1/* 2 * DCA encoder 3 * Copyright (C) 2008-2012 Alexander E. Patrakov 4 * 2010 Benjamin Larsson 5 * 2011 Xiang Wang 6 * 7 * This file is part of FFmpeg. 8 * 9 * FFmpeg is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU Lesser General Public 11 * License as published by the Free Software Foundation; either 12 * version 2.1 of the License, or (at your option) any later version. 13 * 14 * FFmpeg is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * Lesser General Public License for more details. 18 * 19 * You should have received a copy of the GNU Lesser General Public 20 * License along with FFmpeg; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 22 */ 23 24#define FFT_FLOAT 0 25 26#include "libavutil/avassert.h" 27#include "libavutil/channel_layout.h" 28#include "libavutil/common.h" 29#include "libavutil/ffmath.h" 30#include "libavutil/mem_internal.h" 31#include "libavutil/opt.h" 32#include "avcodec.h" 33#include "codec_internal.h" 34#include "dca.h" 35#include "dcaadpcm.h" 36#include "dcamath.h" 37#include "dca_core.h" 38#include "dcadata.h" 39#include "dcaenc.h" 40#include "encode.h" 41#include "fft.h" 42#include "internal.h" 43#include "mathops.h" 44#include "put_bits.h" 45 46#define MAX_CHANNELS 6 47#define DCA_MAX_FRAME_SIZE 16384 48#define DCA_HEADER_SIZE 13 49#define DCA_LFE_SAMPLES 8 50 51#define DCAENC_SUBBANDS 32 52#define SUBFRAMES 1 53#define SUBSUBFRAMES 2 54#define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8) 55#define AUBANDS 25 56 57#define COS_T(x) (c->cos_table[(x) & 2047]) 58 59typedef struct CompressionOptions { 60 int adpcm_mode; 61} CompressionOptions; 62 63typedef struct DCAEncContext { 64 AVClass *class; 65 PutBitContext pb; 66 DCAADPCMEncContext adpcm_ctx; 67 FFTContext mdct; 68 CompressionOptions options; 69 int frame_size; 70 int frame_bits; 71 int fullband_channels; 72 int channels; 73 int lfe_channel; 74 int samplerate_index; 75 int bitrate_index; 76 int channel_config; 77 const int32_t *band_interpolation; 78 const int32_t *band_spectrum; 79 int lfe_scale_factor; 80 softfloat lfe_quant; 81 int32_t lfe_peak_cb; 82 const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe 83 84 int32_t prediction_mode[MAX_CHANNELS][DCAENC_SUBBANDS]; 85 int32_t adpcm_history[MAX_CHANNELS][DCAENC_SUBBANDS][DCA_ADPCM_COEFFS * 2]; 86 int32_t history[MAX_CHANNELS][512]; /* This is a circular buffer */ 87 int32_t *subband[MAX_CHANNELS][DCAENC_SUBBANDS]; 88 int32_t quantized[MAX_CHANNELS][DCAENC_SUBBANDS][SUBBAND_SAMPLES]; 89 int32_t peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]; 90 int32_t diff_peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]; ///< expected peak of residual signal 91 int32_t downsampled_lfe[DCA_LFE_SAMPLES]; 92 int32_t masking_curve_cb[SUBSUBFRAMES][256]; 93 int32_t bit_allocation_sel[MAX_CHANNELS]; 94 int abits[MAX_CHANNELS][DCAENC_SUBBANDS]; 95 int scale_factor[MAX_CHANNELS][DCAENC_SUBBANDS]; 96 softfloat quant[MAX_CHANNELS][DCAENC_SUBBANDS]; 97 int32_t quant_index_sel[MAX_CHANNELS][DCA_CODE_BOOKS]; 98 int32_t eff_masking_curve_cb[256]; 99 int32_t band_masking_cb[32]; 100 int32_t worst_quantization_noise; 101 int32_t worst_noise_ever; 102 int consumed_bits; 103 int consumed_adpcm_bits; ///< Number of bits to transmit ADPCM related info 104 105 int32_t cos_table[2048]; 106 int32_t band_interpolation_tab[2][512]; 107 int32_t band_spectrum_tab[2][8]; 108 int32_t auf[9][AUBANDS][256]; 109 int32_t cb_to_add[256]; 110 int32_t cb_to_level[2048]; 111 int32_t lfe_fir_64i[512]; 112} DCAEncContext; 113 114/* Transfer function of outer and middle ear, Hz -> dB */ 115static double hom(double f) 116{ 117 double f1 = f / 1000; 118 119 return -3.64 * pow(f1, -0.8) 120 + 6.8 * exp(-0.6 * (f1 - 3.4) * (f1 - 3.4)) 121 - 6.0 * exp(-0.15 * (f1 - 8.7) * (f1 - 8.7)) 122 - 0.0006 * (f1 * f1) * (f1 * f1); 123} 124 125static double gammafilter(int i, double f) 126{ 127 double h = (f - fc[i]) / erb[i]; 128 129 h = 1 + h * h; 130 h = 1 / (h * h); 131 return 20 * log10(h); 132} 133 134static int subband_bufer_alloc(DCAEncContext *c) 135{ 136 int ch, band; 137 int32_t *bufer = av_calloc(MAX_CHANNELS * DCAENC_SUBBANDS * 138 (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS), 139 sizeof(int32_t)); 140 if (!bufer) 141 return AVERROR(ENOMEM); 142 143 /* we need a place for DCA_ADPCM_COEFF samples from previous frame 144 * to calc prediction coefficients for each subband */ 145 for (ch = 0; ch < MAX_CHANNELS; ch++) { 146 for (band = 0; band < DCAENC_SUBBANDS; band++) { 147 c->subband[ch][band] = bufer + 148 ch * DCAENC_SUBBANDS * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) + 149 band * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) + DCA_ADPCM_COEFFS; 150 } 151 } 152 return 0; 153} 154 155static void subband_bufer_free(DCAEncContext *c) 156{ 157 if (c->subband[0][0]) { 158 int32_t *bufer = c->subband[0][0] - DCA_ADPCM_COEFFS; 159 av_free(bufer); 160 c->subband[0][0] = NULL; 161 } 162} 163 164static int