1/* 2 * Bink video decoder 3 * Copyright (c) 2009 Konstantin Shishkov 4 * Copyright (C) 2011 Peter Ross <pross@xvid.org> 5 * 6 * This file is part of FFmpeg. 7 * 8 * FFmpeg is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU Lesser General Public 10 * License as published by the Free Software Foundation; either 11 * version 2.1 of the License, or (at your option) any later version. 12 * 13 * FFmpeg is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * Lesser General Public License for more details. 17 * 18 * You should have received a copy of the GNU Lesser General Public 19 * License along with FFmpeg; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 21 */ 22 23#include "libavutil/attributes.h" 24#include "libavutil/imgutils.h" 25#include "libavutil/internal.h" 26#include "libavutil/mem_internal.h" 27#include "libavutil/thread.h" 28 29#define BITSTREAM_READER_LE 30#include "avcodec.h" 31#include "binkdata.h" 32#include "binkdsp.h" 33#include "blockdsp.h" 34#include "codec_internal.h" 35#include "get_bits.h" 36#include "hpeldsp.h" 37#include "internal.h" 38#include "mathops.h" 39 40#define BINK_FLAG_ALPHA 0x00100000 41#define BINK_FLAG_GRAY 0x00020000 42 43static VLC bink_trees[16]; 44 45/** 46 * IDs for different data types used in old version of Bink video codec 47 */ 48enum OldSources { 49 BINKB_SRC_BLOCK_TYPES = 0, ///< 8x8 block types 50 BINKB_SRC_COLORS, ///< pixel values used for different block types 51 BINKB_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill 52 BINKB_SRC_X_OFF, ///< X components of motion value 53 BINKB_SRC_Y_OFF, ///< Y components of motion value 54 BINKB_SRC_INTRA_DC, ///< DC values for intrablocks with DCT 55 BINKB_SRC_INTER_DC, ///< DC values for interblocks with DCT 56 BINKB_SRC_INTRA_Q, ///< quantizer values for intrablocks with DCT 57 BINKB_SRC_INTER_Q, ///< quantizer values for interblocks with DCT 58 BINKB_SRC_INTER_COEFS, ///< number of coefficients for residue blocks 59 60 BINKB_NB_SRC 61}; 62 63static const int binkb_bundle_sizes[BINKB_NB_SRC] = { 64 4, 8, 8, 5, 5, 11, 11, 4, 4, 7 65}; 66 67static const int binkb_bundle_signed[BINKB_NB_SRC] = { 68 0, 0, 0, 1, 1, 0, 1, 0, 0, 0 69}; 70 71static int32_t binkb_intra_quant[16][64]; 72static int32_t binkb_inter_quant[16][64]; 73 74/** 75 * IDs for different data types used in Bink video codec 76 */ 77enum Sources { 78 BINK_SRC_BLOCK_TYPES = 0, ///< 8x8 block types 79 BINK_SRC_SUB_BLOCK_TYPES, ///< 16x16 block types (a subset of 8x8 block types) 80 BINK_SRC_COLORS, ///< pixel values used for different block types 81 BINK_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill 82 BINK_SRC_X_OFF, ///< X components of motion value 83 BINK_SRC_Y_OFF, ///< Y components of motion value 84 BINK_SRC_INTRA_DC, ///< DC values for intrablocks with DCT 85 BINK_SRC_INTER_DC, ///< DC values for interblocks with DCT 86 BINK_SRC_RUN, ///< run lengths for special fill block 87 88 BINK_NB_SRC 89}; 90 91/** 92 * data needed to decode 4-bit Huffman-coded value 93 */ 94typedef struct Tree { 95 int vlc_num; ///< tree number (in bink_trees[]) 96 uint8_t syms[16]; ///< leaf value to symbol mapping 97} Tree; 98 99#define GET_HUFF(gb, tree) (tree).syms[get_vlc2(gb, bink_trees[(tree).vlc_num].table,\ 100 bink_trees[(tree).vlc_num].bits, 1)] 101 