xref: /third_party/ffmpeg/libavcodec/dca_lbr.c (revision cabdff1a)
1/*
2 * Copyright (C) 2016 foo86
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21#define BITSTREAM_READER_LE
22
23#include "libavutil/channel_layout.h"
24#include "libavutil/mem_internal.h"
25
26#include "dcadec.h"
27#include "dcadata.h"
28#include "dcahuff.h"
29#include "dca_syncwords.h"
30#include "bytestream.h"
31#include "internal.h"
32
33#define AMP_MAX     56
34
35enum LBRFlags {
36    LBR_FLAG_24_BIT             = 0x01,
37    LBR_FLAG_LFE_PRESENT        = 0x02,
38    LBR_FLAG_BAND_LIMIT_2_3     = 0x04,
39    LBR_FLAG_BAND_LIMIT_1_2     = 0x08,
40    LBR_FLAG_BAND_LIMIT_1_3     = 0x0c,
41    LBR_FLAG_BAND_LIMIT_1_4     = 0x10,
42    LBR_FLAG_BAND_LIMIT_1_8     = 0x18,
43    LBR_FLAG_BAND_LIMIT_NONE    = 0x14,
44    LBR_FLAG_BAND_LIMIT_MASK    = 0x1c,
45    LBR_FLAG_DMIX_STEREO        = 0x20,
46    LBR_FLAG_DMIX_MULTI_CH      = 0x40
47};
48
49enum LBRChunkTypes {
50    LBR_CHUNK_NULL              = 0x00,
51    LBR_CHUNK_PAD               = 0x01,
52    LBR_CHUNK_FRAME             = 0x04,
53    LBR_CHUNK_FRAME_NO_CSUM     = 0x06,
54    LBR_CHUNK_LFE               = 0x0a,
55    LBR_CHUNK_ECS               = 0x0b,
56    LBR_CHUNK_RESERVED_1        = 0x0c,
57    LBR_CHUNK_RESERVED_2        = 0x0d,
58    LBR_CHUNK_SCF               = 0x0e,
59    LBR_CHUNK_TONAL             = 0x10,
60    LBR_CHUNK_TONAL_GRP_1       = 0x11,
61    LBR_CHUNK_TONAL_GRP_2       = 0x12,
62    LBR_CHUNK_TONAL_GRP_3       = 0x13,
63    LBR_CHUNK_TONAL_GRP_4       = 0x14,
64    LBR_CHUNK_TONAL_GRP_5       = 0x15,
65    LBR_CHUNK_TONAL_SCF         = 0x16,
66    LBR_CHUNK_TONAL_SCF_GRP_1   = 0x17,
67    LBR_CHUNK_TONAL_SCF_GRP_2   = 0x18,
68    LBR_CHUNK_TONAL_SCF_GRP_3   = 0x19,
69    LBR_CHUNK_TONAL_SCF_GRP_4   = 0x1a,
70    LBR_CHUNK_TONAL_SCF_GRP_5   = 0x1b,
71    LBR_CHUNK_RES_GRID_LR       = 0x30,
72    LBR_CHUNK_RES_GRID_LR_LAST  = 0x3f,
73    LBR_CHUNK_RES_GRID_HR       = 0x40,
74    LBR_CHUNK_RES_GRID_HR_LAST  = 0x4f,
75    LBR_CHUNK_RES_TS_1          = 0x50,
76    LBR_CHUNK_RES_TS_1_LAST     = 0x5f,
77    LBR_CHUNK_RES_TS_2          = 0x60,
78    LBR_CHUNK_RES_TS_2_LAST     = 0x6f,
79    LBR_CHUNK_EXTENSION         = 0x7f
80};
81
82typedef struct LBRChunk {
83    int id, len;
84    const uint8_t *data;
85} LBRChunk;
86
87static const int8_t channel_reorder_nolfe[7][5] = {
88    { 0, -1, -1, -1, -1 },  // C
89    { 0,  1, -1, -1, -1 },  // LR
90    { 0,  1,  2, -1, -1 },  // LR C
91    { 0,  1, -1, -1, -1 },  // LsRs
92    { 1,  2,  0, -1, -1 },  // LsRs C
93    { 0,  1,  2,  3, -1 },  // LR LsRs
94    { 0,  1,  3,  4,  2 },  // LR LsRs C
95};
96
97static const int8_t channel_reorder_lfe[7][5] = {
98    { 0, -1, -1, -1, -1 },  // C
99    { 0,  1, -1, -1, -1 },  // LR
100    { 0,  1,  2, -1, -1 },  // LR C
101    { 1,  2, -1, -1, -1 },  // LsRs
102    { 2,  3,  0, -1, -1 },  // LsRs C
103    { 0,  1,  3,  4, -1 },  // LR LsRs
104    { 0,  1,  4,  5,  2 },  // LR LsRs C
105};
106
107static const uint8_t lfe_index[7] = {
108    1, 2, 3, 0, 1, 2, 3
109};
110
111static const uint16_t channel_layouts[7] = {
112    AV_CH_LAYOUT_MONO,
113    AV_CH_LAYOUT_STEREO,
114    AV_CH_LAYOUT_SURROUND,
115    AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT,
116    AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT,
117    AV_CH_LAYOUT_2_2,
118    AV_CH_LAYOUT_5POINT0
119};
120
121static float    cos_tab[256];
122static float    lpc_tab[16];
123
124av_cold void ff_dca_lbr_init_tables(void)
125{
126    int i;
127
128    for (i = 0; i < 256; i++)
129        cos_tab[i] = cos(M_PI * i / 128);
130
131    for (i = 0; i < 16; i++)
132        lpc_tab[i] = sin((i - 8) * (M_PI / ((i < 8) ? 17 : 15)));
133}
134
135static int parse_lfe_24(DCALbrDecoder *s)
136{
137    int step_max = FF_ARRAY_ELEMS(ff_dca_lfe_step_size_24) - 1;
138    int i, ps, si, code, step_i;
139    float step, value, delta;
140
141    ps = get_bits(&s->gb, 24);
142    si = ps >> 23;
143
144    value = (((ps & 0x7fffff) ^ -si) + si) * (1.0f / 0x7fffff);
145
146    step_i = get_bits(&s->gb, 8);
147    if (step_i > step_max) {
148        av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE step size index\n");
149        return AVERROR_INVALIDDATA;
150    }
151
152    step = ff_dca_lfe_step_size_24[step_i];
153
154    for (i = 0; i < 64; i++) {
155        code = get_bits(&s->gb, 6);
156
157        delta = step * 0.03125f;
158        if (code & 16)
159            delta += step;
160        if (code & 8)
161            delta += step * 0.5f;
162        if (code & 4)
163            delta += step * 0.25f;
164        if (code & 2)
165            delta += step * 0.125f;
166        if (code & 1)
167            delta += step * 0.0625f;
168
169        if (code & 32) {
170            value -= delta;
171            if (value < -3.0f)
172                value = -3.0f;
173        } else {
174            value += delta;
175            if (value > 3.0f)
176                value = 3.0f;
177        }
178
179        step_i += ff_dca_lfe_delta_index_24[code & 31];
180        step_i = av_clip(step_i, 0, step_max);
181
182        step = ff_dca_lfe_step_size_24[step_i];
183        s->lfe_data[i] = value * s->lfe_scale;
184    }
185
186    return 0;
187}
188
189static int parse_lfe_16(DCALbrDecoder *s)
190{
191    int step_max = FF_ARRAY_ELEMS(ff_dca_lfe_step_size_16) - 1;
192    int i, ps, si, code, step_i;
193    float step, value, delta;
194
195    ps = get_bits(&s->gb, 16);
196    si = ps >> 15;
197
198    value = (((ps & 0x7fff) ^ -si) + si) * (1.0f / 0x7fff);
199
200    step_i = get_bits(&s->gb, 8);
201    if (step_i > step_max) {
202        av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE step size index\n");
203        return AVERROR_INVALIDDATA;
204    }
205
206    step = ff_dca_lfe_step_size_16[step_i];
207
208    for (i = 0; i < 64; i++) {
209        code = get_bits(&s->gb, 4);
210
211        delta = step * 0.125f;
212        if (code & 4)
213            delta += step;
214        if (code & 2)
215            delta += step * 0.5f;
216        if (code & 1)
217            delta += step * 0.25f;
218
219        if (code & 8) {
220            value -= delta;
221            if (value < -3.0f)
222                value = -3.0f;
223        } else {
224            value += delta;
225            if (value > 3.0f)
226                value = 3.0f;
227        }
228
229        step_i += ff_dca_lfe_delta_index_16[code & 7];
230        step_i = av_clip(step_i, 0, step_max);
231
232        step = ff_dca_lfe_step_size_16[step_i];
233        s->lfe_data[i] = value * s->lfe_scale;
234    }
235
236    return 0;
237}
238
239static int parse_lfe_chunk(DCALbrDecoder *s, LBRChunk *chunk)
240{
241    int ret;
242
243    if (!(s->flags & LBR_FLAG_LFE_PRESENT))
244        return 0;
245
246    if (!chunk->len)
247        return 0;
248
249    ret = init_get_bits8(&s->gb, chunk->data, chunk->len);
250    if (ret < 0)
251        return ret;
252
253    // Determine bit depth from chunk size
254    if (chunk->len >= 52)
255        return parse_lfe_24(s);
256    if (chunk->len >= 35)
257        return parse_lfe_16(s);
258
259    av_log(s->avctx, AV_LOG_ERROR, "LFE chunk too short\n");
260    return AVERROR_INVALIDDATA;
261}
262
263static inline int parse_vlc(GetBitContext *s, VLC *vlc, int max_depth)
264{
265    int v = get_vlc2(s, vlc->table, vlc->bits, max_depth);
266    if (v > 0)
267        return v - 1;
268    // Rare value
269    return get_bits(s, get_bits(s, 3) + 1);
270}
271
272static int parse_tonal(DCALbrDecoder *s, int group)
273{
274    unsigned int amp[DCA_LBR_CHANNELS_TOTAL];
275    unsigned int phs[DCA_LBR_CHANNELS_TOTAL];
276    unsigned int diff, main_amp, shift;