encode_init(AVCodecContext *avctx) 165{ 166 DCAEncContext *c = avctx->priv_data; 167 AVChannelLayout layout = avctx->ch_layout; 168 int i, j, k, min_frame_bits; 169 int ret; 170 171 if ((ret = subband_bufer_alloc(c)) < 0) 172 return ret; 173 174 c->fullband_channels = c->channels = layout.nb_channels; 175 c->lfe_channel = (c->channels == 3 || c->channels == 6); 176 c->band_interpolation = c->band_interpolation_tab[1]; 177 c->band_spectrum = c->band_spectrum_tab[1]; 178 c->worst_quantization_noise = -2047; 179 c->worst_noise_ever = -2047; 180 c->consumed_adpcm_bits = 0; 181 182 if (ff_dcaadpcm_init(&c->adpcm_ctx)) 183 return AVERROR(ENOMEM); 184 185 if (layout.order == AV_CHANNEL_ORDER_UNSPEC) { 186 av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The " 187 "encoder will guess the layout, but it " 188 "might be incorrect.\n"); 189 av_channel_layout_default(&layout, layout.nb_channels); 190 } 191 192 if (!av_channel_layout_compare(&layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_MONO)) 193 c->channel_config = 0; 194 else if (!av_channel_layout_compare(&layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO)) 195 c->channel_config = 2; 196 else if (!av_channel_layout_compare(&layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_2_2)) 197 c->channel_config = 8; 198 else if (!av_channel_layout_compare(&layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT0)) 199 c->channel_config = 9; 200 else if (!av_channel_layout_compare(&layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_5POINT1)) 201 c->channel_config = 9; 202 else { 203 av_log(avctx, AV_LOG_ERROR, "Unsupported channel layout!\n"); 204 return AVERROR_PATCHWELCOME; 205 } 206 207 if (c->lfe_channel) { 208 c->fullband_channels--; 209 c->channel_order_tab = channel_reorder_lfe[c->channel_config]; 210 } else { 211 c->channel_order_tab = channel_reorder_nolfe[c->channel_config]; 212 } 213 214 for (i = 0; i < MAX_CHANNELS; i++) { 215 for (j = 0; j < DCA_CODE_BOOKS; j++) { 216 c->quant_index_sel[i][j] = ff_dca_quant_index_group_size[j]; 217 } 218 /* 6 - no Huffman */ 219 c->bit_allocation_sel[i] = 6; 220 221 for (j = 0; j < DCAENC_SUBBANDS; j++) { 222 /* -1 - no ADPCM */ 223 c->prediction_mode[i][j] = -1; 224 memset(c->adpcm_history[i][j], 0, sizeof(int32_t)*DCA_ADPCM_COEFFS); 225 } 226 } 227 228 for (i = 0; i < 9; i++) { 229 if (sample_rates[i] == avctx->sample_rate) 230 break; 231 } 232 if (i == 9) 233 return AVERROR(EINVAL); 234 c->samplerate_index = i; 235 236 if (avctx->bit_rate < 32000 || avctx->bit_rate > 3840000) { 237 av_log(avctx, AV_LOG_ERROR, "Bit rate %"PRId64" not supported.", avctx->bit_rate); 238 return AVERROR(EINVAL); 239 } 240 for (i = 0; ff_dca_bit_rates[i] < avctx->bit_rate; i++) 241 ; 242 c->bitrate_index = i; 243 c->frame_bits = FFALIGN((avctx->bit_rate * 512 + avctx->sample_rate - 1) / avctx->sample_rate, 32); 244 min_frame_bits = 132 + (493 + 28 * 32) * c->fullband_channels + c->lfe_channel * 72; 245 if (c->frame_bits < min_frame_bits || c->frame_bits > (DCA_MAX_FRAME_SIZE << 3)) 246 return AVERROR(EINVAL); 247 248 c->frame_size = (c->frame_bits + 7) / 8; 249 250 avctx->frame_size = 32 * SUBBAND_SAMPLES; 251 252 if ((ret = ff_mdct_init(&c->mdct, 9, 0, 1.0)) < 0) 253 return ret; 254 255 /* Init all tables */ 256 c->cos_table[0] = 0x7fffffff; 257 c->cos_table[512] = 0; 258 c->cos_table[1024] = -c->cos_table[0]; 259 for (i = 1; i < 512; i++) { 260 c->cos_table[i] = (int32_t)(0x7fffffff * cos(M_PI * i / 1024)); 261 c->cos_table[1024-i] = -c->cos_table[i]; 262 c->cos_table[1024+i] = -c->cos_table[i]; 263 c->cos_table[2048-i] = +c->cos_table[i]; 264 } 265 266 for (i = 0; i < 2048; i++) 267 c->cb_to_level[i] = (int32_t)(0x7fffffff * ff_exp10(-0.005 * i)); 268 269 for (k = 0; k < 32; k++) { 270 for (j = 0; j < 8; j++) { 271 c->lfe_fir_64i[64 * j + k] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]); 272 c->lfe_fir_64i[64 * (7-j) + (63 - k)] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]); 273 } 274 } 275 276 for (i = 0; i < 512; i++) { 277 c->band_interpolation_tab[0][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_perfect[i]); 278 c->band_interpolation_tab[1][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_nonperfect[i]); 279 } 280 281 for (i = 0; i < 9; i++) { 282 for (j = 0; j < AUBANDS; j++) { 283 for (k = 0; k < 256; k++) { 284 double freq = sample_rates[i] * (k + 0.5) / 512; 285 286 c->auf[i][j][k] = (int32_t)(10 * (hom(freq) + gammafilter(j, freq))); 287 } 288 } 289 } 290 291 for (i = 0; i < 256; i++) { 292 double add = 1 + ff_exp10(-0.01 * i); 293 c->cb_to_add[i] = (int32_t)(100 * log10(add)); 294 } 295 for (j = 0; j < 8; j++) { 296 double accum = 0; 297 for (i = 0; i < 512; i++) { 298 double reconst = ff_dca_fir_32bands_perfect[i] * ((i & 64) ? (-1) : 1); 299 accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512); 300 } 301 c->band_spectrum_tab[0][j] = (int32_t)(200 * log10(accum)); 302 } 303 for (j = 0; j < 8; j++) { 304 double accum = 0; 305 for (i = 0; i < 512; i++) { 306 double reconst = ff_dca_fir_32bands_nonperfect[i] * ((i & 64) ? (-1) : 1); 307 accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512); 308 } 309 c->band_spectrum_tab[1][j] = (int32_t)(200 * log10(accum)); 310 } 311 312 return 0; 313} 314 315static av_cold int encode_close(AVCodecContext *avctx) 316{ 317 DCAEncContext *c = avctx->priv_data; 318 ff_mdct_end(&c->mdct); 319 subband_bufer_free(c); 320 ff_dcaadpcm_free(&c->adpcm_ctx); 321 322 return 0; 323} 324 325static void subband_transform(DCAEncContext *c, const int32_t *input) 326{ 327 int ch, subs, i, k, j; 328 329 for (ch = 0; ch < c->fullband_channels; ch++) { 330 /* History is copied because it is also needed for PSY */ 331 int32_t hist[512]; 332 int hist_start = 0; 333 const int chi = c->channel_order_tab[ch]; 334 335 memcpy(hist, &c->history[ch][0], 512 * sizeof(int32_t)); 336 337 for (subs = 0; subs < SUBBAND_SAMPLES; subs++) { 338 int32_t accum[64]; 339 int32_t resp; 340 int band; 341 342 /* Calculate the convolutions at once */ 343 memset(accum, 0, 64 * sizeof(int32_t)); 344 345 for (k = 0, i = hist_start, j = 0; 346 i < 512; k = (k + 1) & 63, i++, j++) 347 accum[k] += mul32(hist[i], c->band_interpolation[j]); 348 for (i = 0; i < hist_start; k = (k + 1) & 63, i++, j++) 349 accum[k] += mul32(hist[i], c->band_interpolation[j]); 350 351 for (k = 16; k < 32; k++) 352 accum[k] = accum[k] - accum[31 - k]; 353 for (k = 32; k < 48; k++) 354 accum[k] = accum[k] + accum[95 - k]; 355 356 for (band = 0; band < 32; band++) { 357 resp = 0; 358 for (i = 16; i < 48; i++) { 359 int s = (2 * band + 1) * (2 * (i + 16) + 1); 360 resp += mul32(accum[i], COS_T(s << 3)) >> 3; 361 } 362 363 c->subband[ch][band][subs] = ((band + 1) & 2) ? -resp : resp; 364 } 365 366 /* Copy in 32 new samples from input */ 367 for (i = 0; i < 32; i++) 368 hist[i + hist_start] = input[(subs * 32 + i) * c->channels + chi]; 369 370 hist_start = (hist_start + 32) & 511; 371 } 372 } 373} 374 375static void lfe_downsample(DCAEncContext *c, const int32_t *input) 376{ 377 /* FIXME: make 128x LFE downsampling possible */ 378 const int lfech = lfe_index[c->channel_config]; 379 int i, j, lfes; 380 int32_t hist[512]; 381 int32_t accum; 382 int hist_start = 0; 383 384 memcpy(hist, &c->history[c->channels - 1][0], 512 * sizeof(int32_t)); 385 386 for (lfes = 0; lfes < DCA_LFE_SAMPLES; lfes++) { 387 /* Calculate the convolution */ 388 accum = 0; 389 390 for (i = hist_start, j = 0; i < 512; i++, j++) 391 accum += mul32(hist[i], c->lfe_fir_64i[j]); 392 for (i = 0; i < hist_start; i++, j++) 393 accum += mul32(hist[i], c->lfe_fir_64i[j]); 394 395 c->downsampled_lfe[lfes] = accum; 396 397 /* Copy in 64 new samples from input */ 398 for (i = 0; i < 64; i++) 399 hist[i + hist_start] = input[(lfes * 64 + i) * c->channels + lfech]; 400 401 hist_start = (hist_start + 64) & 511; 402 } 403} 404 405static int32_t get_cb(DCAEncContext *c, int32_t in) 406{ 407 int i, res = 0; 408 in = FFABS(in); 409 410 for (i = 1024; i > 0; i >>= 1) { 411 if (c->cb_to_level[i + res] >= in) 412 res += i; 413 } 414 return -res; 415} 416 417static int32_t add_cb(DCAEncContext *c, int32_t a, int32_t b) 418{ 419 if (a < b) 420 FFSWAP(int32_t, a, b); 421 422 if (a - b >= 256) 423 return a; 424 return a + c->cb_to_add[a - b]; 425} 426 427static void calc_power(DCAEncContext *c, 428 const int32_t in[2 * 256], int32_t power[256]) 429{ 430 int i; 431 LOCAL_ALIGNED_32(int32_t, data, [512]); 432 LOCAL_ALIGNED_32(int32_t, coeff, [256]); 433 434 for (i = 0; i < 512; i++) 435 data[i] = norm__(mul32(in[i], 0x3fffffff - (COS_T(4 * i + 2) >> 1)), 4); 436 437 c->mdct.mdct_calc(&c->mdct, coeff, data); 438 for (i = 0; i < 256; i++) { 439 const int32_t cb = get_cb(c, coeff[i]); 440 power[i] = add_cb(c, cb, cb); 441 } 442} 443 444static void adjust_jnd(DCAEncContext *c, 445 const int32_t in[512], int32_t out_cb[256]) 446{ 447 int32_t power[256]; 448 int32_t out_cb_unnorm[256]; 449 int32_t denom; 450 const int32_t ca_cb = -1114; 451 const int32_t cs_cb = 928; 452 const int samplerate_index = c->samplerate_index; 453 int i, j; 454 455 calc_power(c, in, power); 456 457 for (j = 0; j < 256; j++) 458 out_cb_unnorm[j] = -2047; /* and can only grow */ 459 460 for (i = 0; i < AUBANDS; i++) { 461 denom = ca_cb; /* and can only grow */ 462 for (j = 0; j < 256; j++) 463 denom = add_cb(c, denom, power[j] + c->auf[samplerate_index][i][j]); 464 for (j = 0; j < 256; j++) 465 out_cb_unnorm[j] = add_cb(c, out_cb_unnorm[j], 466 -denom + c->auf[samplerate_index][i][j]); 467 } 468 469 for (j = 0; j < 256; j++) 470 out_cb[j] = add_cb(c, out_cb[j], -out_cb_unnorm[j] - ca_cb - cs_cb); 471} 472 473typedef void (*walk_band_t)(DCAEncContext *c, int band1, int band2, int f, 474 int32_t spectrum1, int32_t spectrum2, int channel, 475 int32_t * arg); 476 477static void walk_band_low(DCAEncContext *c, int band, int channel, 478 walk_band_t walk, int32_t *arg) 479{ 480 int f; 481 482 if (band == 0) { 483 for (f = 0; f < 4; f++) 484 walk(c, 0, 0, f, 0, -2047, channel, arg); 485 } else { 486 for (f = 0; f < 8; f++) 487 walk(c, band, band - 1, 8 * band - 4 + f, 488 c->band_spectrum[7 - f], c->band_spectrum[f], channel, arg); 489 } 490} 491 492static void walk_band_high(DCAEncContext *c, int band, int channel, 493 walk_band_t walk, int32_t *arg) 494{ 495 int f; 496 497 if (band == 31) { 498 for (f = 0; f < 4; f++) 499 walk(c, 31, 31, 256 - 4 + f, 0, -2047, channel, arg); 500 } else { 501 for (f = 0; f < 8; f++) 502 walk(c, band, band + 1, 8 * band + 4 + f, 503 c->band_spectrum[f], c->band_spectrum[7 - f], channel, arg); 504 } 505} 506 507static void update_band_masking(DCAEncContext *c, int band1, int band2, 508 int f, int32_t spectrum1, int32_t spectrum2, 509 int channel, int32_t * arg) 510{ 511 int32_t value = c->eff_masking_curve_cb[f] - spectrum1; 512 513 if (value < c->band_masking_cb[band1]) 514 c->band_masking_cb[band1] = value; 515} 516 517static void calc_masking(DCAEncContext *c, const int32_t *input) 518{ 519 int i, k, band, ch, ssf; 520 int32_t data[512]; 521 522 for (i = 0; i < 256; i++) 523 for (ssf = 0; ssf < SUBSUBFRAMES; ssf++) 524 c->masking_curve_cb[ssf][i] = -2047; 525 526 for (ssf = 0; ssf < SUBSUBFRAMES; ssf++) 527 for (ch = 0; ch < c->fullband_channels; ch++) { 528 const int chi = c->channel_order_tab[ch]; 529 530 for (i = 0, k = 128 + 256 * ssf; k < 512; i++, k++) 531 data[i] = c->history[ch][k]; 532 for (k -= 512; i < 512; i++, k++) 533 data[i] = input[k * c->channels + chi]; 534 adjust_jnd(c, data, c->masking_curve_cb[ssf]); 535 } 536 for (i = 0; i < 256; i++) { 537 int32_t m = 2048; 538 539 for (ssf = 0; ssf < SUBSUBFRAMES; ssf++) 540 if (c->masking_curve_cb[ssf][i] < m) 541 m = c->masking_curve_cb[ssf][i]; 542 c->eff_masking_curve_cb[i] = m; 543 } 544 545 for (band = 0; band < 32; band++) { 546 c->band_masking_cb[band] = 2048; 547 walk_band_low(c, band, 0, update_band_masking, NULL); 548 walk_band_high(c, band, 0, update_band_masking, NULL); 549 } 550} 551 552static inline int32_t find_peak(DCAEncContext *c, const int32_t *in, int len) 553{ 554 int sample; 555 int32_t m = 0; 556 for (sample = 0; sample < len; sample++) { 557 int32_t s = abs(in[sample]); 558 if (m < s) 559 m = s; 560 } 561 return get_cb(c, m); 562} 563 564static void find_peaks(DCAEncContext *c) 565{ 566 int band, ch; 567 568 for (ch = 0; ch < c->fullband_channels; ch++) { 569 for (band = 0; band < 32; band++) 570 c->peak_cb[ch][band] = find_peak(c, c->subband[ch][band], 571 SUBBAND_SAMPLES); 572 } 573 574 if (c->lfe_channel) 575 c->lfe_peak_cb = find_peak(c, c->downsampled_lfe, DCA_LFE_SAMPLES); 576} 577 578static void adpcm_analysis(DCAEncContext *c) 579{ 580 int ch, band; 581 int pred_vq_id; 582 int32_t *samples; 583 int32_t estimated_diff[SUBBAND_SAMPLES]; 584 585 c->consumed_adpcm_bits = 0; 586 for (ch = 0; ch < c->fullband_channels; ch++) { 587 for (band = 0; band < 32; band++) { 588 samples = c->subband[ch][band] - DCA_ADPCM_COEFFS; 589 pred_vq_id = ff_dcaadpcm_subband_analysis(&c->adpcm_ctx, samples, 590 SUBBAND_SAMPLES, estimated_diff); 591 if (pred_vq_id >= 0) { 592 c->prediction_mode[ch][band] = pred_vq_id; 593 c->consumed_adpcm_bits += 12; //12 bits to transmit prediction vq index 594 c->diff_peak_cb[ch][band] = find_peak(c, estimated_diff, 16); 595 } else { 596 c->prediction_mode[ch][band] = -1; 597 } 598 } 599 } 600} 601 602static const int snr_fudge = 128; 603#define USED_1ABITS 1 604#define USED_26ABITS 4 605 606static inline int32_t get_step_size(DCAEncContext *c, int ch, int band) 607{ 608 int32_t step_size; 609 610 if (c->bitrate_index == 3) 611 step_size = ff_dca_lossless_quant[c->abits[ch][band]]; 612 else 613 step_size = ff_dca_lossy_quant[c->abits[ch][band]]; 614 615 return step_size; 616} 617 618static int calc_one_scale(DCAEncContext *c, int32_t peak_cb, int abits, 619 softfloat *quant) 620{ 621 int32_t peak; 622 int our_nscale, try_remove; 623 softfloat our_quant; 624 625 av_assert0(peak_cb <= 0); 626 av_assert0(peak_cb >= -2047); 627 628 our_nscale = 127; 629 peak = c->cb_to_level[-peak_cb]; 630 631 for (try_remove = 64; try_remove > 0; try_remove >>= 1) { 632 if (scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e <= 17) 633 continue; 634 our_quant.m = mul32(scalefactor_inv[our_nscale - try_remove].m, stepsize_inv[abits].m); 635 our_quant.e = scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e - 17; 636 if ((ff_dca_quant_levels[abits] - 1) / 2 < quantize_value(peak, our_quant)) 637 continue; 638 our_nscale -= try_remove; 639 } 640 641 if (our_nscale >= 125) 642 our_nscale = 124; 643 644 quant->m = mul32(scalefactor_inv[our_nscale].m, stepsize_inv[abits].m); 645 quant->e = scalefactor_inv[our_nscale].e + stepsize_inv[abits].e - 17; 646 av_assert0((ff_dca_quant_levels[abits] - 1) / 2 >= quantize_value(peak, *quant)); 647 648 return our_nscale; 649} 650 651static inline void quantize_adpcm_subband(DCAEncContext *c, int ch, int band) 652{ 653 int32_t