102/** 103 * data structure used for decoding single Bink data type 104 */ 105typedef struct Bundle { 106 int len; ///< length of number of entries to decode (in bits) 107 Tree tree; ///< Huffman tree-related data 108 uint8_t *data; ///< buffer for decoded symbols 109 uint8_t *data_end; ///< buffer end 110 uint8_t *cur_dec; ///< pointer to the not yet decoded part of the buffer 111 uint8_t *cur_ptr; ///< pointer to the data that is not read from buffer yet 112} Bundle; 113 114/* 115 * Decoder context 116 */ 117typedef struct BinkContext { 118 AVCodecContext *avctx; 119 BlockDSPContext bdsp; 120 op_pixels_func put_pixels_tab; 121 BinkDSPContext binkdsp; 122 AVFrame *last; 123 int version; ///< internal Bink file version 124 int has_alpha; 125 int swap_planes; 126 unsigned frame_num; 127 128 Bundle bundle[BINKB_NB_SRC]; ///< bundles for decoding all data types 129 Tree col_high[16]; ///< trees for decoding high nibble in "colours" data type 130 int col_lastval; ///< value of last decoded high nibble in "colours" data type 131} BinkContext; 132 133/** 134 * Bink video block types 135 */ 136enum BlockTypes { 137 SKIP_BLOCK = 0, ///< skipped block 138 SCALED_BLOCK, ///< block has size 16x16 139 MOTION_BLOCK, ///< block is copied from previous frame with some offset 140 RUN_BLOCK, ///< block is composed from runs of colours with custom scan order 141 RESIDUE_BLOCK, ///< motion block with some difference added 142 INTRA_BLOCK, ///< intra DCT block 143 FILL_BLOCK, ///< block is filled with single colour 144 INTER_BLOCK, ///< motion block with DCT applied to the difference 145 PATTERN_BLOCK, ///< block is filled with two colours following custom pattern 146 RAW_BLOCK, ///< uncoded 8x8 block 147}; 148 149/** 150 * Initialize length in all bundles. 151 * 152 * @param c decoder context 153 * @param width plane width 154 * @param bw plane width in 8x8 blocks 155 */ 156static void init_lengths(BinkContext *c, int width, int bw) 157{ 158 width = FFALIGN(width, 8); 159 160 c->bundle[BINK_SRC_BLOCK_TYPES].len = av_log2((width >> 3) + 511) + 1; 161 162 c->bundle[BINK_SRC_SUB_BLOCK_TYPES].len = av_log2((width >> 4) + 511) + 1; 163 164 c->bundle[BINK_SRC_COLORS].len = av_log2(bw*64 + 511) + 1; 165 166 c->bundle[BINK_SRC_INTRA_DC].len = 167 c->bundle[BINK_SRC_INTER_DC].len = 168 c->bundle[BINK_SRC_X_OFF].len = 169 c->bundle[BINK_SRC_Y_OFF].len = av_log2((width >> 3) + 511) + 1; 170 171 c->bundle[BINK_SRC_PATTERN].len = av_log2((bw << 3) + 511) + 1; 172 173 c->bundle[BINK_SRC_RUN].len = av_log2(bw*48 + 511) + 1; 174} 175 176/** 177 * Allocate memory for bundles. 178 * 179 * @param c decoder context 180 */ 181static av_cold int init_bundles(BinkContext *c) 182{ 183 int bw, bh, blocks; 184 uint8_t *tmp; 185 int i; 186 187 bw = (c->avctx->width + 7) >> 3; 188 bh = (c->avctx->height + 7) >> 3; 189 blocks = bw * bh; 190 191 tmp = av_calloc(blocks, 64 * BINKB_NB_SRC); 192 if (!tmp) 193 return AVERROR(ENOMEM); 194 for (i = 0; i < BINKB_NB_SRC; i++) { 195 c->bundle[i].data = tmp; 196 tmp += blocks * 64; 197 c->bundle[i].data_end = tmp; 198 } 199 200 return 0; 201} 202 203/** 204 * Free memory used by bundles. 