xref: /third_party/ffmpeg/libavcodec/cook.c (revision cabdff1a)
1/*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
28 *
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
32 *
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
38 * pieces.
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42 * available.
43 */
44
45#include "libavutil/channel_layout.h"
46#include "libavutil/lfg.h"
47#include "libavutil/mem_internal.h"
48#include "libavutil/thread.h"
49
50#include "audiodsp.h"
51#include "avcodec.h"
52#include "get_bits.h"
53#include "bytestream.h"
54#include "codec_internal.h"
55#include "fft.h"
56#include "internal.h"
57#include "sinewin.h"
58#include "unary.h"
59
60#include "cookdata.h"
61
62/* the different Cook versions */
63#define MONO            0x1000001
64#define STEREO          0x1000002
65#define JOINT_STEREO    0x1000003
66#define MC_COOK         0x2000000
67
68#define SUBBAND_SIZE    20
69#define MAX_SUBPACKETS   5
70
71#define QUANT_VLC_BITS    9
72#define COUPLING_VLC_BITS 6
73
74typedef struct cook_gains {
75    int *now;
76    int *previous;
77} cook_gains;
78
79typedef struct COOKSubpacket {
80    int                 ch_idx;
81    int                 size;
82    int                 num_channels;
83    int                 cookversion;
84    int                 subbands;
85    int                 js_subband_start;
86    int                 js_vlc_bits;
87    int                 samples_per_channel;
88    int                 log2_numvector_size;
89    unsigned int        channel_mask;
90    VLC                 channel_coupling;
91    int                 joint_stereo;
92    int                 bits_per_subpacket;
93    int                 bits_per_subpdiv;
94    int                 total_subbands;
95    int                 numvector_size;       // 1 << log2_numvector_size;
96
97    float               mono_previous_buffer1[1024];
98    float               mono_previous_buffer2[1024];
99
100    cook_gains          gains1;
101    cook_gains          gains2;
102    int                 gain_1[9];
103    int                 gain_2[9];
104    int                 gain_3[9];
105    int                 gain_4[9];
106} COOKSubpacket;
107
108typedef struct cook {
109    /*
110     * The following 5 functions provide the lowlevel arithmetic on
111     * the internal audio buffers.
112     */
113    void (*scalar_dequant)(struct cook *q, int index, int quant_index,
114                           int *subband_coef_index, int *subband_coef_sign,
115                           float *mlt_p);
116
117    void (*decouple)(struct cook *q,
118                     COOKSubpacket *p,
119                     int subband,
120                     float f1, float f2,
121                     float *decode_buffer,
122                     float *mlt_buffer1, float *mlt_buffer2);
123
124    void (*imlt_window)(struct cook *q, float *buffer1,
125                        cook_gains *gains_ptr, float *previous_buffer);
126
127    void (*interpolate)(struct cook *q, float *buffer,
128                        int gain_index, int gain_index_next);
129
130    void (*saturate_output)(struct cook *q, float *out);
131
132    AVCodecContext*     avctx;
133    AudioDSPContext     adsp;
134    GetBitContext       gb;
135    /* stream data */
136    int                 num_vectors;
137    int                 samples_per_channel;
138    /* states */
139    AVLFG               random_state;
140    int                 discarded_packets;
141
142    /* transform data */
143    FFTContext          mdct_ctx;
144    float*              mlt_window;
145
146    /* VLC data */
147    VLC                 envelope_quant_index[13];
148    VLC                 sqvh[7];          // scalar quantization
149
150    /* generate tables and related variables */
151    int                 gain_size_factor;
152    float               gain_table[31];
153
154    /* data buffers */
155
156    uint8_t*            decoded_bytes_buffer;
157    DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
158    float               decode_buffer_1[1024];
159    float               decode_buffer_2[1024];
160    float               decode_buffer_0[1060]; /* static allocation for joint decode */
161
162    const float         *cplscales[5];
163    int                 num_subpackets;
164    COOKSubpacket       subpacket[MAX_SUBPACKETS];
165} COOKContext;
166
167static float     pow2tab[127];
168static float rootpow2tab[127];
169
170/*************** init functions ***************/
171
172/* table generator */
173static av_cold void init_pow2table(void)
174{
175    /* fast way of computing 2^i and 2^(0.5*i) for -63 <= i < 64 */
176    int i;
177    static const float exp2_tab[2] = {1, M_SQRT2};
178    float exp2_val = powf(2, -63);
179    float root_val = powf(2, -32);
180    for (i = -63; i < 64; i++) {
181        if (!(i & 1))
182            root_val *= 2;
183        pow2tab[63 + i] = exp2_val;
184        rootpow2tab[63 + i] = root_val * exp2_tab[i & 1];
185        exp2_val *= 2;
186    }
187}
188
189/* table generator */
190static av_cold void init_gain_table(COOKContext *q)
191{
192    int i;
193    q->gain_size_factor = q->samples_per_channel / 8;
194    for (i = 0; i < 31; i++)
195        q->gain_table[i] = pow(pow2tab[i + 48],
196                               (1.0 / (double) q->gain_size_factor));
197}
198
199static av_cold int build_vlc(VLC *vlc, int nb_bits, const uint8_t counts[16],