277    int sf, sf_idx, ch, main_ch, freq;
278    int ch_nbits = av_ceil_log2(s->nchannels_total);
279
280    // Parse subframes for this group
281    for (sf = 0; sf < 1 << group; sf += diff ? 8 : 1) {
282        sf_idx = ((s->framenum << group) + sf) & 31;
283        s->tonal_bounds[group][sf_idx][0] = s->ntones;
284
285        // Parse tones for this subframe
286        for (freq = 1;; freq++) {
287            if (get_bits_left(&s->gb) < 1) {
288                av_log(s->avctx, AV_LOG_ERROR, "Tonal group chunk too short\n");
289                return AVERROR_INVALIDDATA;
290            }
291
292            diff = parse_vlc(&s->gb, &ff_dca_vlc_tnl_grp[group], 2);
293            if (diff >= FF_ARRAY_ELEMS(ff_dca_fst_amp)) {
294                av_log(s->avctx, AV_LOG_ERROR, "Invalid tonal frequency diff\n");
295                return AVERROR_INVALIDDATA;
296            }
297
298            diff = get_bitsz(&s->gb, diff >> 2) + ff_dca_fst_amp[diff];
299            if (diff <= 1)
300                break;  // End of subframe
301
302            freq += diff - 2;
303            if (freq >> (5 - group) > s->nsubbands * 4 - 6) {
304                av_log(s->avctx, AV_LOG_ERROR, "Invalid spectral line offset\n");
305                return AVERROR_INVALIDDATA;
306            }
307
308            // Main channel
309            main_ch = get_bitsz(&s->gb, ch_nbits);
310            main_amp = parse_vlc(&s->gb, &ff_dca_vlc_tnl_scf, 2)
311                + s->tonal_scf[ff_dca_freq_to_sb[freq >> (7 - group)]]
312                + s->limited_range - 2;
313            amp[main_ch] = main_amp < AMP_MAX ? main_amp : 0;
314            phs[main_ch] = get_bits(&s->gb, 3);
315
316            // Secondary channels
317            for (ch = 0; ch < s->nchannels_total; ch++) {
318                if (ch == main_ch)
319                    continue;
320                if (get_bits1(&s->gb)) {
321                    amp[ch] = amp[main_ch] - parse_vlc(&s->gb, &ff_dca_vlc_damp, 1);
322                    phs[ch] = phs[main_ch] - parse_vlc(&s->gb, &ff_dca_vlc_dph,  1);
323                } else {
324                    amp[ch] = 0;
325                    phs[ch] = 0;
326                }
327            }
328
329            if (amp[main_ch]) {
330                // Allocate new tone
331                DCALbrTone *t = &s->tones[s->ntones];
332                s->ntones = (s->ntones + 1) & (DCA_LBR_TONES - 1);
333
334                t->x_freq = freq >> (5 - group);
335                t->f_delt = (freq & ((1 << (5 - group)) - 1)) << group;
336                t->ph_rot = 256 - (t->x_freq & 1) * 128 - t->f_delt * 4;
337
338                shift = ff_dca_ph0_shift[(t->x_freq & 3) * 2 + (freq & 1)]
339                    - ((t->ph_rot << (5 - group)) - t->ph_rot);
340
341                for (ch = 0; ch < s->nchannels; ch++) {
342                    t->amp[ch] = amp[ch] < AMP_MAX ? amp[ch] : 0;
343                    t->phs[ch] = 128 - phs[ch] * 32 + shift;
344                }
345            }
346        }
347
348        s->tonal_bounds[group][sf_idx][1] = s->ntones;
349    }
350
351    return 0;
352}
353
354static int parse_tonal_chunk(DCALbrDecoder *s, LBRChunk *chunk)
355{
356    int sb, group, ret;
357
358    if (!chunk->len)
359        return 0;
360
361    ret = init_get_bits8(&s->gb, chunk->data, chunk->len);
362
363    if (ret < 0)
364        return ret;
365
366    // Scale factors
367    if (chunk->id == LBR_CHUNK_SCF || chunk->id == LBR_CHUNK_TONAL_SCF) {
368        if (get_bits_left(&s->gb) < 36) {
369            av_log(s->avctx, AV_LOG_ERROR, "Tonal scale factor chunk too short\n");
370            return AVERROR_INVALIDDATA;
371        }
372        for (sb = 0; sb < 6; sb++)
373            s->tonal_scf[sb] = get_bits(&s->gb, 6);
374    }
375
376    // Tonal groups
377    if (chunk->id == LBR_CHUNK_TONAL || chunk->id == LBR_CHUNK_TONAL_SCF)
378        for (group = 0; group < 5; group++) {
379            ret = parse_tonal(s, group);
380            if (ret < 0)
381                return ret;
382        }
383
384    return 0;
385}
386
387static int parse_tonal_group(DCALbrDecoder *s, LBRChunk *chunk)
388{
389    int ret;
390
391    if (!chunk->len)
392        return 0;
393
394    ret = init_get_bits8(&s->gb, chunk->data, chunk->len);
395    if (ret < 0)
396        return ret;
397
398    return parse_tonal(s, chunk->id);
399}
400
401/**
402 * Check point to ensure that enough bits are left. Aborts decoding
403 * by skipping to the end of chunk otherwise.
404 */
405static int ensure_bits(GetBitContext *s, int n)
406{
407    int left = get_bits_left(s);
408    if (left < 0)
409        return AVERROR_INVALIDDATA;
410    if (left < n) {
411        skip_bits_long(s, left);
412        return 1;
413    }
414    return 0;
415}
416
417static int parse_scale_factors(DCALbrDecoder *s, uint8_t *scf)
418{
419    int i, sf, prev, next, dist;
420
421    // Truncated scale factors remain zero
422    if (ensure_bits(&s->gb, 20))
423        return 0;
424
425    // Initial scale factor
426    prev = parse_vlc(&s->gb, &ff_dca_vlc_fst_rsd_amp, 2);
427
428    for (sf = 0; sf < 7; sf += dist) {
429        scf[sf] = prev; // Store previous value
430
431        if (ensure_bits(&s->gb, 20))
432            return 0;
433
434        // Interpolation distance
435        dist = parse_vlc(&s->gb, &ff_dca_vlc_rsd_apprx, 1) + 1;
436        if (dist > 7 - sf) {
437            av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor distance\n");
438            return AVERROR_INVALIDDATA;
439        }
440
441        if (ensure_bits(&s->gb, 20))
442            return 0;
443
444        // Final interpolation point
445        next = parse_vlc(&s->gb, &ff_dca_vlc_rsd_amp, 2);
446
447        if (next & 1)
448            next = prev + ((next + 1) >> 1);
449        else
450            next = prev - ( next      >> 1);
451
452        // Interpolate
453        switch (dist) {
454        case 2:
455            if (next > prev)
456                scf[sf + 1] = prev + ((next - prev) >> 1);
457            else
458                scf[sf + 1] = prev - ((prev - next) >> 1);
459            break;
460
461        case 4:
462            if (next > prev) {
463                scf[sf + 1] = prev + ( (next - prev)      >> 2);
464                scf[sf + 2] = prev + ( (next - prev)      >> 1);
465                scf[sf + 3] = prev + (((next - prev) * 3) >> 2);
466            } else {
467                scf[sf + 1] = prev - ( (prev - next)      >> 2);
468                scf[sf + 2] = prev - ( (prev - next)      >> 1);
469                scf[sf + 3] = prev - (((prev - next) * 3) >> 2);
470            }
471            break;
472
473        default:
474            for (i = 1; i < dist; i++)
475                scf[sf + i] = prev + (next - prev) * i / dist;
476            break;
477        }
478
479        prev = next;
480    }
481
482    scf[sf] = next; // Store final value
483
484    return 0;
485}
486
487static int parse_st_code(GetBitContext *s, int min_v)
488{
489    unsigned int v = parse_vlc(s, &ff_dca_vlc_st_grid, 2) + min_v;
490
491    if (v & 1)
492        v = 16 + (v >> 1);
493    else
494        v = 16 - (v >> 1);
495
496    if (v >= FF_ARRAY_ELEMS(ff_dca_st_coeff))
497        v = 16;
498    return v;
499}
500
501static int parse_grid_1_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
502{
503    int ch, sb, sf, nsubbands, ret;
504
505    if (!chunk->len)
506        return 0;
507
508    ret = init_get_bits8(&s->gb, chunk->data, chunk->len);
509    if (ret < 0)
510        return ret;
511
512    // Scale factors
513    nsubbands = ff_dca_scf_to_grid_1[s->nsubbands - 1] + 1;
514    for (sb = 2; sb < nsubbands; sb++) {
515        ret = parse_scale_factors(s, s->grid_1_scf[ch1][sb]);
