inline int distance_limited(int *a, int *b, int dim, int limit) 75{ 76 int i, dist=0; 77 for (i=0; i<dim; i++) { 78 dist += (a[i] - b[i])*(a[i] - b[i]); 79 if (dist > limit) 80 return INT_MAX; 81 } 82 83 return dist; 84} 85 86static inline void vect_division(int *res, int *vect, int div, int dim) 87{ 88 int i; 89 if (div > 1) 90 for (i=0; i<dim; i++) 91 res[i] = ROUNDED_DIV(vect[i],div); 92 else if (res != vect) 93 memcpy(res, vect, dim*sizeof(int)); 94 95} 96 97static int eval_error_cell(ELBGContext *elbg, int *centroid, cell *cells) 98{ 99 int error=0; 100 for (; cells; cells=cells->next) 101 error += distance_limited(centroid, elbg->points + cells->index*elbg->dim, elbg->dim, INT_MAX); 102 103 return error; 104} 105 106static int get_closest_codebook(ELBGContext *elbg, int index) 107{ 108 int pick = 0; 109 for (int i = 0, diff_min = INT_MAX; i < elbg->num_cb; i++) 110 if (i != index) { 111 int diff; 112 diff = distance_limited(elbg->codebook + i*elbg->dim, elbg->codebook + index*elbg->dim, elbg->dim, diff_min); 113 if (diff < diff_min) { 114 pick = i; 115 diff_min = diff; 116 } 117 } 118 return pick; 119} 120 121static int get_high_utility_cell(ELBGContext *elbg) 122{ 123 int i=0; 124 /* Using linear search, do binary if it ever turns to be speed critical */ 125 uint64_t r; 126 127 if (elbg->utility_inc[elbg->num_cb - 1] < INT_MAX) { 128 r = av_lfg_get(elbg->rand_state) % (unsigned int)elbg->utility_inc[elbg->num_cb - 1] + 1; 129 } else { 130 r = av_lfg_get(elbg->rand_state); 131 r = (av_lfg_get(elbg->rand_state) + (r<<32)) % elbg->utility_inc[elbg->num_cb - 1] + 1; 132 } 133 134 while (elbg->utility_inc[i] < r) { 135 i++; 136 } 137 138 av_assert2(elbg->cells[i]); 139 140 return i; 141} 142 143/** 144 * Implementation of the simple LBG algorithm for just two codebooks 145 */ 146static int simple_lbg(ELBGContext *elbg, 147 int dim, 148 int *centroid[3], 149 int newutility[3], 150 int *points, 151 cell *cells) 152{ 153 int i, idx; 154 int numpoints[2] = {0,0}; 155 int *newcentroid[2] = { 156 elbg->scratchbuf + 3*dim, 157 elbg->scratchbuf + 4*dim 158 }; 159 cell *tempcell; 160 161 memset(newcentroid[0], 0, 2 * dim * sizeof(*newcentroid[0])); 162 163 newutility[0] = 164 newutility[1] = 0; 165 166 for (tempcell = cells; tempcell; tempcell=tempcell->next) { 167 idx = distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX)>= 168 distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX); 169 numpoints[idx]++; 170 for (i=0; i<dim; i++) 171 newcentroid[idx][i] += points[tempcell->index*dim + i]; 172 } 173 174 vect_division(centroid[0], newcentroid[0], numpoints[0], dim); 175 vect_division(centroid[1], newcentroid[1], numpoints[1], dim); 176 177 for (tempcell = cells; tempcell; tempcell=tempcell->next) { 178 int dist[2] = {distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX), 179 distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX)}; 180 int idx = dist[0] > dist[1]; 181 newutility[idx] += dist[idx]; 182 } 183 184 return newutility[0] + newutility[1]; 185} 186 187static void get_new_centroids(ELBGContext *elbg, int huc, int *newcentroid_i, 188 int *newcentroid_p) 189{ 190 cell *tempcell; 191 int *min = newcentroid_i; 192 int *max = newcentroid_p; 193 int i; 194 195 for (i=0; i< elbg->dim; i++) { 196 min[i]=INT_MAX; 197 max[i]=0; 198 } 199 200 for (tempcell = elbg->cells[huc]; tempcell; tempcell = tempcell->next) 201 for(i=0; i<elbg->dim; i++) { 202 min[i]=FFMIN(min[i], elbg->points[tempcell->index*elbg->dim + i]); 203 max[i]=FFMAX(max[i], elbg->points[tempcell->index*elbg->dim + i]); 204 } 205 206 for (i=0; i<elbg->dim; i++) { 207 int ni = min[i] + (max[i] - min[i])/3; 208 int np = min[i] + (2*(max[i] - min[i]))/3; 209 newcentroid_i[i] = ni; 210 newcentroid_p[i] = np; 211 } 212} 213 214/** 215 * Add the points in the low utility cell to its closest cell. Split the high 216 * utility cell, putting the separated points in the (now empty) low utility 217 * cell. 218 * 219 * @param elbg Internal elbg data 220 * @param indexes {luc, huc, cluc} 221 * @param newcentroid A vector with the position of the new centroids 222 */ 223static void shift_codebook(ELBGContext *elbg, int *indexes, 224 int *newcentroid[3]) 225{ 226 cell *tempdata; 227 cell **pp = &elbg->cells[indexes[2]]; 228 229 while(*pp) 230 pp= &(*pp)->next; 231 232 *pp = elbg->cells[indexes[0]]; 233 234 elbg->cells[indexes[0]] = NULL; 235 tempdata = elbg->cells[indexes[1]]; 236 elbg->cells[indexes[1]] = NULL; 237 238 while(tempdata) { 239 cell *tempcell2 = tempdata->next; 240 int idx = distance_limited(elbg->points + tempdata->index*elbg->dim, 241 newcentroid[0], elbg->dim, INT_MAX) > 242 distance_limited(elbg->points + tempdata->index*elbg->dim, 243 newcentroid[1], elbg->dim, INT_MAX); 244 245 tempdata->next = elbg->cells[indexes[idx]]; 246 elbg->cells[indexes[idx]] = tempdata; 247 tempdata = tempcell2; 248 } 249} 250 251static void evaluate_utility_inc(ELBGContext *elbg) 252{ 253 int64_t inc=0; 254 255 for (int i = 0; i < elbg->num_cb; i++) { 256 if (elbg->num_cb * elbg->utility[i] > elbg->error) 257 inc += elbg->utility[i]; 258 elbg->utility_inc[i] = inc; 259 } 260} 261 262 263static void update_utility_and_n_cb(ELBGContext *elbg, int idx, int newutility) 264{ 265 cell *tempcell; 266 267 elbg->utility[idx] = newutility; 268 for (tempcell=elbg->cells[idx]; tempcell; tempcell=tempcell->next) 269 elbg->nearest_cb[tempcell->index] = idx; 270} 271 272/** 273 * Evaluate if a shift lower the error. If it does, call shift_codebooks 274 * and update elbg->error, elbg->utility and elbg->nearest_cb. 275 * 276 * @param elbg Internal elbg data 277 * @param idx {luc (low utility cell, huc (high utility cell), cluc (closest cell to low utility cell)} 278 */ 279static void try_shift_candidate(ELBGContext *elbg, int idx[3]) 280{ 281 int j, k, cont=0; 282 int64_t olderror=0, newerror; 283 int newutility[3]; 284 int *newcentroid[3] = { 285 elbg->scratchbuf, 286 elbg->scratchbuf + elbg->dim, 287 elbg->scratchbuf + 2*elbg->dim 288 }; 289 cell *tempcell; 290 291 for (j=0; j<3; j++) 292 olderror += elbg->utility[idx[j]]; 293 294 memset(newcentroid[2], 0, elbg->dim*sizeof(int)); 295 296 for (k=0; k<2; k++) 297 for (tempcell=elbg->cells[idx[2*k]]; tempcell; tempcell=tempcell->next) { 298 cont++; 299 for (j=0; j<elbg->dim; j++) 300 newcentroid[2][j] += elbg->points[tempcell->index*elbg->dim + j]; 301 } 302 303 vect_division(newcentroid[2], newcentroid[2], cont, elbg->dim); 304 305 get_new_centroids(elbg, idx[1], newcentroid[0], newcentroid[1]); 306 307 newutility[2] = eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[0]]); 308 newutility[2] += eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[2]]); 309 310 