200                             const void *syms, int symbol_size, int offset,
201                             void *logctx)
202{
203    uint8_t lens[MAX_COOK_VLC_ENTRIES];
204    unsigned num = 0;
205
206    for (int i = 0; i < 16; i++)
207        for (unsigned count = num + counts[i]; num < count; num++)
208            lens[num] = i + 1;
209
210    return ff_init_vlc_from_lengths(vlc, nb_bits, num, lens, 1,
211                                    syms, symbol_size, symbol_size,
212                                    offset, 0, logctx);
213}
214
215static av_cold int init_cook_vlc_tables(COOKContext *q)
216{
217    int i, result;
218
219    result = 0;
220    for (i = 0; i < 13; i++) {
221        result |= build_vlc(&q->envelope_quant_index[i], QUANT_VLC_BITS,
222                            envelope_quant_index_huffcounts[i],
223                            envelope_quant_index_huffsyms[i], 1, -12, q->avctx);
224    }
225    av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
226    for (i = 0; i < 7; i++) {
227        int sym_size = 1 + (i == 3);
228        result |= build_vlc(&q->sqvh[i], vhvlcsize_tab[i],
229                            cvh_huffcounts[i],
230                            cvh_huffsyms[i], sym_size, 0, q->avctx);
231    }
232
233    for (i = 0; i < q->num_subpackets; i++) {
234        if (q->subpacket[i].joint_stereo == 1) {
235            result |= build_vlc(&q->subpacket[i].channel_coupling, COUPLING_VLC_BITS,
236                                ccpl_huffcounts[q->subpacket[i].js_vlc_bits - 2],
237                                ccpl_huffsyms[q->subpacket[i].js_vlc_bits - 2], 1,
238                                0, q->avctx);
239            av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
240        }
241    }
242
243    av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
244    return result;
245}
246
247static av_cold int init_cook_mlt(COOKContext *q)
248{
249    int j, ret;
250    int mlt_size = q->samples_per_channel;
251
252    if (!(q->mlt_window = av_malloc_array(mlt_size, sizeof(*q->mlt_window))))
253        return AVERROR(ENOMEM);
254
255    /* Initialize the MLT window: simple sine window. */
256    ff_sine_window_init(q->mlt_window, mlt_size);
257    for (j = 0; j < mlt_size; j++)
258        q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
259
260    /* Initialize the MDCT. */
261    ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0);
262    if (ret < 0)
263        return ret;
264    av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
265           av_log2(mlt_size) + 1);
266
267    return 0;
268}
269
270static av_cold void init_cplscales_table(COOKContext *q)
271{
272    int i;
273    for (i = 0; i < 5; i++)
274        q->cplscales[i] = cplscales[i];
275}
276
277/*************** init functions end ***********/
278
279#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
280#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
281
282/**
283 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
284 * Why? No idea, some checksum/error detection method maybe.
285 *
286 * Out buffer size: extra bytes are needed to cope with
287 * padding/misalignment.
288 * Subpackets passed to the decoder can contain two, consecutive
289 * half-subpackets, of identical but arbitrary size.
290 *          1234 1234 1234 1234  extraA extraB
291 * Case 1:  AAAA BBBB              0      0
292 * Case 2:  AAAA ABBB BB--         3      3
293 * Case 3:  AAAA AABB BBBB         2      2
294 * Case 4:  AAAA AAAB BBBB BB--    1      5
295 *
296 * Nice way to waste CPU cycles.
297 *
298 * @param inbuffer  pointer to byte array of indata
299 * @param out       pointer to byte array of outdata
300 * @param bytes     number of bytes
301 */
302static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
303{
304    static const uint32_t tab[4] = {
305        AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u),
306        AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u),
307    };
308    int i, off;
309    uint32_t c;
310    const uint32_t *buf;
311    uint32_t *obuf = (uint32_t *) out;
312    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
313     * I'm too lazy though, should be something like
314     * for (i = 0; i < bitamount / 64; i++)
315     *     (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
316     * Buffer alignment needs to be checked. */
317
318    off = (intptr_t) inbuffer & 3;
319    buf = (const uint32_t *) (inbuffer - off);
320    c = tab[off];
321    bytes += 3 + off;
322    for (i = 0; i < bytes / 4; i++)
323        obuf[i] = c ^ buf[i];
324
325    return off;
326}
327
328static av_cold int cook_decode_close(AVCodecContext *avctx)
329{
330    int i;
331    COOKContext *q = avctx->priv_data;
332    av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
333
334    /* Free allocated memory buffers. */
335    av_freep(&q->mlt_window);
336    av_freep(&q->decoded_bytes_buffer);
337
338    /* Free the transform. */
339    ff_mdct_end(&q->mdct_ctx);
340
341    /* Free the VLC tables. */
342    for (i = 0; i < 13; i++)
343        ff_free_vlc(&q->envelope_quant_index[i]);
344    for (i = 0; i < 7; i++)
345        ff_free_vlc(&q->sqvh[i]);
346    for (i = 0; i < q->num_subpackets; i++)
347        ff_free_vlc(&q->subpacket[i].channel_coupling);
348
349    av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
350
351    return 0;
352}
353
354/**
355 * Fill the gain array for the timedomain quantization.