516        if (ret < 0)
517            return ret;
518        if (ch1 != ch2 && ff_dca_grid_1_to_scf[sb] < s->min_mono_subband) {
519            ret = parse_scale_factors(s, s->grid_1_scf[ch2][sb]);
520            if (ret < 0)
521                return ret;
522        }
523    }
524
525    if (get_bits_left(&s->gb) < 1)
526        return 0;   // Should not happen, but a sample exists that proves otherwise
527
528    // Average values for third grid
529    for (sb = 0; sb < s->nsubbands - 4; sb++) {
530        s->grid_3_avg[ch1][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16;
531        if (ch1 != ch2) {
532            if (sb + 4 < s->min_mono_subband)
533                s->grid_3_avg[ch2][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16;
534            else
535                s->grid_3_avg[ch2][sb] = s->grid_3_avg[ch1][sb];
536        }
537    }
538
539    if (get_bits_left(&s->gb) < 0) {
540        av_log(s->avctx, AV_LOG_ERROR, "First grid chunk too short\n");
541        return AVERROR_INVALIDDATA;
542    }
543
544    // Stereo image for partial mono mode
545    if (ch1 != ch2) {
546        int min_v[2];
547
548        if (ensure_bits(&s->gb, 8))
549            return 0;
550
551        min_v[0] = get_bits(&s->gb, 4);
552        min_v[1] = get_bits(&s->gb, 4);
553
554        nsubbands = (s->nsubbands - s->min_mono_subband + 3) / 4;
555        for (sb = 0; sb < nsubbands; sb++)
556            for (ch = ch1; ch <= ch2; ch++)
557                for (sf = 1; sf <= 4; sf++)
558                    s->part_stereo[ch][sb][sf] = parse_st_code(&s->gb, min_v[ch - ch1]);
559
560        if (get_bits_left(&s->gb) >= 0)
561            s->part_stereo_pres |= 1 << ch1;
562    }
563
564    // Low resolution spatial information is not decoded
565
566    return 0;
567}
568
569static int parse_grid_1_sec_ch(DCALbrDecoder *s, int ch2)
570{
571    int sb, nsubbands, ret;
572
573    // Scale factors
574    nsubbands = ff_dca_scf_to_grid_1[s->nsubbands - 1] + 1;
575    for (sb = 2; sb < nsubbands; sb++) {
576        if (ff_dca_grid_1_to_scf[sb] >= s->min_mono_subband) {
577            ret = parse_scale_factors(s, s->grid_1_scf[ch2][sb]);
578            if (ret < 0)
579                return ret;
580        }
581    }
582
583    // Average values for third grid
584    for (sb = 0; sb < s->nsubbands - 4; sb++) {
585        if (sb + 4 >= s->min_mono_subband) {
586            if (ensure_bits(&s->gb, 20))
587                return 0;
588            s->grid_3_avg[ch2][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, 2) - 16;
589        }
590    }
591
592    return 0;
593}
594
595static void parse_grid_3(DCALbrDecoder *s, int ch1, int ch2, int sb, int flag)
596{
597    int i, ch;
598
599    for (ch = ch1; ch <= ch2; ch++) {
600        if ((ch != ch1 && sb + 4 >= s->min_mono_subband) != flag)
601            continue;
602
603        if (s->grid_3_pres[ch] & (1U << sb))
604            continue;   // Already parsed
605
606        for (i = 0; i < 8; i++) {
607            if (ensure_bits(&s->gb, 20))
608                return;
609            s->grid_3_scf[ch][sb][i] = parse_vlc(&s->gb, &ff_dca_vlc_grid_3, 2) - 16;
610        }
611
612        // Flag scale factors for this subband parsed
613        s->grid_3_pres[ch] |= 1U << sb;
614    }
615}
616
617static float lbr_rand(DCALbrDecoder *s, int sb)
618{
619    s->lbr_rand = 1103515245U * s->lbr_rand + 12345U;
620    return s->lbr_rand * s->sb_scf[sb];
621}
622
623/**
624 * Parse time samples for one subband, filling truncated samples with randomness
625 */
626static void parse_ch(DCALbrDecoder *s, int ch, int sb, int quant_level, int flag)
627{
628    float *samples = s->time_samples[ch][sb];
629    int i, j, code, nblocks, coding_method;
630
631    if (ensure_bits(&s->gb, 20))
632        return; // Too few bits left
633
634    coding_method = get_bits1(&s->gb);
635
636    switch (quant_level) {
637    case 1:
638        nblocks = FFMIN(get_bits_left(&s->gb) / 8, DCA_LBR_TIME_SAMPLES / 8);
639        for (i = 0; i < nblocks; i++, samples += 8) {
640            code = get_bits(&s->gb, 8);
641            for (j = 0; j < 8; j++)
642                samples[j] = ff_dca_rsd_level_2a[(code >> j) & 1];
643        }
644        i = nblocks * 8;
645        break;
646
647    case 2:
648        if (coding_method) {
649            for (i = 0; i < DCA_LBR_TIME_SAMPLES && get_bits_left(&s->gb) >= 2; i++) {
650                if (get_bits1(&s->gb))
651                    samples[i] = ff_dca_rsd_level_2b[get_bits1(&s->gb)];
652                else
653                    samples[i] = 0;
654            }
655        } else {
656            nblocks = FFMIN(get_bits_left(&s->gb) / 8, (DCA_LBR_TIME_SAMPLES + 4) / 5);
657            for (i = 0; i < nblocks; i++, samples += 5) {
658                code = ff_dca_rsd_pack_5_in_8[get_bits(&s->gb, 8)];
659                for (j = 0; j < 5; j++)
660                    samples[j] = ff_dca_rsd_level_3[(code >> j * 2) & 3];
661            }
662            i = nblocks * 5;
663        }
664        break;
665
666    case 3:
667        nblocks = FFMIN(get_bits_left(&s->gb) / 7, (DCA_LBR_TIME_SAMPLES + 2) / 3);
668        for (i = 0; i < nblocks; i++, samples += 3) {
669            code = get_bits(&s->gb, 7);
670            for (j = 0; j < 3; j++)
671                samples[j] = ff_dca_rsd_level_5[ff_dca_rsd_pack_3_in_7[code][j]];
672        }
673        i = nblocks * 3;
674        break;
675
676    case 4:
677        for (i = 0; i < DCA_LBR_TIME_SAMPLES && get_bits_left(&s->gb) >= 6; i++)
678            samples[i] = ff_dca_rsd_level_8[get_vlc2(&s->gb, ff_dca_vlc_rsd.table, 6, 1)];
679        break;
680
681    case 5:
682        nblocks = FFMIN(get_bits_left(&s->gb) / 4, DCA_LBR_TIME_SAMPLES);
683        for (i = 0; i < nblocks; i++)
684            samples[i] = ff_dca_rsd_level_16[get_bits(&s->gb, 4)];
685        break;
686
687    default:
688        av_assert0(0);
689    }
690
691    if (flag && get_bits_left(&s->gb) < 20)
692        return; // Skip incomplete mono subband
693
694    for (; i < DCA_LBR_TIME_SAMPLES; i++)
695        s->time_samples[ch][sb][i] = lbr_rand(s, sb);
696
697    s->ch_pres[ch] |= 1U << sb;
698}
699
700static int parse_ts(DCALbrDecoder *s, int ch1, int ch2,
701                    int start_sb, int end_sb, int flag)
702{
703    int sb, sb_g3, sb_reorder, quant_level;
704
705    for (sb = start_sb; sb < end_sb; sb++) {
706        // Subband number before reordering
707        if (sb < 6) {
708            sb_reorder = sb;
709        } else if (flag && sb < s->max_mono_subband) {
710            sb_reorder = s->sb_indices[sb];
711        } else {
712            if (ensure_bits(&s->gb, 28))
713                break;
714            sb_reorder = get_bits(&s->gb, s->limited_range + 3);
715            if (sb_reorder < 6)
716                sb_reorder = 6;
717            s->sb_indices[sb] = sb_reorder;
718        }
719        if (sb_reorder >= s->nsubbands)
720            return AVERROR_INVALIDDATA;
721
722        // Third grid scale factors
723        if (sb == 12) {
724            for (sb_g3 = 0; sb_g3 < s->g3_avg_only_start_sb - 4; sb_g3++)
725                parse_grid_3(s, ch1, ch2, sb_g3, flag);
726        } else if (sb < 12 && sb_reorder >= 4) {
727            parse_grid_3(s, ch1, ch2, sb_reorder - 4, flag);
728        }
729
730        // Secondary channel flags
731        if (ch1 != ch2) {
732            if (ensure_bits(&s->gb, 20))
733                break;
734            if (!flag || sb_reorder >= s->max_mono_subband)
735                s->sec_ch_sbms[ch1 / 2][sb_reorder] = get_bits(&s->gb, 8);
736            if (flag && sb_reorder >= s->min_mono_subband)