205 * 206 * @param c decoder context 207 */ 208static av_cold void free_bundles(BinkContext *c) 209{ 210 av_freep(&c->bundle[0].data); 211} 212 213/** 214 * Merge two consequent lists of equal size depending on bits read. 215 * 216 * @param gb context for reading bits 217 * @param dst buffer where merged list will be written to 218 * @param src pointer to the head of the first list (the second lists starts at src+size) 219 * @param size input lists size 220 */ 221static void merge(GetBitContext *gb, uint8_t *dst, uint8_t *src, int size) 222{ 223 uint8_t *src2 = src + size; 224 int size2 = size; 225 226 do { 227 if (!get_bits1(gb)) { 228 *dst++ = *src++; 229 size--; 230 } else { 231 *dst++ = *src2++; 232 size2--; 233 } 234 } while (size && size2); 235 236 while (size--) 237 *dst++ = *src++; 238 while (size2--) 239 *dst++ = *src2++; 240} 241 242/** 243 * Read information about Huffman tree used to decode data. 244 * 245 * @param gb context for reading bits 246 * @param tree pointer for storing tree data 247 */ 248static int read_tree(GetBitContext *gb, Tree *tree) 249{ 250 uint8_t tmp1[16] = { 0 }, tmp2[16], *in = tmp1, *out = tmp2; 251 int i, t, len; 252 253 if (get_bits_left(gb) < 4) 254 return AVERROR_INVALIDDATA; 255 256 tree->vlc_num = get_bits(gb, 4); 257 if (!tree->vlc_num) { 258 for (i = 0; i < 16; i++) 259 tree->syms[i] = i; 260 return 0; 261 } 262 if (get_bits1(gb)) { 263 len = get_bits(gb, 3); 264 for (i = 0; i <= len; i++) { 265 tree->syms[i] = get_bits(gb, 4); 266 tmp1[tree->syms[i]] = 1; 267 } 268 for (i = 0; i < 16 && len < 16 - 1; i++) 269 if (!tmp1[i]) 270 tree->syms[++len] = i; 271 } else { 272 len = get_bits(gb, 2); 273 for (i = 0; i < 16; i++) 274 in[i] = i; 275 for (i = 0; i <= len; i++) { 276 int size = 1 << i; 277 for (t = 0; t < 16; t += size << 1) 278 merge(gb, out + t, in + t, size); 279 FFSWAP(uint8_t*, in, out); 280 } 281 memcpy(tree->syms, in, 16); 282 } 283 return 0; 284} 285 286/** 287 * Prepare bundle for decoding data. 288 * 289 * @param gb context for reading bits 290 * @param c decoder context 291 * @param bundle_num number of the bundle to initialize 292 */ 293static int read_bundle(GetBitContext *gb, BinkContext *c, int bundle_num) 294{ 295 int i; 296 297 if (bundle_num == BINK_SRC_COLORS) { 298 for (i = 0; i < 16; i++) { 299 int ret = read_tree(gb, &c->col_high[i]); 300 if (ret < 0) 301 return ret; 302 } 303 c->col_lastval = 0; 304 } 305 if (bundle_num != BINK_SRC_INTRA_DC && bundle_num != BINK_SRC_INTER_DC) { 306 int ret = read_tree(gb, &c->bundle[bundle_num].tree); 307 if (ret < 0) 308 return ret; 309 } 310 c->bundle[bundle_num].cur_dec = 311 c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data; 312 313 return 0; 314} 315 316/** 317 * common check before starting decoding bundle data 318 * 319 * @param gb context for reading bits 320 * @param b bundle 321 * @param t variable where number of elements to decode will be stored 322 */ 323#define CHECK_READ_VAL(gb, b, t) \ 324 if (!b->cur_dec || (b->cur_dec > b->cur_ptr)) \ 325 return 0; \ 326 t = get_bits(gb, b->len); \ 327 if (!t) { \ 328 b->cur_dec = NULL; \ 329 return 0; \ 330 } \ 331 332static int read_runs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b) 333{ 334 int t, v; 335 const uint8_t *dec_end; 336 337 CHECK_READ_VAL(gb, b, t); 338 dec_end = b->cur_dec + t; 339 if (dec_end > b->data_end) { 340 av_log(avctx, AV_LOG_ERROR, "Run value went out of