356 *
357 * @param gb          pointer to the GetBitContext
358 * @param gaininfo    array[9] of gain indexes
359 */
360static void decode_gain_info(GetBitContext *gb, int *gaininfo)
361{
362    int i, n;
363
364    n = get_unary(gb, 0, get_bits_left(gb));     // amount of elements*2 to update
365
366    i = 0;
367    while (n--) {
368        int index = get_bits(gb, 3);
369        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
370
371        while (i <= index)
372            gaininfo[i++] = gain;
373    }
374    while (i <= 8)
375        gaininfo[i++] = 0;
376}
377
378/**
379 * Create the quant index table needed for the envelope.
380 *
381 * @param q                 pointer to the COOKContext
382 * @param quant_index_table pointer to the array
383 */
384static int decode_envelope(COOKContext *q, COOKSubpacket *p,
385                           int *quant_index_table)
386{
387    int i, j, vlc_index;
388
389    quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
390
391    for (i = 1; i < p->total_subbands; i++) {
392        vlc_index = i;
393        if (i >= p->js_subband_start * 2) {
394            vlc_index -= p->js_subband_start;
395        } else {
396            vlc_index /= 2;
397            if (vlc_index < 1)
398                vlc_index = 1;
399        }
400        if (vlc_index > 13)
401            vlc_index = 13; // the VLC tables >13 are identical to No. 13
402
403        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
404                     QUANT_VLC_BITS, 2);
405        quant_index_table[i] = quant_index_table[i - 1] + j; // differential encoding
406        if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
407            av_log(q->avctx, AV_LOG_ERROR,
408                   "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
409                   quant_index_table[i], i);
410            return AVERROR_INVALIDDATA;
411        }
412    }
413
414    return 0;
415}
416
417/**
418 * Calculate the category and category_index vector.
419 *
420 * @param q                     pointer to the COOKContext
421 * @param quant_index_table     pointer to the array
422 * @param category              pointer to the category array
423 * @param category_index        pointer to the category_index array
424 */
425static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table,
426                       int *category, int *category_index)
427{
428    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
429    int exp_index2[102] = { 0 };
430    int exp_index1[102] = { 0 };
431
432    int tmp_categorize_array[128 * 2] = { 0 };
433    int tmp_categorize_array1_idx = p->numvector_size;
434    int tmp_categorize_array2_idx = p->numvector_size;
435
436    bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
437
438    if (bits_left > q->samples_per_channel)
439        bits_left = q->samples_per_channel +
440                    ((bits_left - q->samples_per_channel) * 5) / 8;
441
442    bias = -32;
443
444    /* Estimate bias. */
445    for (i = 32; i > 0; i = i / 2) {
446        num_bits = 0;
447        index    = 0;
448        for (j = p->total_subbands; j > 0; j--) {
449            exp_idx = av_clip_uintp2((i - quant_index_table[index] + bias) / 2, 3);
450            index++;
451            num_bits += expbits_tab[exp_idx];
452        }
453        if (num_bits >= bits_left - 32)
454            bias += i;
455    }
456
457    /* Calculate total number of bits. */
458    num_bits = 0;
459    for (i = 0; i < p->total_subbands; i++) {
460        exp_idx = av_clip_uintp2((bias - quant_index_table[i]) / 2, 3);
461        num_bits += expbits_tab[exp_idx];
462        exp_index1[i] = exp_idx;
463        exp_index2[i] = exp_idx;
464    }
465    tmpbias1 = tmpbias2 = num_bits;
466
467    for (j = 1; j < p->numvector_size; j++) {
468        if (tmpbias1 + tmpbias2 > 2 * bits_left) {  /* ---> */
469            int max = -999999;
470            index = -1;
471            for (i = 0; i < p->total_subbands; i++) {
472                if (exp_index1[i] < 7) {
473                    v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
474                    if (v >= max) {
475                        max   = v;
476                        index = i;
477                    }
478                }
479            }
480            if (index == -1)
481                break;
482            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
483            tmpbias1 -= expbits_tab[exp_index1[index]] -
484                        expbits_tab[exp_index1[index] + 1];
485            ++exp_index1[index];
486        } else {  /* <--- */
487            int min = 999999;
488            index = -1;
489            for (i = 0; i < p->total_subbands; i++) {
490                if (exp_index2[i] > 0) {
491                    v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
492                    if (v < min) {
493                        min   = v;
494                        index = i;
495                    }
496                }
497            }
498            if (index == -1)
499                break;
500            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
501            tmpbias2 -= expbits_tab[exp_index2[index]] -
502                        expbits_tab[exp_index2[index] - 1];
503            --exp_index2[index];
504        }
505    }
506
507    for (i = 0; i < p->total_subbands; i++)
508        category[i] = exp_index2[i];
509
510    for (i = 0; i < p->numvector_size - 1; i++)
511        category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
512}
513
514
515/**
516 * Expand the category vector.