737                s->sec_ch_lrms[ch1 / 2][sb_reorder] = get_bits(&s->gb, 8);
738        }
739
740        quant_level = s->quant_levels[ch1 / 2][sb];
741        if (!quant_level)
742            return AVERROR_INVALIDDATA;
743
744        // Time samples for one or both channels
745        if (sb < s->max_mono_subband && sb_reorder >= s->min_mono_subband) {
746            if (!flag)
747                parse_ch(s, ch1, sb_reorder, quant_level, 0);
748            else if (ch1 != ch2)
749                parse_ch(s, ch2, sb_reorder, quant_level, 1);
750        } else {
751            parse_ch(s, ch1, sb_reorder, quant_level, 0);
752            if (ch1 != ch2)
753                parse_ch(s, ch2, sb_reorder, quant_level, 0);
754        }
755    }
756
757    return 0;
758}
759
760/**
761 * Convert from reflection coefficients to direct form coefficients
762 */
763static void convert_lpc(float *coeff, const int *codes)
764{
765    int i, j;
766
767    for (i = 0; i < 8; i++) {
768        float rc = lpc_tab[codes[i]];
769        for (j = 0; j < (i + 1) / 2; j++) {
770            float tmp1 = coeff[    j    ];
771            float tmp2 = coeff[i - j - 1];
772            coeff[    j    ] = tmp1 + rc * tmp2;
773            coeff[i - j - 1] = tmp2 + rc * tmp1;
774        }
775        coeff[i] = rc;
776    }
777}
778
779static int parse_lpc(DCALbrDecoder *s, int ch1, int ch2, int start_sb, int end_sb)
780{
781    int f = s->framenum & 1;
782    int i, sb, ch, codes[16];
783
784    // First two subbands have two sets of coefficients, third subband has one
785    for (sb = start_sb; sb < end_sb; sb++) {
786        int ncodes = 8 * (1 + (sb < 2));
787        for (ch = ch1; ch <= ch2; ch++) {
788            if (ensure_bits(&s->gb, 4 * ncodes))
789                return 0;
790            for (i = 0; i < ncodes; i++)
791                codes[i] = get_bits(&s->gb, 4);
792            for (i = 0; i < ncodes / 8; i++)
793                convert_lpc(s->lpc_coeff[f][ch][sb][i], &codes[i * 8]);
794        }
795    }
796
797    return 0;
798}
799
800static int parse_high_res_grid(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
801{
802    int quant_levels[DCA_LBR_SUBBANDS];
803    int sb, ch, ol, st, max_sb, profile, ret;
804
805    if (!chunk->len)
806        return 0;
807
808    ret = init_get_bits8(&s->gb, chunk->data, chunk->len);
809    if (ret < 0)
810        return ret;
811
812    // Quantizer profile
813    profile = get_bits(&s->gb, 8);
814    // Overall level
815    ol = (profile >> 3) & 7;
816    // Steepness
817    st = profile >> 6;
818    // Max energy subband
819    max_sb = profile & 7;
820
821    // Calculate quantization levels
822    for (sb = 0; sb < s->nsubbands; sb++) {
823        int f = sb * s->limited_rate / s->nsubbands;
824        int a = 18000 / (12 * f / 1000 + 100 + 40 * st) + 20 * ol;
825        if (a <= 95)
826            quant_levels[sb] = 1;
827        else if (a <= 140)
828            quant_levels[sb] = 2;
829        else if (a <= 180)
830            quant_levels[sb] = 3;
831        else if (a <= 230)
832            quant_levels[sb] = 4;
833        else
834            quant_levels[sb] = 5;
835    }
836
837    // Reorder quantization levels for lower subbands
838    for (sb = 0; sb < 8; sb++)
839        s->quant_levels[ch1 / 2][sb] = quant_levels[ff_dca_sb_reorder[max_sb][sb]];
840    for (; sb < s->nsubbands; sb++)
841        s->quant_levels[ch1 / 2][sb] = quant_levels[sb];
842
843    // LPC for the first two subbands
844    ret = parse_lpc(s, ch1, ch2, 0, 2);
845    if (ret < 0)
846        return ret;
847
848    // Time-samples for the first two subbands of main channel
849    ret = parse_ts(s, ch1, ch2, 0, 2, 0);
850    if (ret < 0)
851        return ret;
852
853    // First two bands of the first grid
854    for (sb = 0; sb < 2; sb++)
855        for (ch = ch1; ch <= ch2; ch++)
856            if ((ret = parse_scale_factors(s, s->grid_1_scf[ch][sb])) < 0)
857                return ret;
858
859    return 0;
860}
861
862static int parse_grid_2(DCALbrDecoder *s, int ch1, int ch2,
863                        int start_sb, int end_sb, int flag)
864{
865    int i, j, sb, ch, nsubbands;
866
867    nsubbands = ff_dca_scf_to_grid_2[s->nsubbands - 1] + 1;
868    if (end_sb > nsubbands)
869        end_sb = nsubbands;
870
871    for (sb = start_sb; sb < end_sb; sb++) {
872        for (ch = ch1; ch <= ch2; ch++) {
873            uint8_t *g2_scf = s->grid_2_scf[ch][sb];
874
875            if ((ch != ch1 && ff_dca_grid_2_to_scf[sb] >= s->min_mono_subband) != flag) {
876                if (!flag)
877                    memcpy(g2_scf, s->grid_2_scf[ch1][sb], 64);
878                continue;
879            }
880
881            // Scale factors in groups of 8
882            for (i = 0; i < 8; i++, g2_scf += 8) {
883                if (get_bits_left(&s->gb) < 1) {
884                    memset(g2_scf, 0, 64 - i * 8);
885                    break;
886                }
887                // Bit indicating if whole group has zero values
888                if (get_bits1(&s->gb)) {
889                    for (j = 0; j < 8; j++) {
890                        if (ensure_bits(&s->gb, 20))
891                            break;
892                        g2_scf[j] = parse_vlc(&s->gb, &ff_dca_vlc_grid_2, 2);
893                    }
894                } else {
895                    memset(g2_scf, 0, 8);
896                }
897            }
898        }
899    }
900
901    return 0;
902}
903
904static int parse_ts1_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
905{
906    int ret;
907    if (!chunk->len)
908        return 0;
909    if ((ret = init_get_bits8(&s->gb, chunk->data, chunk->len)) < 0)
910        return ret;
911    if ((ret = parse_lpc(s, ch1, ch2, 2, 3)) < 0)
912        return ret;
913    if ((ret = parse_ts(s, ch1, ch2, 2, 4, 0)) < 0)
914        return ret;
915    if ((ret = parse_grid_2(s, ch1, ch2, 0, 1, 0)) < 0)
916        return ret;
917    if ((ret = parse_ts(s, ch1, ch2, 4, 6, 0)) < 0)
918        return ret;
919    return 0;
920}
921
922static int parse_ts2_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2)
923{
924    int ret;
925
926    if (!chunk->len)
927        return 0;
928    if ((ret = init_get_bits8(&s->gb, chunk->data, chunk->len)) < 0)
929        return ret;
930    if ((ret = parse_grid_2(s, ch1, ch2, 1, 3, 0)) < 0)
931        return ret;
932    if ((ret = parse_ts(s, ch1, ch2, 6, s->max_mono_subband, 0)) < 0)
933        return ret;
934    if (ch1 != ch2) {
935        if ((ret = parse_grid_1_sec_ch(s, ch2)) < 0)
936            return ret;
937        if ((ret = parse_grid_2(s, ch1, ch2, 0, 3, 1)) < 0)
938            return ret;
939    }
940    if ((ret = parse_ts(s, ch1, ch2, s->min_mono_subband, s->nsubbands, 1)) < 0)
941        return ret;
942    return 0;
943}
944
945static int init_sample_rate(DCALbrDecoder *s)
946{
947    double scale = (-1.0 / (1 << 17)) * sqrt(1 << (2 - s->limited_range));
948    int i, br_per_ch = s->bit_rate_scaled / s->nchannels_total;
949    int ret;
950
951    ff_mdct_end(&s->imdct);
952
953    ret = ff_mdct_init(&s->imdct, s->freq_range + 6, 1, scale);
954    if (ret < 0)
955        return ret;
956
957    for (i = 0; i < 32 << s->freq_range; i++)
958        s->window[i] = ff_dca_long_window[i << (2 - s->freq_range)];
959
960    if (br_per_ch < 14000)
961        scale = 0.85;
962    else if (br_per_ch < 32000)
963        scale = (br_per_ch - 14000) * (1.0 / 120000) + 0.85;
964    else
965        scale = 1.0;
966
967    scale *= 1.0 / INT_MAX;
968
969    for (i = 0; i < s->nsubbands; i++) {
970        if (i < 2)
971            s->sb_scf[i] = 0;   // The first two subbands are always zero
972        else if (i < 5)