bounds\n"); 341 return AVERROR_INVALIDDATA; 342 } 343 if (get_bits_left(gb) < 1) 344 return AVERROR_INVALIDDATA; 345 if (get_bits1(gb)) { 346 v = get_bits(gb, 4); 347 memset(b->cur_dec, v, t); 348 b->cur_dec += t; 349 } else { 350 while (b->cur_dec < dec_end) 351 *b->cur_dec++ = GET_HUFF(gb, b->tree); 352 } 353 return 0; 354} 355 356static int read_motion_values(AVCodecContext *avctx, GetBitContext *gb, Bundle *b) 357{ 358 int t, sign, v; 359 const uint8_t *dec_end; 360 361 CHECK_READ_VAL(gb, b, t); 362 dec_end = b->cur_dec + t; 363 if (dec_end > b->data_end) { 364 av_log(avctx, AV_LOG_ERROR, "Too many motion values\n"); 365 return AVERROR_INVALIDDATA; 366 } 367 if (get_bits_left(gb) < 1) 368 return AVERROR_INVALIDDATA; 369 if (get_bits1(gb)) { 370 v = get_bits(gb, 4); 371 if (v) { 372 sign = -get_bits1(gb); 373 v = (v ^ sign) - sign; 374 } 375 memset(b->cur_dec, v, t); 376 b->cur_dec += t; 377 } else { 378 while (b->cur_dec < dec_end) { 379 v = GET_HUFF(gb, b->tree); 380 if (v) { 381 sign = -get_bits1(gb); 382 v = (v ^ sign) - sign; 383 } 384 *b->cur_dec++ = v; 385 } 386 } 387 return 0; 388} 389 390static const uint8_t bink_rlelens[4] = { 4, 8, 12, 32 }; 391 392static int read_block_types(AVCodecContext *avctx, GetBitContext *gb, Bundle *b) 393{ 394 BinkContext * const c = avctx->priv_data; 395 int t, v; 396 int last = 0; 397 const uint8_t *dec_end; 398 399 CHECK_READ_VAL(gb, b, t); 400 if (c->version == 'k') { 401 t ^= 0xBBu; 402 if (t == 0) { 403 b->cur_dec = NULL; 404 return 0; 405 } 406 } 407 dec_end = b->cur_dec + t; 408 if (dec_end > b->data_end) { 409 av_log(avctx, AV_LOG_ERROR, "Too many block type values\n"); 410 return AVERROR_INVALIDDATA; 411 } 412 if (get_bits_left(gb) < 1) 413 return AVERROR_INVALIDDATA; 414 if (get_bits1(gb)) { 415 v = get_bits(gb, 4); 416 memset(b->cur_dec, v, t); 417 b->cur_dec += t; 418 } else { 419 while (b->cur_dec < dec_end) { 420 v = GET_HUFF(gb, b->tree); 421 if (v < 12) { 422 last = v; 423 *b->cur_dec++ = v; 424 } else { 425 int run = bink_rlelens[v - 12]; 426 427 if (dec_end - b->cur_dec < run) 428 return AVERROR_INVALIDDATA; 429 memset(b->cur_dec, last, run); 430 b->cur_dec += run; 431 } 432 } 433 } 434 return 0; 435} 436 437static int read_patterns(AVCodecContext *avctx, GetBitContext *gb, Bundle *b) 438{ 439 int t, v; 440 const uint8_t *dec_end; 441 442 CHECK_READ_VAL(gb, b, t); 443 dec_end = b->cur_dec + t; 444 if (dec_end > b->data_end) { 445 av_log(avctx, AV_LOG_ERROR, "Too many pattern values\n"); 446 return AVERROR_INVALIDDATA; 447 } 448 while (b->cur_dec < dec_end) { 449 if (get_bits_left(gb) < 2) 450 return AVERROR_INVALIDDATA; 451 v = GET_HUFF(gb, b->tree); 452 v |= GET_HUFF(gb, b->tree) << 4; 453 *b->cur_dec++ = v; 454 } 455 456 return 0; 457} 458 459static int read_colors(GetBitContext *gb, Bundle *b, BinkContext *c) 460{ 461 int t, sign, v; 462 const uint8_t *dec_end; 463 464 CHECK_READ_VAL(gb, b, t); 465 dec_end = b->cur_dec + t; 466 if (dec_end > b->data_end) { 467 av_log(c->avctx, AV_LOG_ERROR, "Too many color values\n"); 468 return AVERROR_INVALIDDATA; 469 } 470 if (get_bits_left(gb) < 1) 471 return AVERROR_INVALIDDATA; 472 if (get_bits1(gb)) { 473 c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]); 474 v = GET_HUFF(gb, b->tree); 475 v = (c->col_lastval << 