517 *
518 * @param q                     pointer to the COOKContext
519 * @param category              pointer to the category array
520 * @param category_index        pointer to the category_index array
521 */
522static inline void expand_category(COOKContext *q, int *category,
523                                   int *category_index)
524{
525    int i;
526    for (i = 0; i < q->num_vectors; i++)
527    {
528        int idx = category_index[i];
529        if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
530            --category[idx];
531    }
532}
533
534/**
535 * The real requantization of the mltcoefs
536 *
537 * @param q                     pointer to the COOKContext
538 * @param index                 index
539 * @param quant_index           quantisation index
540 * @param subband_coef_index    array of indexes to quant_centroid_tab
541 * @param subband_coef_sign     signs of coefficients
542 * @param mlt_p                 pointer into the mlt buffer
543 */
544static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
545                                 int *subband_coef_index, int *subband_coef_sign,
546                                 float *mlt_p)
547{
548    int i;
549    float f1;
550
551    for (i = 0; i < SUBBAND_SIZE; i++) {
552        if (subband_coef_index[i]) {
553            f1 = quant_centroid_tab[index][subband_coef_index[i]];
554            if (subband_coef_sign[i])
555                f1 = -f1;
556        } else {
557            /* noise coding if subband_coef_index[i] == 0 */
558            f1 = dither_tab[index];
559            if (av_lfg_get(&q->random_state) < 0x80000000)
560                f1 = -f1;
561        }
562        mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
563    }
564}
565/**
566 * Unpack the subband_coef_index and subband_coef_sign vectors.
567 *
568 * @param q                     pointer to the COOKContext
569 * @param category              pointer to the category array
570 * @param subband_coef_index    array of indexes to quant_centroid_tab
571 * @param subband_coef_sign     signs of coefficients
572 */
573static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
574                       int *subband_coef_index, int *subband_coef_sign)
575{
576    int i, j;
577    int vlc, vd, tmp, result;
578
579    vd = vd_tab[category];
580    result = 0;
581    for (i = 0; i < vpr_tab[category]; i++) {
582        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
583        if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
584            vlc = 0;
585            result = 1;
586        }
587        for (j = vd - 1; j >= 0; j--) {
588            tmp = (vlc * invradix_tab[category]) / 0x100000;
589            subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
590            vlc = tmp;
591        }
592        for (j = 0; j < vd; j++) {
593            if (subband_coef_index[i * vd + j]) {
594                if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
595                    subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
596                } else {
597                    result = 1;
598                    subband_coef_sign[i * vd + j] = 0;
599                }
600            } else {
601                subband_coef_sign[i * vd + j] = 0;
602            }
603        }
604    }
605    return result;
606}
607
608
609/**
610 * Fill the mlt_buffer with mlt coefficients.
611 *
612 * @param q                 pointer to the COOKContext
613 * @param category          pointer to the category array
614 * @param quant_index_table pointer to the array
615 * @param mlt_buffer        pointer to mlt coefficients
616 */
617static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
618                           int *quant_index_table, float *mlt_buffer)
619{
620    /* A zero in this table means that the subband coefficient is
621       random noise coded. */
622    int subband_coef_index[SUBBAND_SIZE];
623    /* A zero in this table means that the subband coefficient is a
624       positive multiplicator. */
625    int subband_coef_sign[SUBBAND_SIZE];
626    int band, j;
627    int index = 0;
628
629    for (band = 0; band < p->total_subbands; band++) {
630        index = category[band];
631        if (category[band] < 7) {
632            if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
633                index = 7;
634                for (j = 0; j < p->total_subbands; j++)
635                    category[band + j] = 7;
636            }
637        }
638        if (index >= 7) {
639            memset(subband_coef_index, 0, sizeof(subband_coef_index));
640            memset(subband_coef_sign,  0, sizeof(subband_coef_sign));
641        }
642        q->scalar_dequant(q, index, quant_index_table[band],
643                          subband_coef_index, subband_coef_sign,
644                          &mlt_buffer[band * SUBBAND_SIZE]);
645    }
646
647    /* FIXME: should this be removed, or moved into loop above? */
648    if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
649        return;
650}
651
652
653static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
654{
655    int category_index[128] = { 0 };
656    int category[128]       = { 0 };
657    int quant_index_table[102];
658    int res, i;
659
660    if ((res = decode_envelope(q, p, quant_index_table)) < 0)
661        return res;
662    q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
663    categorize(q, p, quant_index_table, category, category_index);
664    expand_category(q, category, category_index);
665    for (i=0; i<p->total_subbands; i++) {
666        if (category[i] > 7)
667            return AVERROR_INVALIDDATA;
668    }
669    decode_vectors(q, p, category, quant_index_table, mlt_buffer);
670
671    return 0;
672}
673
674
675/**
676 * the actual requantization of the timedomain samples
677 *
678 * @param q                 pointer to the COOKContext
679 * @param buffer            pointer to the timedomain buffer
680 * @param gain_index        index for the block multiplier
681 * @param gain_index_next   index for the next block multiplier
682 */
683static void interpolate_float(COOKContext *q, float *buffer,
684                              int gain_index, int gain_index_next)
685{
686    int i;
687    float fc1, fc2;
688    fc1 = pow2tab[gain_index + 63];
689
690    if (gain_index == gain_index_next) {             // static gain
691        for (i = 0; i < q->gain_size_factor; i++)
692            buffer[i] *= fc1;
693    } else {                                        // smooth gain
694        fc2 = q->gain_table[15 + (gain_index_next - gain_index)];
695        for (i = 0; i < q->gain_size_factor; i++) {
696            buffer[i] *= fc1;
697            fc1       *= fc2;
698        }
699    }
700}
701
702/**
703 * Apply transform window, overlap buffers.
704 *
705 * @param q                 pointer to the COOKContext
706 * @param inbuffer          pointer to the mltcoefficients
707 * @param gains_ptr         current and previous gains
708 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
709 */
710static void imlt_window_float(COOKContext *q, float *inbuffer,
711                              cook_gains *gains_ptr, float *previous_buffer)
712{
713    const float fc = pow2tab[gains_ptr->previous[0] + 63];
714    int i;
715    /* The weird thing here, is that the two halves of the time domain
716     * buffer are swapped. Also, the newest data, that we save away for
717     * next frame, has the wrong sign. Hence the subtraction below.