973            s->sb_scf[i] = (i - 1) * 0.25 * 0.785 * scale;
974        else
975            s->sb_scf[i] = 0.785 * scale;
976    }
977
978    s->lfe_scale = (16 << s->freq_range) * 0.0000078265894;
979
980    return 0;
981}
982
983static int alloc_sample_buffer(DCALbrDecoder *s)
984{
985    // Reserve space for history and padding
986    int nchsamples = DCA_LBR_TIME_SAMPLES + DCA_LBR_TIME_HISTORY * 2;
987    int nsamples = nchsamples * s->nchannels * s->nsubbands;
988    int ch, sb;
989    float *ptr;
990
991    // Reallocate time sample buffer
992    av_fast_mallocz(&s->ts_buffer, &s->ts_size, nsamples * sizeof(float));
993    if (!s->ts_buffer)
994        return AVERROR(ENOMEM);
995
996    ptr = s->ts_buffer + DCA_LBR_TIME_HISTORY;
997    for (ch = 0; ch < s->nchannels; ch++) {
998        for (sb = 0; sb < s->nsubbands; sb++) {
999            s->time_samples[ch][sb] = ptr;
1000            ptr += nchsamples;
1001        }
1002    }
1003
1004    return 0;
1005}
1006
1007static int parse_decoder_init(DCALbrDecoder *s, GetByteContext *gb)
1008{
1009    int old_rate = s->sample_rate;
1010    int old_band_limit = s->band_limit;
1011    int old_nchannels = s->nchannels;
1012    int version, bit_rate_hi;
1013    unsigned int sr_code;
1014
1015    // Sample rate of LBR audio
1016    sr_code = bytestream2_get_byte(gb);
1017    if (sr_code >= FF_ARRAY_ELEMS(ff_dca_sampling_freqs)) {
1018        av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR sample rate\n");
1019        return AVERROR_INVALIDDATA;
1020    }
1021    s->sample_rate = ff_dca_sampling_freqs[sr_code];
1022    if (s->sample_rate > 48000) {
1023        avpriv_report_missing_feature(s->avctx, "%d Hz LBR sample rate", s->sample_rate);
1024        return AVERROR_PATCHWELCOME;
1025    }
1026
1027    // LBR speaker mask
1028    s->ch_mask = bytestream2_get_le16(gb);
1029    if (!(s->ch_mask & 0x7)) {
1030        avpriv_report_missing_feature(s->avctx, "LBR channel mask %#x", s->ch_mask);
1031        return AVERROR_PATCHWELCOME;
1032    }
1033    if ((s->ch_mask & 0xfff0) && !(s->warned & 1)) {
1034        avpriv_report_missing_feature(s->avctx, "LBR channel mask %#x", s->ch_mask);
1035        s->warned |= 1;
1036    }
1037
1038    // LBR bitstream version
1039    version = bytestream2_get_le16(gb);
1040    if ((version & 0xff00) != 0x0800) {
1041        avpriv_report_missing_feature(s->avctx, "LBR stream version %#x", version);
1042        return AVERROR_PATCHWELCOME;
1043    }
1044
1045    // Flags for LBR decoder initialization
1046    s->flags = bytestream2_get_byte(gb);
1047    if (s->flags & LBR_FLAG_DMIX_MULTI_CH) {
1048        avpriv_report_missing_feature(s->avctx, "LBR multi-channel downmix");
1049        return AVERROR_PATCHWELCOME;
1050    }
1051    if ((s->flags & LBR_FLAG_LFE_PRESENT) && s->sample_rate != 48000) {
1052        if (!(s->warned & 2)) {
1053            avpriv_report_missing_feature(s->avctx, "%d Hz LFE interpolation", s->sample_rate);
1054            s->warned |= 2;
1055        }
1056        s->flags &= ~LBR_FLAG_LFE_PRESENT;
1057    }
1058
1059    // Most significant bit rate nibbles
1060    bit_rate_hi = bytestream2_get_byte(gb);
1061
1062    // Least significant original bit rate word
1063    s->bit_rate_orig = bytestream2_get_le16(gb) | ((bit_rate_hi & 0x0F) << 16);
1064
1065    // Least significant scaled bit rate word
1066    s->bit_rate_scaled = bytestream2_get_le16(gb) | ((bit_rate_hi & 0xF0) << 12);
1067
1068    // Setup number of fullband channels
1069    s->nchannels_total = ff_dca_count_chs_for_mask(s->ch_mask & ~DCA_SPEAKER_PAIR_LFE1);
1070    s->nchannels = FFMIN(s->nchannels_total, DCA_LBR_CHANNELS);
1071
1072    // Setup band limit
1073    switch (s->flags & LBR_FLAG_BAND_LIMIT_MASK) {
1074    case LBR_FLAG_BAND_LIMIT_NONE:
1075        s->band_limit = 0;
1076        break;
1077    case LBR_FLAG_BAND_LIMIT_1_2:
1078        s->band_limit = 1;
1079        break;
1080    case LBR_FLAG_BAND_LIMIT_1_4:
1081        s->band_limit = 2;
1082        break;
1083    default:
1084        avpriv_report_missing_feature(s->avctx, "LBR band limit %#x", s->flags & LBR_FLAG_BAND_LIMIT_MASK);
1085        return AVERROR_PATCHWELCOME;
1086    }
1087
1088    // Setup frequency range
1089    s->freq_range = ff_dca_freq_ranges[sr_code];
1090
1091    // Setup resolution profile
1092    if (s->bit_rate_orig >= 44000 * (s->nchannels_total + 2))
1093        s->res_profile = 2;
1094    else if (s->bit_rate_orig >= 25000 * (s->nchannels_total + 2))
1095        s->res_profile = 1;
1096    else
1097        s->res_profile = 0;
1098
1099    // Setup limited sample rate, number of subbands, etc
1100    s->limited_rate = s->sample_rate >> s->band_limit;
1101    s->limited_range = s->freq_range - s->band_limit;
1102    if (s->limited_range < 0) {
1103        av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR band limit for frequency range\n");
1104        return AVERROR_INVALIDDATA;
1105    }
1106
1107    s->nsubbands = 8 << s->limited_range;
1108
1109    s->g3_avg_only_start_sb = s->nsubbands * ff_dca_avg_g3_freqs[s->res_profile] / (s->limited_rate / 2);
1110    if (s->g3_avg_only_start_sb > s->nsubbands)
1111        s->g3_avg_only_start_sb = s->nsubbands;
1112
1113    s->min_mono_subband = s->nsubbands *  2000 / (s->limited_rate / 2);
1114    if (s->min_mono_subband > s->nsubbands)
1115        s->min_mono_subband = s->nsubbands;
1116
1117    s->max_mono_subband = s->nsubbands * 14000 / (s->limited_rate / 2);
1118    if (s->max_mono_subband > s->nsubbands)
1119        s->max_mono_subband = s->nsubbands;
1120
1121    // Handle change of sample rate
1122    if ((old_rate != s->sample_rate || old_band_limit != s->band_limit) && init_sample_rate(s) < 0)
1123        return AVERROR(ENOMEM);
1124
1125    // Setup stereo downmix
1126    if (s->flags & LBR_FLAG_DMIX_STEREO) {
1127        DCAContext *dca = s->avctx->priv_data;
1128
1129        if (s->nchannels_total < 3 || s->nchannels_total > DCA_LBR_CHANNELS_TOTAL - 2) {
1130            av_log(s->avctx, AV_LOG_ERROR, "Invalid number of channels for LBR stereo downmix\n");
1131            return AVERROR_INVALIDDATA;
1132        }
1133
1134        // This decoder doesn't support ECS chunk
1135        if (dca->request_channel_layout != DCA_SPEAKER_LAYOUT_STEREO && !(s->warned & 4)) {
1136            avpriv_report_missing_feature(s->avctx, "Embedded LBR stereo downmix");
1137            s->warned |= 4;
1138        }
1139
1140        // Account for extra downmixed channel pair
1141        s->nchannels_total += 2;
1142        s->nchannels = 2;
1143        s->ch_mask = DCA_SPEAKER_PAIR_LR;
1144        s->flags &= ~LBR_FLAG_LFE_PRESENT;
1145    }
1146
1147    // Handle change of sample rate or number of channels
1148    if (old_rate != s->sample_rate
1149        || old_band_limit != s->band_limit
1150        || old_nchannels != s->nchannels) {
1151        if (alloc_sample_buffer(s) < 0)
1152            return AVERROR(ENOMEM);
1153        ff_dca_lbr_flush(s);
1154    }
1155
1156    return 0;
1157}
1158
1159int ff_dca_lbr_parse(DCALbrDecoder *s, const uint8_t *data, DCAExssAsset *asset)
1160{
1161    struct {
1162        LBRChunk    lfe;
1163        LBRChunk    tonal;
1164        LBRChunk    tonal_grp[5];
1165        LBRChunk    grid1[DCA_LBR_CHANNELS / 2];
1166        LBRChunk    hr_grid[DCA_LBR_CHANNELS / 2];
1167        LBRChunk    ts1[DCA_LBR_CHANNELS / 2];
1168        LBRChunk    ts2[DCA_LBR_CHANNELS / 2];
1169    } chunk = { {0} };
1170
1171    GetByteContext gb;
1172
1173    int i, ch, sb, sf, ret, group, chunk_id, chunk_len;
1174
1175    bytestream2_init(&gb, data + asset->lbr_offset, asset->lbr_size);
1176
1177    // LBR sync word
1178    if (bytestream2_get_be32(&gb) != DCA_SYNCWORD_LBR) {