newerror = newutility[2]; 311 312 newerror += simple_lbg(elbg, elbg->dim, newcentroid, newutility, elbg->points, 313 elbg->cells[idx[1]]); 314 315 if (olderror > newerror) { 316 shift_codebook(elbg, idx, newcentroid); 317 318 elbg->error += newerror - olderror; 319 320 for (j=0; j<3; j++) 321 update_utility_and_n_cb(elbg, idx[j], newutility[j]); 322 323 evaluate_utility_inc(elbg); 324 } 325 } 326 327/** 328 * Implementation of the ELBG block 329 */ 330static void do_shiftings(ELBGContext *elbg) 331{ 332 int idx[3]; 333 334 evaluate_utility_inc(elbg); 335 336 for (idx[0]=0; idx[0] < elbg->num_cb; idx[0]++) 337 if (elbg->num_cb * elbg->utility[idx[0]] < elbg->error) { 338 if (elbg->utility_inc[elbg->num_cb - 1] == 0) 339 return; 340 341 idx[1] = get_high_utility_cell(elbg); 342 idx[2] = get_closest_codebook(elbg, idx[0]); 343 344 if (idx[1] != idx[0] && idx[1] != idx[2]) 345 try_shift_candidate(elbg, idx); 346 } 347} 348 349static void do_elbg(ELBGContext *av_restrict elbg, int *points, int numpoints, 350 int max_steps) 351{ 352 int *const size_part = elbg->size_part; 353 int i, j, steps = 0; 354 int best_idx = 0; 355 int64_t last_error; 356 357 elbg->error = INT64_MAX; 358 elbg->points = points; 359 360 do { 361 cell *free_cells = elbg->cell_buffer; 362 last_error = elbg->error; 363 steps++; 364 memset(elbg->utility, 0, elbg->num_cb * sizeof(*elbg->utility)); 365 memset(elbg->cells, 0, elbg->num_cb * sizeof(*elbg->cells)); 366 367 elbg->error = 0; 368 369 /* This loop evaluate the actual Voronoi partition. It is the most 370 costly part of the algorithm. */ 371 for (i=0; i < numpoints; i++) { 372 int best_dist = distance_limited(elbg->points + i * elbg->dim, 373 elbg->codebook + best_idx * elbg->dim, 374 elbg->dim, INT_MAX); 375 for (int k = 0; k < elbg->num_cb; k++) { 376 int dist = distance_limited(elbg->points + i * elbg->dim, 377 elbg->codebook + k * elbg->dim, 378 elbg->dim, best_dist); 379 if (dist < best_dist) { 380 best_dist = dist; 381 best_idx = k; 382 } 383 } 384 elbg->nearest_cb[i] = best_idx; 385 elbg->error += best_dist; 386 elbg->utility[elbg->nearest_cb[i]] += best_dist; 387 free_cells->index = i; 388 free_cells->next = elbg->cells[elbg->nearest_cb[i]]; 389 elbg->cells[elbg->nearest_cb[i]] = free_cells; 390 free_cells++; 391 } 392 393 do_shiftings(elbg); 394 395 memset(size_part, 0, elbg->num_cb * sizeof(*size_part)); 396 397 memset(elbg->codebook, 0, elbg->num_cb * elbg->dim * sizeof(*elbg->codebook)); 398 399 for (i=0; i < numpoints; i++) { 400 size_part[elbg->nearest_cb[i]]++; 401 for (j=0; j < elbg->dim; j++) 402 elbg->codebook[elbg->nearest_cb[i]*elbg->dim + j] += 403 elbg->points[i*elbg->dim + j]; 404 } 405 406 for (int i = 0; i < elbg->num_cb; i++) 407 vect_division(elbg->codebook + i*elbg->dim, 408 elbg->codebook + i*elbg->dim, size_part[i], elbg->dim); 409 410 } while(((last_error - elbg->error) > DELTA_ERR_MAX*elbg->error) && 411 (steps < max_steps)); 412} 413 414#define BIG_PRIME 433494437LL 415 416/** 417 * Initialize the codebook vector for the elbg algorithm. 418 * If numpoints <= 24 * num_cb this function fills codebook with random numbers. 419 * If not, it calls do_elbg for a (smaller) random sample of the points in 420 * points. 