718     * Almost sounds like a complex conjugate/reverse data/FFT effect.
719     */
720
721    /* Apply window and overlap */
722    for (i = 0; i < q->samples_per_channel; i++)
723        inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
724                      previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
725}
726
727/**
728 * The modulated lapped transform, this takes transform coefficients
729 * and transforms them into timedomain samples.
730 * Apply transform window, overlap buffers, apply gain profile
731 * and buffer management.
732 *
733 * @param q                 pointer to the COOKContext
734 * @param inbuffer          pointer to the mltcoefficients
735 * @param gains_ptr         current and previous gains
736 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
737 */
738static void imlt_gain(COOKContext *q, float *inbuffer,
739                      cook_gains *gains_ptr, float *previous_buffer)
740{
741    float *buffer0 = q->mono_mdct_output;
742    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
743    int i;
744
745    /* Inverse modified discrete cosine transform */
746    q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
747
748    q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
749
750    /* Apply gain profile */
751    for (i = 0; i < 8; i++)
752        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
753            q->interpolate(q, &buffer1[q->gain_size_factor * i],
754                           gains_ptr->now[i], gains_ptr->now[i + 1]);
755
756    /* Save away the current to be previous block. */
757    memcpy(previous_buffer, buffer0,
758           q->samples_per_channel * sizeof(*previous_buffer));
759}
760
761
762/**
763 * function for getting the jointstereo coupling information
764 *
765 * @param q                 pointer to the COOKContext
766 * @param decouple_tab      decoupling array
767 */
768static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
769{
770    int i;
771    int vlc    = get_bits1(&q->gb);
772    int start  = cplband[p->js_subband_start];
773    int end    = cplband[p->subbands - 1];
774    int length = end - start + 1;
775
776    if (start > end)
777        return 0;
778
779    if (vlc)
780        for (i = 0; i < length; i++)
781            decouple_tab[start + i] = get_vlc2(&q->gb,
782                                               p->channel_coupling.table,
783                                               COUPLING_VLC_BITS, 3);
784    else
785        for (i = 0; i < length; i++) {
786            int v = get_bits(&q->gb, p->js_vlc_bits);
787            if (v == (1<<p->js_vlc_bits)-1) {
788                av_log(q->avctx, AV_LOG_ERROR, "decouple value too large\n");
789                return AVERROR_INVALIDDATA;
790            }
791            decouple_tab[start + i] = v;
792        }
793    return 0;
794}
795
796/**
797 * function decouples a pair of signals from a single signal via multiplication.
798 *
799 * @param q                 pointer to the COOKContext
800 * @param subband           index of the current subband
801 * @param f1                multiplier for channel 1 extraction
802 * @param f2                multiplier for channel 2 extraction
803 * @param decode_buffer     input buffer
804 * @param mlt_buffer1       pointer to left channel mlt coefficients
805 * @param mlt_buffer2       pointer to right channel mlt coefficients
806 */
807static void decouple_float(COOKContext *q,
808                           COOKSubpacket *p,
809                           int subband,
810                           float f1, float f2,
811                           float *decode_buffer,
812                           float *mlt_buffer1, float *mlt_buffer2)
813{
814    int j, tmp_idx;
815    for (j = 0; j < SUBBAND_SIZE; j++) {
816        tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
817        mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
818        mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
819    }
820}
821
822/**
823 * function for decoding joint stereo data
824 *
825 * @param q                 pointer to the COOKContext
826 * @param mlt_buffer1       pointer to left channel mlt coefficients
827 * @param mlt_buffer2       pointer to right channel mlt coefficients
828 */
829static int joint_decode(COOKContext *q, COOKSubpacket *p,
830                        float *mlt_buffer_left, float *mlt_buffer_right)
831{
832    int i, j, res;
833    int decouple_tab[SUBBAND_SIZE] = { 0 };
834    float *decode_buffer = q->decode_buffer_0;
835    int idx, cpl_tmp;
836    float f1, f2;
837    const float *cplscale;
838
839    memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
840
841    /* Make sure the buffers are zeroed out. */
842    memset(mlt_buffer_left,  0, 1024 * sizeof(*mlt_buffer_left));
843    memset(mlt_buffer_right, 0, 1024 * sizeof(*mlt_buffer_right));
844    if ((res = decouple_info(q, p, decouple_tab)) < 0)
845        return res;
846    if ((res = mono_decode(q, p, decode_buffer)) < 0)
847        return res;
848    /* The two channels are stored interleaved in decode_buffer. */
849    for (i = 0; i < p->js_subband_start; i++) {
850        for (j = 0; j < SUBBAND_SIZE; j++) {
851            mlt_buffer_left[i  * 20 + j] = decode_buffer[i * 40 + j];
852            mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
853        }
854    }
855
856    /* When we reach js_subband_start (the higher frequencies)
857       the coefficients are stored in a coupling scheme. */
858    idx = (1 << p->js_vlc_bits) - 1;
859    for (i = p->js_subband_start; i < p->subbands; i++) {
860        cpl_tmp = cplband[i];
861        idx -= decouple_tab[cpl_tmp];
862        cplscale = q->cplscales[p->js_vlc_bits - 2];  // choose decoupler table
863        f1 = cplscale[decouple_tab[cpl_tmp] + 1];
864        f2 = cplscale[idx];
865        q->decouple(q, p, i, f1, f2, decode_buffer,
866                    mlt_buffer_left, mlt_buffer_right);
867        idx = (1 << p->js_vlc_bits) - 1;
868    }
869
870    return 0;
871}
872
873/**
874 * First part of subpacket decoding:
875 *  decode raw stream bytes and read gain info.