1179        av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR sync word\n");
1180        return AVERROR_INVALIDDATA;
1181    }
1182
1183    // LBR header type
1184    switch (bytestream2_get_byte(&gb)) {
1185    case DCA_LBR_HEADER_SYNC_ONLY:
1186        if (!s->sample_rate) {
1187            av_log(s->avctx, AV_LOG_ERROR, "LBR decoder not initialized\n");
1188            return AVERROR_INVALIDDATA;
1189        }
1190        break;
1191    case DCA_LBR_HEADER_DECODER_INIT:
1192        if ((ret = parse_decoder_init(s, &gb)) < 0) {
1193            s->sample_rate = 0;
1194            return ret;
1195        }
1196        break;
1197    default:
1198        av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR header type\n");
1199        return AVERROR_INVALIDDATA;
1200    }
1201
1202    // LBR frame chunk header
1203    chunk_id = bytestream2_get_byte(&gb);
1204    chunk_len = (chunk_id & 0x80) ? bytestream2_get_be16(&gb) : bytestream2_get_byte(&gb);
1205
1206    if (chunk_len > bytestream2_get_bytes_left(&gb)) {
1207        chunk_len = bytestream2_get_bytes_left(&gb);
1208        av_log(s->avctx, AV_LOG_WARNING, "LBR frame chunk was truncated\n");
1209        if (s->avctx->err_recognition & AV_EF_EXPLODE)
1210            return AVERROR_INVALIDDATA;
1211    }
1212
1213    bytestream2_init(&gb, gb.buffer, chunk_len);
1214
1215    switch (chunk_id & 0x7f) {
1216    case LBR_CHUNK_FRAME:
1217        if (s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) {
1218            int checksum = bytestream2_get_be16(&gb);
1219            uint16_t res = chunk_id;
1220            res += (chunk_len >> 8) & 0xff;
1221            res += chunk_len & 0xff;
1222            for (i = 0; i < chunk_len - 2; i++)
1223                res += gb.buffer[i];
1224            if (checksum != res) {
1225                av_log(s->avctx, AV_LOG_WARNING, "Invalid LBR checksum\n");
1226                if (s->avctx->err_recognition & AV_EF_EXPLODE)
1227                    return AVERROR_INVALIDDATA;
1228            }
1229        } else {
1230            bytestream2_skip(&gb, 2);
1231        }
1232        break;
1233    case LBR_CHUNK_FRAME_NO_CSUM:
1234        break;
1235    default:
1236        av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR frame chunk ID\n");
1237        return AVERROR_INVALIDDATA;
1238    }
1239
1240    // Clear current frame
1241    memset(s->quant_levels, 0, sizeof(s->quant_levels));
1242    memset(s->sb_indices, 0xff, sizeof(s->sb_indices));
1243    memset(s->sec_ch_sbms, 0, sizeof(s->sec_ch_sbms));
1244    memset(s->sec_ch_lrms, 0, sizeof(s->sec_ch_lrms));
1245    memset(s->ch_pres, 0, sizeof(s->ch_pres));
1246    memset(s->grid_1_scf, 0, sizeof(s->grid_1_scf));
1247    memset(s->grid_2_scf, 0, sizeof(s->grid_2_scf));
1248    memset(s->grid_3_avg, 0, sizeof(s->grid_3_avg));
1249    memset(s->grid_3_scf, 0, sizeof(s->grid_3_scf));
1250    memset(s->grid_3_pres, 0, sizeof(s->grid_3_pres));
1251    memset(s->tonal_scf, 0, sizeof(s->tonal_scf));
1252    memset(s->lfe_data, 0, sizeof(s->lfe_data));
1253    s->part_stereo_pres = 0;
1254    s->framenum = (s->framenum + 1) & 31;
1255
1256    for (ch = 0; ch < s->nchannels; ch++) {
1257        for (sb = 0; sb < s->nsubbands / 4; sb++) {
1258            s->part_stereo[ch][sb][0] = s->part_stereo[ch][sb][4];
1259            s->part_stereo[ch][sb][4] = 16;
1260        }
1261    }
1262
1263    memset(s->lpc_coeff[s->framenum & 1], 0, sizeof(s->lpc_coeff[0]));
1264
1265    for (group = 0; group < 5; group++) {
1266        for (sf = 0; sf < 1 << group; sf++) {
1267            int sf_idx = ((s->framenum << group) + sf) & 31;
1268            s->tonal_bounds[group][sf_idx][0] =
1269            s->tonal_bounds[group][sf_idx][1] = s->ntones;
1270        }
1271    }
1272
1273    // Parse chunk headers
1274    while (bytestream2_get_bytes_left(&gb) > 0) {
1275        chunk_id = bytestream2_get_byte(&gb);
1276        chunk_len = (chunk_id & 0x80) ? bytestream2_get_be16(&gb) : bytestream2_get_byte(&gb);
1277        chunk_id &= 0x7f;
1278
1279        if (chunk_len > bytestream2_get_bytes_left(&gb)) {
1280            chunk_len = bytestream2_get_bytes_left(&gb);
1281            av_log(s->avctx, AV_LOG_WARNING, "LBR chunk %#x was truncated\n", chunk_id);
1282            if (s->avctx->err_recognition & AV_EF_EXPLODE)
1283                return AVERROR_INVALIDDATA;
1284        }
1285
1286        switch (chunk_id) {
1287        case LBR_CHUNK_LFE:
1288            chunk.lfe.len  = chunk_len;
1289            chunk.lfe.data = gb.buffer;
1290            break;
1291
1292        case LBR_CHUNK_SCF:
1293        case LBR_CHUNK_TONAL:
1294        case LBR_CHUNK_TONAL_SCF:
1295            chunk.tonal.id   = chunk_id;
1296            chunk.tonal.len  = chunk_len;
1297            chunk.tonal.data = gb.buffer;
1298            break;
1299
1300        case LBR_CHUNK_TONAL_GRP_1:
1301        case LBR_CHUNK_TONAL_GRP_2:
1302        case LBR_CHUNK_TONAL_GRP_3:
1303        case LBR_CHUNK_TONAL_GRP_4:
1304        case LBR_CHUNK_TONAL_GRP_5:
1305            i = LBR_CHUNK_TONAL_GRP_5 - chunk_id;
1306            chunk.tonal_grp[i].id   = i;
1307            chunk.tonal_grp[i].len  = chunk_len;
1308            chunk.tonal_grp[i].data = gb.buffer;
1309            break;
1310
1311        case LBR_CHUNK_TONAL_SCF_GRP_1:
1312        case LBR_CHUNK_TONAL_SCF_GRP_2:
1313        case LBR_CHUNK_TONAL_SCF_GRP_3:
1314        case LBR_CHUNK_TONAL_SCF_GRP_4:
1315        case LBR_CHUNK_TONAL_SCF_GRP_5:
1316            i = LBR_CHUNK_TONAL_SCF_GRP_5 - chunk_id;
1317            chunk.tonal_grp[i].id   = i;
1318            chunk.tonal_grp[i].len  = chunk_len;
1319            chunk.tonal_grp[i].data = gb.buffer;
1320            break;
1321
1322        case LBR_CHUNK_RES_GRID_LR:
1323        case LBR_CHUNK_RES_GRID_LR + 1:
1324        case LBR_CHUNK_RES_GRID_LR + 2:
1325            i = chunk_id - LBR_CHUNK_RES_GRID_LR;
1326            chunk.grid1[i].len  = chunk_len;
1327            chunk.grid1[i].data = gb.buffer;
1328            break;
1329
1330        case LBR_CHUNK_RES_GRID_HR:
1331        case LBR_CHUNK_RES_GRID_HR + 1:
1332        case LBR_CHUNK_RES_GRID_HR + 2:
1333            i = chunk_id - LBR_CHUNK_RES_GRID_HR;
1334            chunk.hr_grid[i].len  = chunk_len;
1335            chunk.hr_grid[i].data = gb.buffer;
1336            break;
1337
1338        case LBR_CHUNK_RES_TS_1:
1339        case LBR_CHUNK_RES_TS_1 + 1:
1340        case LBR_CHUNK_RES_TS_1 + 2:
1341            i = chunk_id - LBR_CHUNK_RES_TS_1;
1342            chunk.ts1[i].len  = chunk_len;
1343            chunk.ts1[i].data = gb.buffer;
1344            break;
1345
1346        case LBR_CHUNK_RES_TS_2:
1347        case LBR_CHUNK_RES_TS_2 + 1:
1348        case LBR_CHUNK_RES_TS_2 + 2:
1349            i = chunk_id - LBR_CHUNK_RES_TS_2;
1350            chunk.ts2[i].len  = chunk_len;
1351            chunk.ts2[i].data = gb.buffer;
1352            break;
1353        }
1354
1355        bytestream2_skip(&gb, chunk_len);
1356    }
1357
1358    // Parse the chunks
1359    ret = parse_lfe_chunk(s, &chunk.lfe);
1360
1361    ret |= parse_tonal_chunk(s, &chunk.tonal);
1362
1363    for (i = 0; i < 5; i++)
1364        ret |= parse_tonal_group(s, &chunk.tonal_grp[i]);
1365
1366    for (i = 0; i < (s->nchannels + 1) / 2; i++) {
1367        int ch1 = i * 2;
1368        int ch2 = FFMIN(ch1 + 1, s->nchannels - 1);
1369
1370        if (parse_grid_1_chunk (s, &chunk.grid1  [i], ch1, ch2) < 0 ||
1371            parse_high_res_grid(s, &chunk.hr_grid[i], ch1, ch2) < 0) {
1372            ret = -1;
1373            continue;
1374        }
1375
1376        // TS chunks depend on both grids. TS_2 depends on TS_1.
