1/* 2 * (I)DCT Transforms 3 * Copyright (c) 2009 Peter Ross <pross@xvid.org> 4 * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com> 5 * Copyright (c) 2010 Vitor Sessak 6 * 7 * This file is part of FFmpeg. 8 * 9 * FFmpeg is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU Lesser General Public 11 * License as published by the Free Software Foundation; either 12 * version 2.1 of the License, or (at your option) any later version. 13 * 14 * FFmpeg is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * Lesser General Public License for more details. 18 * 19 * You should have received a copy of the GNU Lesser General Public 20 * License along with FFmpeg; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 */ 23 24/** 25 * @file 26 * (Inverse) Discrete Cosine Transforms. These are also known as the 27 * type II and type III DCTs respectively. 28 */ 29 30#include <math.h> 31#include <string.h> 32 33#include "libavutil/error.h" 34#include "libavutil/mathematics.h" 35#include "libavutil/mem.h" 36#include "dct.h" 37#include "dct32.h" 38 39/* sin((M_PI * x / (2 * n)) */ 40#define SIN(s, n, x) (s->costab[(n) - (x)]) 41 42/* cos((M_PI * x / (2 * n)) */ 43#define COS(s, n, x) (s->costab[x]) 44 45static void dst_calc_I_c(DCTContext *ctx, FFTSample *data) 46{ 47 int n = 1 << ctx->nbits; 48 int i; 49 50 data[0] = 0; 51 for (i = 1; i < n / 2; i++) { 52 float tmp1 = data[i ]; 53 float tmp2 = data[n - i]; 54 float s = SIN(ctx, n, 2 * i); 55 56 s *= tmp1 + tmp2; 57 tmp1 = (tmp1 - tmp2) * 0.5f; 58 data[i] = s + tmp1; 59 data[n - i] = s - tmp1; 60 } 61 62 data[n / 2] *= 2; 63 ctx->rdft.rdft_calc(&ctx->rdft, data); 64 65 data[0] *= 0.5f; 66 67 for (i = 1; i < n - 2; i += 2) { 68 data[i + 1] += data[i - 1]; 69 data[i] = -data[i + 2]; 70 } 71 72 data[n - 1] = 0; 73} 74 75static void dct_calc_I_c(DCTContext *ctx, FFTSample *data) 76{ 77 int n = 1 << ctx->nbits; 78 int i; 79 float next = -0.5f * (data[0] - data[n]); 80 81 for (i = 0; i < n / 2; i++) { 82 float tmp1 = data[i]; 83 float tmp2 = data[n - i]; 84 float s = SIN(ctx, n, 2 * i); 85 float c = COS(ctx, n, 2 * i); 86 87 c *= tmp1 - tmp2; 88 s *= tmp1 - tmp2; 89 90 next += c; 91 92 tmp1 = (tmp1 + tmp2) * 0.5f; 93 data[i] = tmp1 - s; 94 data[n - i] = tmp1 + s; 95 } 96 97 ctx->rdft.rdft_calc(&ctx->rdft, data); 98 data[n] = data[1]; 99 data[1] = next; 100 101 for (i = 3; i <= n; i += 2) 102 data[i] = data[i - 2] - data[i]; 103} 104 105static void dct_calc_III_c(DCTContext *ctx, FFTSample *data) 106{ 107 int n = 1 << ctx->nbits; 108 int i; 109 110 float next = data[n - 1]; 111 float inv_n = 1.0f / n; 112 113 for (i = n - 2; i >= 2; i -= 2) { 114 float val1 = data[i]; 115 float val2 = data[i - 1] - data[i + 1]; 116 float c = COS(ctx, n, i); 117 float s = SIN(ctx, n, i); 118 119 data[i] = c * val1 + s * val2; 120 data[i + 1] = s * val1 - c * val2; 121 } 122 123 data[1] = 2 * next; 124 125 ctx->rdft.rdft_calc(&ctx->rdft, data); 126 127 for (i = 0; i < n / 2; i++) { 128 float tmp1 = data[i] * inv_n; 129 float tmp2 = data[n - i - 1] * inv_n; 130 float csc = ctx->csc2[i] * (tmp1 - tmp2); 131 132 tmp1 += tmp2; 133 data[i] = tmp1 + csc; 134 data[n - i - 1] = tmp1 - csc; 135 } 136} 137 138static void dct_calc_II_c(DCTContext *ctx, FFTSample *data) 139{ 140 int n = 1 << ctx->nbits; 141 int i; 142 float next; 143 144 for (i = 0; i < n / 2; i++) { 145 float tmp1 = data[i]; 146 float tmp2 = data[n - i - 1]; 147 float s = SIN(ctx, n, 2 * i + 1); 148 149 s *= tmp1 - tmp2; 150 tmp1 = (tmp1 + tmp2) * 0.5f; 151 152 data[i] = tmp1 + s; 153 data[n-i-1] = tmp1 - s; 154 } 155 156 ctx->rdft.rdft_calc(&ctx->rdft, data); 157 158 next = data[1] * 0.5; 159 data[1] *= -1; 160 161 for (i = n - 2; i >= 0; i -= 2) { 162 float inr = data[i ]; 163 float ini = data[i + 1]; 164 float c = COS(ctx, n, i); 165 float s = SIN(ctx, n, i); 166 167 data[i] = c * inr + s * ini; 168 data[i + 1] = next; 169 170 next += s * inr - c * ini; 171 } 172} 173 174static void dct32_func(DCTContext *ctx, FFTSample *data) 175{ 176 ctx->dct32(data, data); 177} 178 179av_cold int ff_dct_init(DCTContext *s, int nbits, enum DCTTransformType inverse) 180{ 181 int n = 1 << nbits; 182 int i; 183 int ret; 184 185 memset(s, 0, sizeof(*s)); 186 187 s->nbits = nbits; 188 s->inverse = inverse; 189 190 if (inverse == DCT_II && nbits == 5) { 191 s->dct_calc = dct32_func; 192 } else { 193 ff_init_ff_cos_tabs(nbits + 2); 194 195 s->costab = ff_cos_tabs[nbits + 2]; 196 s->csc2 = av_malloc_array(n / 2, sizeof(FFTSample)); 197 if (!s->csc2) 198 return AVERROR(ENOMEM); 199 200 if ((ret = ff_rdft_init(&s->rdft, nbits, inverse == DCT_III)) < 0) { 201 av_freep(&s->csc2); 202 return ret; 203 } 204 205 for (i = 0; i < n / 2; i++) 206 s->csc2[i] = 0.5 / sin((M_PI / (2 * n) * (2 * i + 1))); 207 208 switch (inverse) { 209 case DCT_I : s->dct_calc = dct_calc_I_c; break; 210 case DCT_II : s->dct_calc = dct_calc_II_c; break; 211 case DCT_III: s->dct_calc = dct_calc_III_c; break; 212 case DST_I : s->dct_calc = dst_calc_I_c; break; 213 } 214 } 215 216 s->dct32 = ff_dct32_float; 217#if ARCH_X86 218 ff_dct_init_x86(s); 219#endif 220 221 return 0; 222} 223 224av_cold void ff_dct_end(DCTContext *s) 225{ 226 ff_rdft_end(&s->rdft); 227 av_freep(&s->csc2); 228} 229