4) | v; 476 if (c->version < 'i') { 477 sign = ((int8_t) v) >> 7; 478 v = ((v & 0x7F) ^ sign) - sign; 479 v += 0x80; 480 } 481 memset(b->cur_dec, v, t); 482 b->cur_dec += t; 483 } else { 484 while (b->cur_dec < dec_end) { 485 if (get_bits_left(gb) < 2) 486 return AVERROR_INVALIDDATA; 487 c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]); 488 v = GET_HUFF(gb, b->tree); 489 v = (c->col_lastval << 4) | v; 490 if (c->version < 'i') { 491 sign = ((int8_t) v) >> 7; 492 v = ((v & 0x7F) ^ sign) - sign; 493 v += 0x80; 494 } 495 *b->cur_dec++ = v; 496 } 497 } 498 return 0; 499} 500 501/** number of bits used to store first DC value in bundle */ 502#define DC_START_BITS 11 503 504static int read_dcs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b, 505 int start_bits, int has_sign) 506{ 507 int i, j, len, len2, bsize, sign, v, v2; 508 int16_t *dst = (int16_t*)b->cur_dec; 509 int16_t *dst_end = (int16_t*)b->data_end; 510 511 CHECK_READ_VAL(gb, b, len); 512 if (get_bits_left(gb) < start_bits - has_sign) 513 return AVERROR_INVALIDDATA; 514 v = get_bits(gb, start_bits - has_sign); 515 if (v && has_sign) { 516 sign = -get_bits1(gb); 517 v = (v ^ sign) - sign; 518 } 519 if (dst_end - dst < 1) 520 return AVERROR_INVALIDDATA; 521 *dst++ = v; 522 len--; 523 for (i = 0; i < len; i += 8) { 524 len2 = FFMIN(len - i, 8); 525 if (dst_end - dst < len2) 526 return AVERROR_INVALIDDATA; 527 bsize = get_bits(gb, 4); 528 if (bsize) { 529 for (j = 0; j < len2; j++) { 530 v2 = get_bits(gb, bsize); 531 if (v2) { 532 sign = -get_bits1(gb); 533 v2 = (v2 ^ sign) - sign; 534 } 535 v += v2; 536 *dst++ = v; 537 if (v < -32768 || v > 32767) { 538 av_log(avctx, AV_LOG_ERROR, "DC value went out of bounds: %d\n", v); 539 return AVERROR_INVALIDDATA; 540 } 541 } 542 } else { 543 for (j = 0; j < len2; j++) 544 *dst++ = v; 545 } 546 } 547 548 b->cur_dec = (uint8_t*)dst; 549 return 0; 550} 551 552/** 553 * Retrieve next value from bundle. 554 * 555 * @param c decoder context 556 * @param bundle bundle number 557 */ 558static inline int get_value(BinkContext *c, int bundle) 559{ 560 int ret; 561 562 if (bundle < BINK_SRC_X_OFF || bundle == BINK_SRC_RUN) 563 return *c->bundle[bundle].cur_ptr++; 564 if (bundle == BINK_SRC_X_OFF || bundle == BINK_SRC_Y_OFF) 565 return (int8_t)*c->bundle[bundle].cur_ptr++; 566 ret = *(int16_t*)c->bundle[bundle].cur_ptr; 567 c->bundle[bundle].cur_ptr += 2; 568 return ret; 569} 570 571static av_cold void binkb_init_bundle(BinkContext *c, int bundle_num) 572{ 573 c->bundle[bundle_num].cur_dec = 574 c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data; 575 c->bundle[bundle_num].len = 13; 576} 577 578static av_cold void binkb_init_bundles(BinkContext *c) 579{ 580 int i; 581 for (i = 0; i < BINKB_NB_SRC; i++) 582 binkb_init_bundle(c, i); 583} 584 585static int binkb_read_bundle(BinkContext *c, GetBitContext *gb, int bundle_num) 586{ 587 const int bits = binkb_bundle_sizes[bundle_num]; 588 const int mask = 1 << (bits - 1); 589 const int issigned = binkb_bundle_signed[bundle_num]; 590 Bundle *b = &c->bundle[bundle_num]; 591 int i, len; 592 593 CHECK_READ_VAL(gb, b, len); 594 if (b->data_end - b->cur_dec < len * (1 + (bits > 8))) 595 return AVERROR_INVALIDDATA; 596 if (bits <= 8) { 597 if (!issigned) { 598 for (i = 0; i < len; i++) 