1377        if (!chunk.grid1[i].len || !chunk.hr_grid[i].len || !chunk.ts1[i].len)
1378            continue;
1379
1380        if (parse_ts1_chunk(s, &chunk.ts1[i], ch1, ch2) < 0 ||
1381            parse_ts2_chunk(s, &chunk.ts2[i], ch1, ch2) < 0) {
1382            ret = -1;
1383            continue;
1384        }
1385    }
1386
1387    if (ret < 0 && (s->avctx->err_recognition & AV_EF_EXPLODE))
1388        return AVERROR_INVALIDDATA;
1389
1390    return 0;
1391}
1392
1393/**
1394 * Reconstruct high-frequency resolution grid from first and third grids
1395 */
1396static void decode_grid(DCALbrDecoder *s, int ch1, int ch2)
1397{
1398    int i, ch, sb;
1399
1400    for (ch = ch1; ch <= ch2; ch++) {
1401        for (sb = 0; sb < s->nsubbands; sb++) {
1402            int g1_sb = ff_dca_scf_to_grid_1[sb];
1403
1404            uint8_t *g1_scf_a = s->grid_1_scf[ch][g1_sb    ];
1405            uint8_t *g1_scf_b = s->grid_1_scf[ch][g1_sb + 1];
1406
1407            int w1 = ff_dca_grid_1_weights[g1_sb    ][sb];
1408            int w2 = ff_dca_grid_1_weights[g1_sb + 1][sb];
1409
1410            uint8_t *hr_scf = s->high_res_scf[ch][sb];
1411
1412            if (sb < 4) {
1413                for (i = 0; i < 8; i++) {
1414                    int scf = w1 * g1_scf_a[i] + w2 * g1_scf_b[i];
1415                    hr_scf[i] = scf >> 7;
1416                }
1417            } else {
1418                int8_t *g3_scf = s->grid_3_scf[ch][sb - 4];
1419                int g3_avg = s->grid_3_avg[ch][sb - 4];
1420
1421                for (i = 0; i < 8; i++) {
1422                    int scf = w1 * g1_scf_a[i] + w2 * g1_scf_b[i];
1423                    hr_scf[i] = (scf >> 7) - g3_avg - g3_scf[i];
1424                }
1425            }
1426        }
1427    }
1428}
1429
1430/**
1431 * Fill unallocated subbands with randomness
1432 */
1433static void random_ts(DCALbrDecoder *s, int ch1, int ch2)
1434{
1435    int i, j, k, ch, sb;
1436
1437    for (ch = ch1; ch <= ch2; ch++) {
1438        for (sb = 0; sb < s->nsubbands; sb++) {
1439            float *samples = s->time_samples[ch][sb];
1440
1441            if (s->ch_pres[ch] & (1U << sb))
1442                continue;   // Skip allocated subband
1443
1444            if (sb < 2) {
1445                // The first two subbands are always zero
1446                memset(samples, 0, DCA_LBR_TIME_SAMPLES * sizeof(float));
1447            } else if (sb < 10) {
1448                for (i = 0; i < DCA_LBR_TIME_SAMPLES; i++)
1449                    samples[i] = lbr_rand(s, sb);
1450            } else {
1451                for (i = 0; i < DCA_LBR_TIME_SAMPLES / 8; i++, samples += 8) {
1452                    float accum[8] = { 0 };
1453
1454                    // Modulate by subbands 2-5 in blocks of 8
1455                    for (k = 2; k < 6; k++) {
1456                        float *other = &s->time_samples[ch][k][i * 8];
1457                        for (j = 0; j < 8; j++)
1458                            accum[j] += fabs(other[j]);
1459                    }
1460
1461                    for (j = 0; j < 8; j++)
1462                        samples[j] = (accum[j] * 0.25f + 0.5f) * lbr_rand(s, sb);
1463                }
1464            }
1465        }
1466    }
1467}
1468
1469static void predict(float *samples, const float *coeff, int nsamples)
1470{
1471    int i, j;
1472
1473    for (i = 0; i < nsamples; i++) {
1474        float res = 0;
1475        for (j = 0; j < 8; j++)
1476            res += coeff[j] * samples[i - j - 1];
1477        samples[i] -= res;
1478    }
1479}
1480
1481static void synth_lpc(DCALbrDecoder *s, int ch1, int ch2, int sb)
1482{
1483    int f = s->framenum & 1;
1484    int ch;
1485
1486    for (ch = ch1; ch <= ch2; ch++) {
1487        float *samples = s->time_samples[ch][sb];
1488
1489        if (!(s->ch_pres[ch] & (1U << sb)))
1490            continue;
1491
1492        if (sb < 2) {
1493            predict(samples,      s->lpc_coeff[f^1][ch][sb][1],  16);
1494            predict(samples + 16, s->lpc_coeff[f  ][ch][sb][0],  64);
1495            predict(samples + 80, s->lpc_coeff[f  ][ch][sb][1],  48);
1496        } else {
1497            predict(samples,      s->lpc_coeff[f^1][ch][sb][0],  16);
1498            predict(samples + 16, s->lpc_coeff[f  ][ch][sb][0], 112);
1499        }
1500    }
1501}
1502
1503static void filter_ts(DCALbrDecoder *s, int ch1, int ch2)
1504{
1505    int i, j, sb, ch;
1506
1507    for (sb = 0; sb < s->nsubbands; sb++) {
1508        // Scale factors
1509        for (ch = ch1; ch <= ch2; ch++) {
1510            float *samples = s->time_samples[ch][sb];
1511            uint8_t *hr_scf = s->high_res_scf[ch][sb];
1512            if (sb < 4) {
1513                for (i = 0; i < DCA_LBR_TIME_SAMPLES / 16; i++, samples += 16) {
1514                    unsigned int scf = hr_scf[i];
1515                    if (scf > AMP_MAX)
1516                        scf = AMP_MAX;
1517                    for (j = 0; j < 16; j++)
1518                        samples[j] *= ff_dca_quant_amp[scf];
1519                }
1520            } else {
1521                uint8_t *g2_scf = s->grid_2_scf[ch][ff_dca_scf_to_grid_2[sb]];
1522                for (i = 0; i < DCA_LBR_TIME_SAMPLES / 2; i++, samples += 2) {
1523                    unsigned int scf = hr_scf[i / 8] - g2_scf[i];
1524                    if (scf > AMP_MAX)
1525                        scf = AMP_MAX;
1526                    samples[0] *= ff_dca_quant_amp[scf];
1527                    samples[1] *= ff_dca_quant_amp[scf];
1528                }
1529            }
1530        }
1531
1532        // Mid-side stereo
1533        if (ch1 != ch2) {
1534            float *samples_l = s->time_samples[ch1][sb];
1535            float *samples_r = s->time_samples[ch2][sb];
1536            int ch2_pres = s->ch_pres[ch2] & (1U << sb);
1537
1538            for (i = 0; i < DCA_LBR_TIME_SAMPLES / 16; i++) {
1539                int sbms = (s->sec_ch_sbms[ch1 / 2][sb] >> i) & 1;
1540                int lrms = (s->sec_ch_lrms[ch1 / 2][sb] >> i) & 1;
1541
1542                if (sb >= s->min_mono_subband) {
1543                    if (lrms && ch2_pres) {
1544                        if (sbms) {
1545                            for (j = 0; j < 16; j++) {
1546                                float tmp = samples_l[j];
1547                                samples_l[j] =  samples_r[j];
1548                                samples_r[j] = -tmp;
1549                            }
1550                        } else {
1551                            for (j = 0; j < 16; j++) {
1552                                float tmp = samples_l[j];
1553                                samples_l[j] =  samples_r[j];
1554                                samples_r[j] =  tmp;
1555                            }
1556                        }
1557                    } else if (!ch2_pres) {
1558                        if (sbms && (s->part_stereo_pres & (1 << ch1))) {
1559                            for (j = 0; j < 16; j++)
1560                                samples_r[j] = -samples_l[j];
1561                        } else {
1562                            for (j = 0; j < 16; j++)
1563                                samples_r[j] =  samples_l[j];
1564                        }
1565                    }
1566                } else if (sbms && ch2_pres) {
1567                    for (j = 0; j < 16; j++) {
1568                        float tmp = samples_l[j];
1569                        samples_l[j] = (tmp + samples_r[j]) * 0.5f;
1570                        samples_r[j] = (tmp - samples_r[j]) * 0.5f;
1571                    }
1572                }
1573
1574                samples_l += 16;
1575                samples_r += 16;
1576            }
1577        }
1578
1579        // Inverse prediction
1580        if (sb < 3)
1581            synth_lpc(s, ch1, ch2, sb);
1582    }
1583}
1584
1585/**
1586 * Modulate by interpolated partial stereo coefficients
1587 */
1588static void decode_part_stereo(DCALbrDecoder *s, int ch1, int ch2)
1589{
1590    int i, ch, sb, sf;
1591
1592    for (ch = ch1; ch <= ch2; ch++) {
1593        for (sb = s->min_mono_subband; sb < s->nsubbands; sb++) {
1594            uint8_t *pt_st = s->part_stereo[ch][(sb - s->min_mono_subband) / 4];
1595            float *samples = s->time_samples[ch][sb];
1596
1597            if (s->ch_pres[ch2] & (1U << sb))