step_size; 654 int32_t diff_peak_cb = c->diff_peak_cb[ch][band]; 655 c->scale_factor[ch][band] = calc_one_scale(c, diff_peak_cb, 656 c->abits[ch][band], 657 &c->quant[ch][band]); 658 659 step_size = get_step_size(c, ch, band); 660 ff_dcaadpcm_do_real(c->prediction_mode[ch][band], 661 c->quant[ch][band], 662 ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], 663 step_size, c->adpcm_history[ch][band], c->subband[ch][band], 664 c->adpcm_history[ch][band] + 4, c->quantized[ch][band], 665 SUBBAND_SAMPLES, c->cb_to_level[-diff_peak_cb]); 666} 667 668static void quantize_adpcm(DCAEncContext *c) 669{ 670 int band, ch; 671 672 for (ch = 0; ch < c->fullband_channels; ch++) 673 for (band = 0; band < 32; band++) 674 if (c->prediction_mode[ch][band] >= 0) 675 quantize_adpcm_subband(c, ch, band); 676} 677 678static void quantize_pcm(DCAEncContext *c) 679{ 680 int sample, band, ch; 681 682 for (ch = 0; ch < c->fullband_channels; ch++) { 683 for (band = 0; band < 32; band++) { 684 if (c->prediction_mode[ch][band] == -1) { 685 for (sample = 0; sample < SUBBAND_SAMPLES; sample++) { 686 int32_t val = quantize_value(c->subband[ch][band][sample], 687 c->quant[ch][band]); 688 c->quantized[ch][band][sample] = val; 689 } 690 } 691 } 692 } 693} 694 695static void accumulate_huff_bit_consumption(int abits, int32_t *quantized, 696 uint32_t *result) 697{ 698 uint8_t sel, id = abits - 1; 699 for (sel = 0; sel < ff_dca_quant_index_group_size[id]; sel++) 700 result[sel] += ff_dca_vlc_calc_quant_bits(quantized, SUBBAND_SAMPLES, 701 sel, id); 702} 703 704static uint32_t set_best_code(uint32_t vlc_bits[DCA_CODE_BOOKS][7], 705 uint32_t clc_bits[DCA_CODE_BOOKS], 706 int32_t res[DCA_CODE_BOOKS]) 707{ 708 uint8_t i, sel; 709 uint32_t best_sel_bits[DCA_CODE_BOOKS]; 710 int32_t best_sel_id[DCA_CODE_BOOKS]; 711 uint32_t t, bits = 0; 712 713 for (i = 0; i < DCA_CODE_BOOKS; i++) { 714 715 av_assert0(!((!!vlc_bits[i][0]) ^ (!!clc_bits[i]))); 716 if (vlc_bits[i][0] == 0) { 717 /* do not transmit adjustment index for empty codebooks */ 718 res[i] = ff_dca_quant_index_group_size[i]; 719 /* and skip it */ 720 continue; 721 } 722 723 best_sel_bits[i] = vlc_bits[i][0]; 724 best_sel_id[i] = 0; 725 for (sel = 0; sel < ff_dca_quant_index_group_size[i]; sel++) { 726 if (best_sel_bits[i] > vlc_bits[i][sel] && vlc_bits[i][sel]) { 727 best_sel_bits[i] = vlc_bits[i][sel]; 728 best_sel_id[i] = sel; 729 } 730 } 731 732 /* 2 bits to transmit scale factor adjustment index */ 733 t = best_sel_bits[i] + 2; 734 if (t < clc_bits[i]) { 735 res[i] = best_sel_id[i]; 736 bits += t; 737 } else { 738 res[i] = ff_dca_quant_index_group_size[i]; 739 bits += clc_bits[i]; 740 } 741 } 742 return bits; 743} 744 745static uint32_t set_best_abits_code(int abits[DCAENC_SUBBANDS], int bands, 746 int32_t *res) 747{ 748 uint8_t i; 749 uint32_t t; 750 int32_t best_sel = 6; 751 int32_t best_bits = bands * 5; 752 753 /* Check do we have subband which cannot be encoded by Huffman tables */ 754 for (i = 0; i < bands; i++) { 755 if (abits[i] > 12 || abits[i] == 0) { 756 *res = best_sel; 757 return best_bits; 758 } 759 } 760 761 for (i = 0; i < DCA_BITALLOC_12_COUNT; i++) { 762 t = ff_dca_vlc_calc_alloc_bits(abits, bands, i); 763 if (t < best_bits) { 764 best_bits = t; 765 best_sel = i; 766 } 767 } 768 769 *res = best_sel; 770 return best_bits; 771} 772 773static int init_quantization_noise(DCAEncContext *c, int noise, int forbid_zero) 774{ 775 int ch, band, ret = USED_26ABITS | USED_1ABITS; 776 uint32_t huff_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS][7]; 777 uint32_t clc_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS]; 778 uint32_t bits_counter = 0; 779 780 c->consumed_bits = 132 + 333 * c->fullband_channels; 781 c->consumed_bits += c->consumed_adpcm_bits; 782 if (c->lfe_channel) 783 c->consumed_bits += 72; 784 785 /* attempt to guess the bit distribution based on the prevoius frame */ 786 for (ch = 0; ch < c->fullband_channels; ch++) { 787 for (band = 0; band < 32; band++) { 788 int snr_cb = c->peak_cb[ch][band] - c->band_masking_cb[band] - noise; 789 790 if (snr_cb >= 1312) { 791 c->abits[ch][band] = 26; 792 ret &= ~USED_1ABITS; 793 } else if (snr_cb >= 222) { 794 c->abits[ch][band] = 8 + mul32(snr_cb - 222, 69000000); 795 ret &= ~(USED_26ABITS | USED_1ABITS); 796 } else if (snr_cb >= 0) { 797 c->abits[ch][band] = 2 + mul32(snr_cb, 106000000); 798 ret &= ~(USED_26ABITS | USED_1ABITS); 799 } else if (forbid_zero || snr_cb >= -140) { 800 c->abits[ch][band] = 1; 801 ret &= ~USED_26ABITS; 802 } else { 803 c->abits[ch][band] = 0; 804 ret &= ~(USED_26ABITS | USED_1ABITS); 805 } 806 } 807 c->consumed_bits += set_best_abits_code(c->abits[ch], 32, 808 &c->bit_allocation_sel[ch]); 809 } 810 811 /* Recalc scale_factor each time to get bits consumption in case of Huffman coding. 