876 *
877 * @param q                 pointer to the COOKContext
878 * @param inbuffer          pointer to raw stream data
879 * @param gains_ptr         array of current/prev gain pointers
880 */
881static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
882                                         const uint8_t *inbuffer,
883                                         cook_gains *gains_ptr)
884{
885    int offset;
886
887    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
888                          p->bits_per_subpacket / 8);
889    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
890                  p->bits_per_subpacket);
891    decode_gain_info(&q->gb, gains_ptr->now);
892
893    /* Swap current and previous gains */
894    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
895}
896
897/**
898 * Saturate the output signal and interleave.
899 *
900 * @param q                 pointer to the COOKContext
901 * @param out               pointer to the output vector
902 */
903static void saturate_output_float(COOKContext *q, float *out)
904{
905    q->adsp.vector_clipf(out, q->mono_mdct_output + q->samples_per_channel,
906                         FFALIGN(q->samples_per_channel, 8), -1.0f, 1.0f);
907}
908
909
910/**
911 * Final part of subpacket decoding:
912 *  Apply modulated lapped transform, gain compensation,
913 *  clip and convert to integer.
914 *
915 * @param q                 pointer to the COOKContext
916 * @param decode_buffer     pointer to the mlt coefficients
917 * @param gains_ptr         array of current/prev gain pointers
918 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
919 * @param out               pointer to the output buffer
920 */
921static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
922                                         cook_gains *gains_ptr, float *previous_buffer,
923                                         float *out)
924{
925    imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
926    if (out)
927        q->saturate_output(q, out);
928}
929
930
931/**
932 * Cook subpacket decoding. This function returns one decoded subpacket,
933 * usually 1024 samples per channel.
934 *
935 * @param q                 pointer to the COOKContext
936 * @param inbuffer          pointer to the inbuffer
937 * @param outbuffer         pointer to the outbuffer
938 */
939static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
940                            const uint8_t *inbuffer, float **outbuffer)
941{
942    int sub_packet_size = p->size;
943    int res;
944
945    memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
946    decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
947
948    if (p->joint_stereo) {
949        if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
950            return res;
951    } else {
952        if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
953            return res;
954
955        if (p->num_channels == 2) {
956            decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
957            if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
958                return res;
959        }
960    }
961
962    mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
963                          p->mono_previous_buffer1,
964                          outbuffer ? outbuffer[p->ch_idx] : NULL);
965
966    if (p->num_channels == 2) {
967        if (p->joint_stereo)
968            mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
969                                  p->mono_previous_buffer2,
970                                  outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
971        else
972            mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
973                                  p->mono_previous_buffer2,
974                                  outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
975    }
976
977    return 0;
978}
979
980
981static int cook_decode_frame(AVCodecContext *avctx, AVFrame *frame,
982                             int *got_frame_ptr, AVPacket *avpkt)
983{
984    const uint8_t *buf = avpkt->data;
985    int buf_size = avpkt->size;
986    COOKContext *q = avctx->priv_data;
987    float **samples = NULL;
988    int i, ret;
989    int offset = 0;
990    int chidx = 0;
991
992    if (buf_size < avctx->block_align)
993        return buf_size;
994
995    /* get output buffer */
996    if (q->discarded_packets >= 2) {
997        frame->nb_samples = q->samples_per_channel;
998        if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
999            return ret;
1000        samples = (float **)frame->extended_data;
1001    }
1002
1003    /* estimate subpacket sizes */
1004    q->subpacket[0].size = avctx->block_align;
1005
1006    for (i = 1; i < q->num_subpackets; i++) {
1007        q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
1008        q->subpacket[0].size -= q->subpacket[i].size + 1;
1009        if (q->subpacket[0].size < 0) {
1010            av_log(avctx, AV_LOG_DEBUG,
1011                   "frame subpacket size total > avctx->block_align!\n");
1012            return AVERROR_INVALIDDATA;
1013        }
1014    }
1015
1016    /* decode supbackets */
1017    for (i = 0; i < q->num_subpackets; i++) {
1018        q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
1019                                              q->subpacket[i].bits_per_subpdiv;
1020        q->subpacket[i].ch_idx = chidx;
1021        av_log(avctx, AV_LOG_DEBUG,
1022               "subpacket[%i] size %i js %i %i block_align %i\n",
1023               i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
1024               avctx->block_align);
1025
1026        if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
1027            return ret;
1028        offset += q->subpacket[i].size;
1029        chidx += q->subpacket[i].num_channels;
1030        av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