421 */ 422static void init_elbg(ELBGContext *av_restrict elbg, int *points, int *temp_points, 423 int numpoints, int max_steps) 424{ 425 int dim = elbg->dim; 426 427 if (numpoints > 24LL * elbg->num_cb) { 428 /* ELBG is very costly for a big number of points. So if we have a lot 429 of them, get a good initial codebook to save on iterations */ 430 for (int i = 0; i < numpoints / 8; i++) { 431 int k = (i*BIG_PRIME) % numpoints; 432 memcpy(temp_points + i*dim, points + k*dim, dim * sizeof(*temp_points)); 433 } 434 435 /* If anything is changed in the recursion parameters, 436 * the allocated size of temp_points will also need to be updated. */ 437 init_elbg(elbg, temp_points, temp_points + numpoints / 8 * dim, 438 numpoints / 8, 2 * max_steps); 439 do_elbg(elbg, temp_points, numpoints / 8, 2 * max_steps); 440 } else // If not, initialize the codebook with random positions 441 for (int i = 0; i < elbg->num_cb; i++) 442 memcpy(elbg->codebook + i * dim, points + ((i*BIG_PRIME)%numpoints)*dim, 443 dim * sizeof(*elbg->codebook)); 444} 445 446int avpriv_elbg_do(ELBGContext **elbgp, int *points, int dim, int numpoints, 447 int *codebook, int num_cb, int max_steps, 448 int *closest_cb, AVLFG *rand_state, uintptr_t flags) 449{ 450 ELBGContext *const av_restrict elbg = *elbgp ? *elbgp : av_mallocz(sizeof(*elbg)); 451 452 if (!elbg) 453 return AVERROR(ENOMEM); 454 *elbgp = elbg; 455 456 elbg->nearest_cb = closest_cb; 457 elbg->rand_state = rand_state; 458 elbg->codebook = codebook; 459 elbg->num_cb = num_cb; 460 elbg->dim = dim; 461 462#define ALLOCATE_IF_NECESSARY(field, new_elements, multiplicator) \ 463 if (elbg->field ## _allocated < new_elements) { \ 464 av_freep(&elbg->field); \ 465 elbg->field = av_malloc_array(new_elements, \ 466 multiplicator * sizeof(*elbg->field)); \ 467 if (!elbg->field) { \ 468 elbg->field ## _allocated = 0; \ 469 return AVERROR(ENOMEM); \ 470 } \ 471 elbg->field ## _allocated = new_elements; \ 472 } 473 /* Allocating the buffers for do_elbg() here once relies 474 * on their size being always the same even when do_elbg() 475 * is called from init_elbg(). It also relies on do_elbg() 476 * never calling itself recursively. */ 477 ALLOCATE_IF_NECESSARY(cells, num_cb, 1) 478 ALLOCATE_IF_NECESSARY(utility, num_cb, 1) 479 ALLOCATE_IF_NECESSARY(utility_inc, num_cb, 1) 480 ALLOCATE_IF_NECESSARY(size_part, num_cb, 1) 481 ALLOCATE_IF_NECESSARY(cell_buffer, numpoints, 1) 482 ALLOCATE_IF_NECESSARY(scratchbuf, dim, 5) 483 if (numpoints > 24LL * elbg->num_cb) { 484 /* The first step in the recursion in init_elbg() needs a buffer with 485 * (numpoints / 8) * dim elements; the next step needs numpoints / 8 / 8 486 * * dim elements etc. The geometric series leads to an upper bound of 487 * numpoints / 8 * 8 / 7 * dim elements. */ 488 uint64_t prod = dim * (uint64_t)(numpoints / 7U); 489 if (prod > INT_MAX) 490 return AVERROR(ERANGE); 491 ALLOCATE_IF_NECESSARY(temp_points, prod, 1) 492 } 493 494 init_elbg(elbg, points, elbg->temp_points, numpoints, max_steps); 495 do_elbg (elbg, points, numpoints, max_steps); 496 return 0; 497} 498 499av_cold void avpriv_elbg_free(ELBGContext **elbgp) 500{ 501 ELBGContext *elbg = *elbgp; 502 if (!elbg) 503 return; 504 505 av_freep(&elbg->size_part); 506 av_freep(&elbg->utility); 507 av_freep(&elbg->cell_buffer); 508 av_freep(&elbg->cells); 509 av_freep(&elbg->utility_inc); 510 av_freep(&elbg->scratchbuf); 511 av_freep(&elbg->temp_points); 512 513 av_freep(elbgp); 514} 515