812 It is suboptimal solution */ 813 /* TODO: May be cache scaled values */ 814 for (ch = 0; ch < c->fullband_channels; ch++) { 815 for (band = 0; band < 32; band++) { 816 if (c->prediction_mode[ch][band] == -1) { 817 c->scale_factor[ch][band] = calc_one_scale(c, c->peak_cb[ch][band], 818 c->abits[ch][band], 819 &c->quant[ch][band]); 820 } 821 } 822 } 823 quantize_adpcm(c); 824 quantize_pcm(c); 825 826 memset(huff_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * 7 * sizeof(uint32_t)); 827 memset(clc_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * sizeof(uint32_t)); 828 for (ch = 0; ch < c->fullband_channels; ch++) { 829 for (band = 0; band < 32; band++) { 830 if (c->abits[ch][band] && c->abits[ch][band] <= DCA_CODE_BOOKS) { 831 accumulate_huff_bit_consumption(c->abits[ch][band], 832 c->quantized[ch][band], 833 huff_bit_count_accum[ch][c->abits[ch][band] - 1]); 834 clc_bit_count_accum[ch][c->abits[ch][band] - 1] += bit_consumption[c->abits[ch][band]]; 835 } else { 836 bits_counter += bit_consumption[c->abits[ch][band]]; 837 } 838 } 839 } 840 841 for (ch = 0; ch < c->fullband_channels; ch++) { 842 bits_counter += set_best_code(huff_bit_count_accum[ch], 843 clc_bit_count_accum[ch], 844 c->quant_index_sel[ch]); 845 } 846 847 c->consumed_bits += bits_counter; 848 849 return ret; 850} 851 852static void assign_bits(DCAEncContext *c) 853{ 854 /* Find the bounds where the binary search should work */ 855 int low, high, down; 856 int used_abits = 0; 857 int forbid_zero = 1; 858restart: 859 init_quantization_noise(c, c->worst_quantization_noise, forbid_zero); 860 low = high = c->worst_quantization_noise; 861 if (c->consumed_bits > c->frame_bits) { 862 while (c->consumed_bits > c->frame_bits) { 863 if (used_abits == USED_1ABITS && forbid_zero) { 864 forbid_zero = 0; 865 goto restart; 866 } 867 low = high; 868 high += snr_fudge; 869 used_abits = init_quantization_noise(c, high, forbid_zero); 870 } 871 } else { 872 while (c->consumed_bits <= c->frame_bits) { 873 high = low; 874 if (used_abits == USED_26ABITS) 875 goto out; /* The requested bitrate is too high, pad with zeros */ 876 low -= snr_fudge; 877 used_abits = init_quantization_noise(c, low, forbid_zero); 878 } 879 } 880 881 /* Now do a binary search between low and high to see what fits */ 882 for (down = snr_fudge >> 1; down; down >>= 1) { 883 init_quantization_noise(c, high - down, forbid_zero); 884 if (c->consumed_bits <= c->frame_bits) 885 high -= down; 886 } 887 init_quantization_noise(c, high, forbid_zero); 888out: 889 c->worst_quantization_noise = high; 890 if (high > c->worst_noise_ever) 891 c->worst_noise_ever = high; 892} 893 894static void shift_history(DCAEncContext *c, const int32_t *input) 895{ 896 int k, ch; 897 898 for (k = 0; k < 512; k++) 899 for (ch = 0; ch < c->channels; ch++) { 900 const int chi = c->channel_order_tab[ch]; 901 902 c->history[ch][k] = input[k * c->channels + chi]; 903 } 904} 905 906static void fill_in_adpcm_bufer(DCAEncContext *c) 907{ 908 int ch, band; 909 int32_t step_size; 910 /* We fill in ADPCM work buffer for subbands which hasn't been ADPCM coded 911 * in current frame - we need this data if subband of next frame is 912 * ADPCM 913 */ 914 for (ch = 0; ch < c->channels; ch++) { 915 for (band = 0; band < 32; band++) { 916 int32_t *samples = c->subband[ch][band] - DCA_ADPCM_COEFFS; 917 if (c->prediction_mode[ch][band] == -1) { 918 step_size = get_step_size(c, ch, band); 919 920 ff_dca_core_dequantize(c->adpcm_history[ch][band], 921 c->quantized[ch][band]+12, step_size, 922 ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], 0, 4); 923 } else { 924 AV_COPY128U(c->adpcm_history[ch][band], c->adpcm_history[ch][band]+4); 925 } 926 /* Copy dequantized values for LPC analysis. 927 * It reduces artifacts in case of extreme quantization, 928 * example: in current frame abits is 1 and has no prediction flag, 929 * but end of this frame is sine like signal. In this case, if LPC analysis uses 930 * original values, likely LPC analysis returns good prediction gain, and sets prediction flag. 931 * But there are no proper value in decoder history, so likely result will be no good. 932 * Bitstream has "Predictor history flag switch", but this flag disables history for all subbands 933 */ 934 samples[0] = c->adpcm_history[ch][band][0] * (1 << 7); 935 samples[1] = c->adpcm_history[ch][band][1] * (1 << 7); 936 samples[2] = c->adpcm_history[ch][band][2] * (1 << 7); 937 samples[3] = c->adpcm_history[ch][band][3] * (1 << 7); 938 } 939 } 940} 941 942static void calc_lfe_scales(DCAEncContext *c) 943{ 944 if (c->lfe_channel) 945 c->lfe_scale_factor = calc_one_scale(c, c->lfe_peak_cb, 11, &c->lfe_quant); 946} 947 948static void put_frame_header(DCAEncContext *c) 949{ 950 /* SYNC */ 951 put_bits(&c->pb, 16, 0x7ffe); 952 put_bits(&c->pb, 16, 0x8001); 953 954 /* Frame type: normal */ 955 put_bits(&c->pb, 1, 1); 956 957 /* Deficit sample count: none */ 958 put_bits(&c->pb, 5, 31); 959 960 /* CRC is not present */ 961 put_bits(&c->pb, 1, 0); 962 963 /* Number of PCM sample blocks */ 964 put_bits(&c->pb, 7, SUBBAND_SAMPLES - 1); 965 966 /* Primary frame byte size */ 967 put_bits(&c->pb, 14, c->frame_size - 1); 968 969 /* Audio channel arrangement */ 970 put_bits(&c->pb, 6, c->channel_config); 971 972 /* Core audio sampling frequency */ 973 put_bits(&c->pb, 4, bitstream_sfreq[c->samplerate_index]); 974 975 /* Transmission bit rate */ 976 put_bits(&c->pb, 5, c->bitrate_index); 977 978 /* Embedded down mix: disabled */ 979 put_bits(&c->pb, 1, 0); 980 981 /* Embedded dynamic range flag: not present */ 982 put_bits(&c->pb, 1, 0); 983 984 /* Embedded time stamp flag: not present */ 985 put_bits(&c->pb, 1, 0); 986 987 /* Auxiliary data flag: not present */ 988 put_bits(&c->pb, 1, 0); 989 990 /* HDCD source: no */ 991 put_bits(&c->pb, 1, 0); 992 993 /* Extension audio ID: N/A */ 994 put_bits(&c->pb, 3, 0); 995 996 /* Extended audio data: not present */ 997 put_bits(&c->pb, 1, 0); 998 999 /* Audio sync word insertion flag: after each sub-frame */ 1000 put_bits(&c->pb, 1, 0); 1001 1002 /* Low frequency effects flag: not present or 64x subsampling */ 1003 put_bits(&c->pb, 2, c->lfe_channel ? 2 : 0); 1004 1005 /* Predictor history switch flag: on */ 1006 put_bits(&c->pb, 1, 1); 1007 1008 /* No CRC */ 1009 /* Multirate interpolator switch: non-perfect reconstruction */ 1010 put_bits(&c->pb, 1, 0); 1011 1012 /* Encoder software revision: 7 */ 1013 put_bits(&c->pb, 4, 7); 1014 1015 /* Copy history: 0 */ 1016 put_bits(&c->pb, 2, 0); 1017 1018 /* Source PCM resolution: 16 bits, not DTS ES */ 1019 put_bits(&c->pb, 3, 0); 1020 1021 /* Front sum/difference coding: no */ 1022 put_bits(&c->pb, 1, 0); 1023 1024 /* Surrounds sum/difference coding: no */ 1025 put_bits(&c->pb, 1, 0); 1026 1027 /* Dialog normalization: 0 dB */ 1028 put_bits(&c->pb, 4, 0); 1029} 1030 1031static void put_primary_audio_header(DCAEncContext *c) 1032{ 1033 int ch, i; 1034 /* Number of subframes */ 1035 put_bits(&c->pb, 4, SUBFRAMES - 1); 1036 1037 /* Number of primary audio channels */ 1038 put_bits(&c->pb, 3, c->fullband_channels - 1); 1039 1040 /* Subband activity count */ 1041 for (ch = 0; ch < c->fullband_channels; ch++) 1042 put_bits(&c->pb, 5, DCAENC_SUBBANDS - 2); 1043 1044 /* High frequency VQ start subband */ 1045 for (ch = 0; ch < c->fullband_channels; ch++) 1046 put_bits(&c->pb, 5, DCAENC_SUBBANDS - 1); 1047 1048 /* Joint intensity coding index: 0, 0 */ 1049 for (ch = 0; ch < c->fullband_channels; ch++) 1050 put_bits(&c->pb, 3, 0); 1051 1052 /* Transient mode codebook: A4, A4 (arbitrary) */ 1053 for (ch = 0; ch < c->fullband_channels; ch++) 1054 put_bits(&c->pb, 2, 0); 1055 1056 /* Scale factor code book: 7 bit linear, 7-bit sqrt table (for each channel) */ 1057 for (ch = 0; ch < c->fullband_channels; ch++) 1058 put_bits(&c->pb, 3, 6); 1059 1060 /* Bit allocation quantizer select: linear 5-bit */ 1061 for (ch = 0; ch < c->fullband_channels; ch++) 1062 put_bits(&c->pb, 3, c->bit_allocation_sel[ch]); 1063 1064 /* Quantization index codebook select */ 1065 for (i = 0; i < DCA_CODE_BOOKS; i++) 1066 for (ch = 0; ch < c->fullband_channels; ch++) 1067 put_bits(&c->pb, ff_dca_quant_index_sel_nbits[i], c->quant_index_sel[ch][i]); 1068 1069 /* Scale factor adjustment index: transmitted in case of Huffman coding */ 1070 for (i = 0; i < DCA_CODE_BOOKS; i++) 1071 for (ch = 0; ch < c->fullband_channels; ch++) 1072 if (c->quant_index_sel[ch][i] < ff_dca_quant_index_group_size[i]) 1073 put_bits(&c->pb, 2, 0); 1074 1075 /* Audio header CRC check word: not transmitted */ 1076} 1077 1078static void put_subframe_samples(DCAEncContext *c, int ss, int band, int ch) 1079{ 1080 int i, j, sum, bits, sel; 1081 if (c->abits[ch][band] <= DCA_CODE_BOOKS) { 1082 av_assert0(c->abits[ch][band] > 0); 1083 sel = c->quant_index_sel[ch][c->abits[ch][band] - 1]; 1084 // Huffman codes 1085 if (sel < ff_dca_quant_index_group_size[c->abits[ch][band] - 1]) { 1086 ff_dca_vlc_enc_quant(&c->pb, &c->quantized[ch][band][ss * 8], 8, 1087 sel, c->abits[ch][band] - 1); 1088 return; 1089 } 1090 1091 // Block codes 1092 if (c->abits[ch][band] <= 7) { 1093 for (i = 0; i < 8; i += 4) { 1094 sum = 0; 1095 for (j = 3; j >= 0; j--) { 1096 sum *= ff_dca_quant_levels[c->abits[ch][band]]; 1097 sum += c->quantized[ch][band][ss * 8 + i + j]; 1098 sum += (ff_dca_quant_levels[c->abits[ch][band]] - 1) / 2; 1099 } 1100 put_bits(&c->pb, bit_consumption[c->abits[ch][band]] / 4, sum); 1101 } 1102 return; 1103 } 1104 } 1105 1106 for (i = 0; i < 8; i++) { 1107 bits = bit_consumption[c->abits[ch][band]] / 16; 1108 put_sbits(&c->pb, bits, c->quantized[ch][band][ss * 8 + i]); 1109 } 1110} 1111 1112static void put_subframe(DCAEncContext *c, int subframe) 1113{ 1114 int i, band, ss, ch; 1115 1116 /* Subsubframes count */ 1117 put_bits(&c->pb, 2, SUBSUBFRAMES -1); 1118 1119 /* Partial subsubframe sample count: dummy */ 1120 put_bits(&c->pb, 3, 0); 1121 1122 /* Prediction mode: no ADPCM, in each channel and subband */ 1123 for (ch = 0; ch < c->fullband_channels; ch++) 1124 for (band = 0; band < DCAENC_SUBBANDS; band++) 1125 put_bits(&c->pb, 1, !