1031               i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
1032    }
1033
1034    /* Discard the first two frames: no valid audio. */
1035    if (q->discarded_packets < 2) {
1036        q->discarded_packets++;
1037        *got_frame_ptr = 0;
1038        return avctx->block_align;
1039    }
1040
1041    *got_frame_ptr = 1;
1042
1043    return avctx->block_align;
1044}
1045
1046static void dump_cook_context(COOKContext *q)
1047{
1048    //int i=0;
1049#define PRINT(a, b) ff_dlog(q->avctx, " %s = %d\n", a, b);
1050    ff_dlog(q->avctx, "COOKextradata\n");
1051    ff_dlog(q->avctx, "cookversion=%x\n", q->subpacket[0].cookversion);
1052    if (q->subpacket[0].cookversion > STEREO) {
1053        PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1054        PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
1055    }
1056    ff_dlog(q->avctx, "COOKContext\n");
1057    PRINT("nb_channels", q->avctx->ch_layout.nb_channels);
1058    PRINT("bit_rate", (int)q->avctx->bit_rate);
1059    PRINT("sample_rate", q->avctx->sample_rate);
1060    PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
1061    PRINT("subbands", q->subpacket[0].subbands);
1062    PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1063    PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
1064    PRINT("numvector_size", q->subpacket[0].numvector_size);
1065    PRINT("total_subbands", q->subpacket[0].total_subbands);
1066}
1067
1068/**
1069 * Cook initialization
1070 *
1071 * @param avctx     pointer to the AVCodecContext
1072 */
1073static av_cold int cook_decode_init(AVCodecContext *avctx)
1074{
1075    static AVOnce init_static_once = AV_ONCE_INIT;
1076    COOKContext *q = avctx->priv_data;
1077    GetByteContext gb;
1078    int s = 0;
1079    unsigned int channel_mask = 0;
1080    int samples_per_frame = 0;
1081    int ret;
1082    int channels = avctx->ch_layout.nb_channels;
1083
1084    q->avctx = avctx;
1085
1086    /* Take care of the codec specific extradata. */
1087    if (avctx->extradata_size < 8) {
1088        av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
1089        return AVERROR_INVALIDDATA;
1090    }
1091    av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
1092
1093    bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
1094
1095    /* Take data from the AVCodecContext (RM container). */
1096    if (!channels) {
1097        av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
1098        return AVERROR_INVALIDDATA;
1099    }
1100
1101    if (avctx->block_align >= INT_MAX / 8)
1102        return AVERROR(EINVAL);
1103
1104    /* Initialize RNG. */
1105    av_lfg_init(&q->random_state, 0);
1106
1107    ff_audiodsp_init(&q->adsp);
1108
1109    while (bytestream2_get_bytes_left(&gb)) {
1110        if (s >= FFMIN(MAX_SUBPACKETS, avctx->block_align)) {
1111            avpriv_request_sample(avctx, "subpackets > %d", FFMIN(MAX_SUBPACKETS, avctx->block_align));
1112            return AVERROR_PATCHWELCOME;
1113        }
1114        /* 8 for mono, 16 for stereo, ? for multichannel
1115           Swap to right endianness so we don't need to care later on. */
1116        q->subpacket[s].cookversion      = bytestream2_get_be32(&gb);
1117        samples_per_frame                = bytestream2_get_be16(&gb);
1118        q->subpacket[s].subbands         = bytestream2_get_be16(&gb);
1119        bytestream2_get_be32(&gb);    // Unknown unused
1120        q->subpacket[s].js_subband_start = bytestream2_get_be16(&gb);
1121        if (q->subpacket[s].js_subband_start >= 51) {
1122            av_log(avctx, AV_LOG_ERROR, "js_subband_start %d is too large\n", q->subpacket[s].js_subband_start);
1123            return AVERROR_INVALIDDATA;
1124        }
1125        q->subpacket[s].js_vlc_bits      = bytestream2_get_be16(&gb);
1126
1127        /* Initialize extradata related variables. */
1128        q->subpacket[s].samples_per_channel = samples_per_frame / channels;
1129        q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1130
1131        /* Initialize default data states. */
1132        q->subpacket[s].log2_numvector_size = 5;
1133        q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1134        q->subpacket[s].num_channels = 1;
1135
1136        /* Initialize version-dependent variables */
1137
1138        av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
1139               q->subpacket[s].cookversion);
1140        q->subpacket[s].joint_stereo = 0;
1141        switch (q->subpacket[s].cookversion) {
1142        case MONO:
1143            if (channels != 1) {
1144                avpriv_request_sample(avctx, "Container channels != 1");
1145                return AVERROR_PATCHWELCOME;
1146            }
1147            av_log(avctx, AV_LOG_DEBUG, "MONO\n");
1148            break;
1149        case STEREO:
1150            if (channels != 1) {
1151                q->subpacket[s].bits_per_subpdiv = 1;
1152                q->subpacket[s].num_channels = 2;
1153            }
1154            av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
1155            break;
1156        case JOINT_STEREO:
1157            if (channels != 2) {
1158                avpriv_request_sample(avctx, "Container channels != 2");
1159                return AVERROR_PATCHWELCOME;
1160            }
1161            av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
1162            if (avctx->extradata_size >= 16) {
1163                q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1164                                                 q->subpacket[s].js_subband_start;
1165                q->subpacket[s].joint_stereo = 1;
1166                q->subpacket[s].num_channels = 2;
1167            }
1168            if (q->subpacket[s].samples_per_channel > 256) {
1169                q->subpacket[s].log2_numvector_size = 6;
1170            }
1171            if (q->subpacket[s].samples_per_channel > 512) {