1598                continue;
1599
1600            for (sf = 1; sf <= 4; sf++, samples += 32) {
1601                float prev = ff_dca_st_coeff[pt_st[sf - 1]];
1602                float next = ff_dca_st_coeff[pt_st[sf    ]];
1603
1604                for (i = 0; i < 32; i++)
1605                    samples[i] *= (32 - i) * prev + i * next;
1606            }
1607        }
1608    }
1609}
1610
1611/**
1612 * Synthesise tones in the given group for the given tonal subframe
1613 */
1614static void synth_tones(DCALbrDecoder *s, int ch, float *values,
1615                        int group, int group_sf, int synth_idx)
1616{
1617    int i, start, count;
1618
1619    if (synth_idx < 0)
1620        return;
1621
1622    start =  s->tonal_bounds[group][group_sf][0];
1623    count = (s->tonal_bounds[group][group_sf][1] - start) & (DCA_LBR_TONES - 1);
1624
1625    for (i = 0; i < count; i++) {
1626        DCALbrTone *t = &s->tones[(start + i) & (DCA_LBR_TONES - 1)];
1627
1628        if (t->amp[ch]) {
1629            float amp = ff_dca_synth_env[synth_idx] * ff_dca_quant_amp[t->amp[ch]];
1630            float c = amp * cos_tab[(t->phs[ch]     ) & 255];
1631            float s = amp * cos_tab[(t->phs[ch] + 64) & 255];
1632            const float *cf = ff_dca_corr_cf[t->f_delt];
1633            int x_freq = t->x_freq;
1634
1635            switch (x_freq) {
1636            case 0:
1637                goto p0;
1638            case 1:
1639                values[3] += cf[0] * -s;
1640                values[2] += cf[1] *  c;
1641                values[1] += cf[2] *  s;
1642                values[0] += cf[3] * -c;
1643                goto p1;
1644            case 2:
1645                values[2] += cf[0] * -s;
1646                values[1] += cf[1] *  c;
1647                values[0] += cf[2] *  s;
1648                goto p2;
1649            case 3:
1650                values[1] += cf[0] * -s;
1651                values[0] += cf[1] *  c;
1652                goto p3;
1653            case 4:
1654                values[0] += cf[0] * -s;
1655                goto p4;
1656            }
1657
1658            values[x_freq - 5] += cf[ 0] * -s;
1659        p4: values[x_freq - 4] += cf[ 1] *  c;
1660        p3: values[x_freq - 3] += cf[ 2] *  s;
1661        p2: values[x_freq - 2] += cf[ 3] * -c;
1662        p1: values[x_freq - 1] += cf[ 4] * -s;
1663        p0: values[x_freq    ] += cf[ 5] *  c;
1664            values[x_freq + 1] += cf[ 6] *  s;
1665            values[x_freq + 2] += cf[ 7] * -c;
1666            values[x_freq + 3] += cf[ 8] * -s;
1667            values[x_freq + 4] += cf[ 9] *  c;
1668            values[x_freq + 5] += cf[10] *  s;
1669        }
1670
1671        t->phs[ch] += t->ph_rot;
1672    }
1673}
1674
1675/**
1676 * Synthesise all tones in all groups for the given residual subframe
1677 */
1678static void base_func_synth(DCALbrDecoder *s, int ch, float *values, int sf)
1679{
1680    int group;
1681
1682    // Tonal vs residual shift is 22 subframes
1683    for (group = 0; group < 5; group++) {
1684        int group_sf = (s->framenum << group) + ((sf - 22) >> (5 - group));
1685        int synth_idx = ((((sf - 22) & 31) << group) & 31) + (1 << group) - 1;
1686
1687        synth_tones(s, ch, values, group, (group_sf - 1) & 31, 30 - synth_idx);
1688        synth_tones(s, ch, values, group, (group_sf    ) & 31,      synth_idx);
1689    }
1690}
1691
1692static void transform_channel(DCALbrDecoder *s, int ch, float *output)
1693{
1694    LOCAL_ALIGNED_32(float, values, [DCA_LBR_SUBBANDS    ], [4]);
1695    LOCAL_ALIGNED_32(float, result, [DCA_LBR_SUBBANDS * 2], [4]);
1696    int sf, sb, nsubbands = s->nsubbands, noutsubbands = 8 << s->freq_range;
1697
1698    // Clear inactive subbands
1699    if (nsubbands < noutsubbands)
1700        memset(values[nsubbands], 0, (noutsubbands - nsubbands) * sizeof(values[0]));
1701
1702    for (sf = 0; sf < DCA_LBR_TIME_SAMPLES / 4; sf++) {
1703        // Hybrid filterbank
1704        s->dcadsp->lbr_bank(values, s->time_samples[ch],
1705                            ff_dca_bank_coeff, sf * 4, nsubbands);
1706
1707        base_func_synth(s, ch, values[0], sf);
1708
1709        s->imdct.imdct_calc(&s->imdct, result[0], values[0]);
1710
1711        // Long window and overlap-add
1712        s->fdsp->vector_fmul_add(output, result[0], s->window,
1713                                 s->history[ch], noutsubbands * 4);
1714        s->fdsp->vector_fmul_reverse(s->history[ch], result[noutsubbands],
1715                                     s->window, noutsubbands * 4);
1716        output += noutsubbands * 4;
1717    }
1718
1719    // Update history for LPC and forward MDCT
1720    for (sb = 0; sb < nsubbands; sb++) {
1721        float *samples = s->time_samples[ch][sb] - DCA_LBR_TIME_HISTORY;
1722        memcpy(samples, samples + DCA_LBR_TIME_SAMPLES, DCA_LBR_TIME_HISTORY * sizeof(float));
1723    }
1724}
1725
1726int ff_dca_lbr_filter_frame(DCALbrDecoder *s, AVFrame *frame)
1727{
1728    AVCodecContext *avctx = s->avctx;
1729    int i, ret, nchannels, ch_conf = (s->ch_mask & 0x7) - 1;
1730    const int8_t *reorder;
1731    uint64_t channel_mask = channel_layouts[ch_conf];
1732
1733    nchannels = av_popcount64(channel_mask);
1734    avctx->sample_rate = s->sample_rate;
1735    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
1736    avctx->bits_per_raw_sample = 0;
1737    avctx->profile = FF_PROFILE_DTS_EXPRESS;
1738    avctx->bit_rate = s->bit_rate_scaled;
1739
1740    if (s->flags & LBR_FLAG_LFE_PRESENT) {
1741        channel_mask |= AV_CH_LOW_FREQUENCY;
1742        reorder = channel_reorder_lfe[ch_conf];
1743    } else {
1744        reorder = channel_reorder_nolfe[ch_conf];
1745    }
1746
1747    av_channel_layout_uninit(&avctx->ch_layout);
1748    av_channel_layout_from_mask(&avctx->ch_layout, channel_mask);
1749
1750    frame->nb_samples = 1024 << s->freq_range;
1751    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1752        return ret;
1753
1754    // Filter fullband channels
1755    for (i = 0; i < (s->nchannels + 1) / 2; i++) {
1756        int ch1 = i * 2;
1757        int ch2 = FFMIN(ch1 + 1, s->nchannels - 1);
1758
1759        decode_grid(s, ch1, ch2);
1760
1761        random_ts(s, ch1, ch2);
1762
1763        filter_ts(s, ch1, ch2);
1764
1765        if (ch1 != ch2 && (s->part_stereo_pres & (1 << ch1)))
1766            decode_part_stereo(s, ch1, ch2);
1767
1768        if (ch1 < nchannels)
1769            transform_channel(s, ch1, (float *)frame->extended_data[reorder[ch1]]);
1770
1771        if (ch1 != ch2 && ch2 < nchannels)
1772            transform_channel(s, ch2, (float *)frame->extended_data[reorder[ch2]]);
1773    }
1774
1775    // Interpolate LFE channel
1776    if (s->flags & LBR_FLAG_LFE_PRESENT) {
1777        s->dcadsp->lfe_iir((float *)frame->extended_data[lfe_index[ch_conf]],
1778                           s->lfe_data, ff_dca_lfe_iir,
1779                           s->lfe_history, 16 << s->freq_range);
1780    }
1781
1782    if ((ret = ff_side_data_update_matrix_encoding(frame, AV_MATRIX_ENCODING_NONE)) < 0)
1783        return ret;
1784
1785    return 0;
1786}
1787
1788av_cold void ff_dca_lbr_flush(DCALbrDecoder *s)
1789{
1790    int ch, sb;
1791
1792    if (!s->sample_rate)
1793        return;
1794
1795    // Clear history
1796    memset(s->part_stereo, 16, sizeof(s->part_stereo));
1797    memset(s->lpc_coeff, 0, sizeof(s->lpc_coeff));
1798    memset(s->history, 0, sizeof(s->history));
1799    memset(s->tonal_bounds, 0, sizeof(s->tonal_bounds));
1800    memset(s->lfe_history, 0, sizeof(s->lfe_history));
1801    s->framenum = 0;
1802    s->ntones = 0;
1803
1804    for (ch = 0; ch < s->nchannels; ch++) {
1805        for (sb = 0; sb < s->nsubbands; sb++) {
1806            float *samples = s->time_samples[ch][sb] - DCA_LBR_TIME_HISTORY;
1807            memset(samples, 0, DCA_LBR_TIME_HISTORY * sizeof(float));
1808        }
1809    }
1810}
1811
1812av_cold int ff_dca_lbr_init(DCALbrDecoder *s)
1813{
1814    if (!(s->fdsp = avpriv_float_dsp_alloc(0)))
1815        return AVERROR(ENOMEM);
1816
1817    s->lbr_rand = 1;
1818    return 0;
1819}
1820
1821av_cold void ff_dca_lbr_close(DCALbrDecoder *s)
1822{
1823    s->sample_rate = 0;
1824
1825    av_freep(&s->ts_buffer);
1826    s->ts_size = 0;
1827
1828    av_freep(&s->fdsp);
1829    ff_mdct_end(&s->imdct);
1830}
1831