(c->prediction_mode[ch][band] == -1)); 1126 1127 /* Prediction VQ address */ 1128 for (ch = 0; ch < c->fullband_channels; ch++) 1129 for (band = 0; band < DCAENC_SUBBANDS; band++) 1130 if (c->prediction_mode[ch][band] >= 0) 1131 put_bits(&c->pb, 12, c->prediction_mode[ch][band]); 1132 1133 /* Bit allocation index */ 1134 for (ch = 0; ch < c->fullband_channels; ch++) { 1135 if (c->bit_allocation_sel[ch] == 6) { 1136 for (band = 0; band < DCAENC_SUBBANDS; band++) { 1137 put_bits(&c->pb, 5, c->abits[ch][band]); 1138 } 1139 } else { 1140 ff_dca_vlc_enc_alloc(&c->pb, c->abits[ch], DCAENC_SUBBANDS, 1141 c->bit_allocation_sel[ch]); 1142 } 1143 } 1144 1145 if (SUBSUBFRAMES > 1) { 1146 /* Transition mode: none for each channel and subband */ 1147 for (ch = 0; ch < c->fullband_channels; ch++) 1148 for (band = 0; band < DCAENC_SUBBANDS; band++) 1149 if (c->abits[ch][band]) 1150 put_bits(&c->pb, 1, 0); /* codebook A4 */ 1151 } 1152 1153 /* Scale factors */ 1154 for (ch = 0; ch < c->fullband_channels; ch++) 1155 for (band = 0; band < DCAENC_SUBBANDS; band++) 1156 if (c->abits[ch][band]) 1157 put_bits(&c->pb, 7, c->scale_factor[ch][band]); 1158 1159 /* Joint subband scale factor codebook select: not transmitted */ 1160 /* Scale factors for joint subband coding: not transmitted */ 1161 /* Stereo down-mix coefficients: not transmitted */ 1162 /* Dynamic range coefficient: not transmitted */ 1163 /* Stde information CRC check word: not transmitted */ 1164 /* VQ encoded high frequency subbands: not transmitted */ 1165 1166 /* LFE data: 8 samples and scalefactor */ 1167 if (c->lfe_channel) { 1168 for (i = 0; i < DCA_LFE_SAMPLES; i++) 1169 put_bits(&c->pb, 8, quantize_value(c->downsampled_lfe[i], c->lfe_quant) & 0xff); 1170 put_bits(&c->pb, 8, c->lfe_scale_factor); 1171 } 1172 1173 /* Audio data (subsubframes) */ 1174 for (ss = 0; ss < SUBSUBFRAMES ; ss++) 1175 for (ch = 0; ch < c->fullband_channels; ch++) 1176 for (band = 0; band < DCAENC_SUBBANDS; band++) 1177 if (c->abits[ch][band]) 1178 put_subframe_samples(c, ss, band, ch); 1179 1180 /* DSYNC */ 1181 put_bits(&c->pb, 16, 0xffff); 1182} 1183 1184static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt, 1185 const AVFrame *frame, int *got_packet_ptr) 1186{ 1187 DCAEncContext *c = avctx->priv_data; 1188 const int32_t *samples; 1189 int ret, i; 1190 1191 if ((ret = ff_get_encode_buffer(avctx, avpkt, c->frame_size, 0)) < 0) 1192 return ret; 1193 1194 samples = (const int32_t *)frame->data[0]; 1195 1196 subband_transform(c, samples); 1197 if (c->lfe_channel) 1198 lfe_downsample(c, samples); 1199 1200 calc_masking(c, samples); 1201 if (c->options.adpcm_mode) 1202 adpcm_analysis(c); 1203 find_peaks(c); 1204 assign_bits(c); 1205 calc_lfe_scales(c); 1206 shift_history(c, samples); 1207 1208 init_put_bits(&c->pb, avpkt->data, avpkt->size); 1209 fill_in_adpcm_bufer(c); 1210 put_frame_header(c); 1211 put_primary_audio_header(c); 1212 for (i = 0; i < SUBFRAMES; i++) 1213 put_subframe(c, i); 1214 1215 flush_put_bits(&c->pb); 1216 memset(put_bits_ptr(&c->pb), 0, put_bytes_left(&c->pb, 0)); 1217 1218 avpkt->pts = frame->pts; 1219 avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples); 1220 *got_packet_ptr = 1; 1221 return 0; 1222} 1223 1224#define DCAENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM 1225 1226static const AVOption options[] = { 1227 { "dca_adpcm", "Use ADPCM encoding", offsetof(DCAEncContext, options.adpcm_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, DCAENC_FLAGS }, 1228 { NULL }, 1229}; 1230 1231static const AVClass dcaenc_class = { 1232 .class_name = "DCA (DTS Coherent Acoustics)", 1233 .item_name = av_default_item_name, 1234 .option = options, 1235 .version = LIBAVUTIL_VERSION_INT, 1236}; 1237 1238static const FFCodecDefault defaults[] = { 1239 { "b", "1411200" }, 1240 { NULL }, 1241}; 1242 1243const FFCodec ff_dca_encoder = { 1244 .p.name = "dca", 1245 .p.long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"), 1246 .p.type = AVMEDIA_TYPE_AUDIO, 1247 .p.id = AV_CODEC_ID_DTS, 1248 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_EXPERIMENTAL, 1249 .priv_data_size = sizeof(DCAEncContext), 1250 .init = encode_init, 1251 .close = encode_close, 1252 FF_CODEC_ENCODE_CB(encode_frame), 1253 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, 1254 .p.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32, 1255 AV_SAMPLE_FMT_NONE }, 1256 .p.supported_samplerates = sample_rates, 1257#if FF_API_OLD_CHANNEL_LAYOUT 1258 .p.channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_MONO, 1259 AV_CH_LAYOUT_STEREO, 1260 AV_CH_LAYOUT_2_2, 1261 AV_CH_LAYOUT_5POINT0, 1262 AV_CH_LAYOUT_5POINT1, 1263 0 }, 1264#endif 1265 .p.ch_layouts = (const AVChannelLayout[]){ 1266 AV_CHANNEL_LAYOUT_MONO, 1267 AV_CHANNEL_LAYOUT_STEREO, 1268 AV_CHANNEL_LAYOUT_2_2, 1269 AV_CHANNEL_LAYOUT_5POINT0, 1270 AV_CHANNEL_LAYOUT_5POINT1, 1271 { 0 }, 1272 }, 1273 .defaults = defaults, 1274 .p.priv_class = &dcaenc_class, 1275}; 1276