1172                q->subpacket[s].log2_numvector_size = 7;
1173            }
1174            break;
1175        case MC_COOK:
1176            av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
1177            channel_mask |= q->subpacket[s].channel_mask = bytestream2_get_be32(&gb);
1178
1179            if (av_popcount64(q->subpacket[s].channel_mask) > 1) {
1180                q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1181                                                 q->subpacket[s].js_subband_start;
1182                q->subpacket[s].joint_stereo = 1;
1183                q->subpacket[s].num_channels = 2;
1184                q->subpacket[s].samples_per_channel = samples_per_frame >> 1;
1185
1186                if (q->subpacket[s].samples_per_channel > 256) {
1187                    q->subpacket[s].log2_numvector_size = 6;
1188                }
1189                if (q->subpacket[s].samples_per_channel > 512) {
1190                    q->subpacket[s].log2_numvector_size = 7;
1191                }
1192            } else
1193                q->subpacket[s].samples_per_channel = samples_per_frame;
1194
1195            break;
1196        default:
1197            avpriv_request_sample(avctx, "Cook version %d",
1198                                  q->subpacket[s].cookversion);
1199            return AVERROR_PATCHWELCOME;
1200        }
1201
1202        if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1203            av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
1204            return AVERROR_INVALIDDATA;
1205        } else
1206            q->samples_per_channel = q->subpacket[0].samples_per_channel;
1207
1208
1209        /* Initialize variable relations */
1210        q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1211
1212        /* Try to catch some obviously faulty streams, otherwise it might be exploitable */
1213        if (q->subpacket[s].total_subbands > 53) {
1214            avpriv_request_sample(avctx, "total_subbands > 53");
1215            return AVERROR_PATCHWELCOME;
1216        }
1217
1218        if ((q->subpacket[s].js_vlc_bits > 6) ||
1219            (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
1220            av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
1221                   q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
1222            return AVERROR_INVALIDDATA;
1223        }
1224
1225        if (q->subpacket[s].subbands > 50) {
1226            avpriv_request_sample(avctx, "subbands > 50");
1227            return AVERROR_PATCHWELCOME;
1228        }
1229        if (q->subpacket[s].subbands == 0) {
1230            avpriv_request_sample(avctx, "subbands = 0");
1231            return AVERROR_PATCHWELCOME;
1232        }
1233        q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
1234        q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1235        q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
1236        q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1237
1238        if (q->num_subpackets + q->subpacket[s].num_channels > channels) {
1239            av_log(avctx, AV_LOG_ERROR, "Too many subpackets %d for channels %d\n", q->num_subpackets, channels);
1240            return AVERROR_INVALIDDATA;
1241        }
1242
1243        q->num_subpackets++;
1244        s++;
1245    }
1246
1247    /* Try to catch some obviously faulty streams, otherwise it might be exploitable */
1248    if (q->samples_per_channel != 256 && q->samples_per_channel != 512 &&
1249        q->samples_per_channel != 1024) {
1250        avpriv_request_sample(avctx, "samples_per_channel = %d",
1251                              q->samples_per_channel);
1252        return AVERROR_PATCHWELCOME;
1253    }
1254
1255    /* Generate tables */
1256    ff_thread_once(&init_static_once, init_pow2table);
1257    init_gain_table(q);
1258    init_cplscales_table(q);
1259
1260    if ((ret = init_cook_vlc_tables(q)))
1261        return ret;
1262
1263    /* Pad the databuffer with:
1264       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1265       AV_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1266    q->decoded_bytes_buffer =
1267        av_mallocz(avctx->block_align
1268                   + DECODE_BYTES_PAD1(avctx->block_align)
1269                   + AV_INPUT_BUFFER_PADDING_SIZE);
1270    if (!q->decoded_bytes_buffer)
1271        return AVERROR(ENOMEM);
1272
1273    /* Initialize transform. */
1274    if ((ret = init_cook_mlt(q)))
1275        return ret;
1276
1277    /* Initialize COOK signal arithmetic handling */
1278    if (1) {
1279        q->scalar_dequant  = scalar_dequant_float;
1280        q->decouple        = decouple_float;
1281        q->imlt_window     = imlt_window_float;
1282        q->interpolate     = interpolate_float;
1283        q->saturate_output = saturate_output_float;
1284    }
1285
1286    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
1287    av_channel_layout_uninit(&avctx->ch_layout);
1288    if (channel_mask)
1289        av_channel_layout_from_mask(&avctx->ch_layout, channel_mask);
1290    else
1291        av_channel_layout_default(&avctx->ch_layout, channels);
1292
1293
1294    dump_cook_context(q);
1295
1296    return 0;
1297}
1298
1299const FFCodec ff_cook_decoder = {
1300    .p.name         = "cook",
1301    .p.long_name    = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"),
1302    .p.type         = AVMEDIA_TYPE_AUDIO,
1303    .p.id           = AV_CODEC_ID_COOK,
1304    .priv_data_size = sizeof(COOKContext),
1305    .init           = cook_decode_init,
1306    .close          = cook_decode_close,
1307    FF_CODEC_DECODE_CB(cook_decode_frame),
1308    .p.capabilities = AV_CODEC_CAP_DR1,
1309    .p.sample_fmts  = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1310                                                      AV_SAMPLE_FMT_NONE },
1311    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
1312};
1313