599 *b->cur_dec++ = get_bits(gb, bits); 600 } else { 601 for (i = 0; i < len; i++) 602 *b->cur_dec++ = get_bits(gb, bits) - mask; 603 } 604 } else { 605 int16_t *dst = (int16_t*)b->cur_dec; 606 607 if (!issigned) { 608 for (i = 0; i < len; i++) 609 *dst++ = get_bits(gb, bits); 610 } else { 611 for (i = 0; i < len; i++) 612 *dst++ = get_bits(gb, bits) - mask; 613 } 614 b->cur_dec = (uint8_t*)dst; 615 } 616 return 0; 617} 618 619static inline int binkb_get_value(BinkContext *c, int bundle_num) 620{ 621 int16_t ret; 622 const int bits = binkb_bundle_sizes[bundle_num]; 623 624 if (bits <= 8) { 625 int val = *c->bundle[bundle_num].cur_ptr++; 626 return binkb_bundle_signed[bundle_num] ? (int8_t)val : val; 627 } 628 ret = *(int16_t*)c->bundle[bundle_num].cur_ptr; 629 c->bundle[bundle_num].cur_ptr += 2; 630 return ret; 631} 632 633/** 634 * Read 8x8 block of DCT coefficients. 635 * 636 * @param gb context for reading bits 637 * @param block place for storing coefficients 638 * @param scan scan order table 639 * @param quant_matrices quantization matrices 640 * @return 0 for success, negative value in other cases 641 */ 642static int read_dct_coeffs(BinkContext *c, GetBitContext *gb, int32_t block[64], 643 const uint8_t *scan, int *coef_count_, 644 int coef_idx[64], int q) 645{ 646 int coef_list[128]; 647 int mode_list[128]; 648 int i, t, bits, ccoef, mode, sign; 649 int list_start = 64, list_end = 64, list_pos; 650 int coef_count = 0; 651 int quant_idx; 652 653 if (get_bits_left(gb) < 4) 654 return AVERROR_INVALIDDATA; 655 656 coef_list[list_end] = 4; mode_list[list_end++] = 0; 657 coef_list[list_end] = 24; mode_list[list_end++] = 0; 658 coef_list[list_end] = 44; mode_list[list_end++] = 0; 659 coef_list[list_end] = 1; mode_list[list_end++] = 3; 660 coef_list[list_end] = 2; mode_list[list_end++] = 3; 661 coef_list[list_end] = 3; mode_list[list_end++] = 3; 662 663 for (bits = get_bits(gb, 4) - 1; bits >= 0; bits--) { 664 list_pos = list_start; 665 while (list_pos < list_end) { 666 if (!(mode_list[list_pos] | coef_list[list_pos]) || !get_bits1(gb)) { 667 list_pos++; 668 continue; 669 } 670 ccoef = coef_list[list_pos]; 671 mode = mode_list[list_pos]; 672 switch (mode) { 673 case 0: 674 coef_list[list_pos] = ccoef + 4; 675 mode_list[list_pos] = 1; 676 case 2: 677 if (mode == 2) { 678 coef_list[list_pos] = 0; 679 mode_list[list_pos++] = 0; 680 } 681 for (i = 0; i < 4; i++, ccoef++) { 682 if (get_bits1(gb)) { 683 coef_list[--list_start] = ccoef; 684 mode_list[ list_start] = 3; 685 } else { 686 if (!bits) { 687 t = 1 - (get_bits1(gb) << 1); 688 } else { 689 t = get_bits(gb, bits) | 1 << bits; 690 sign = -get_bits1(gb); 691 t = (t ^ sign) - sign; 692 } 693 block[scan[ccoef]] = t; 694 coef_idx[coef_count++] = ccoef; 695 } 696 } 697 break; 698 case 1: 699 mode_list[list_pos] = 2; 700 for (i = 0; i < 3; i++) { 701 ccoef += 4; 702 coef_list[list_end] = ccoef; 703 mode_list[list_end++] = 2; 704 } 705 break; 706 case 3: 707 if (!bits) { 708 t = 1 - (get_bits1(gb) << 1); 709 } else { 710 t = get_bits(gb, bits) | 1 << bits; 711 sign = -get_bits1(gb); 712 t = (t ^ sign) - sign; 713 } 714 block[scan[ccoef]] = t; 715 coef_idx[coef_count++] = ccoef; 716 coef_list[list_pos] = 0; 717 mode_list[list_pos++] = 0; 718 break; 719 } 720 } 721 } 722 723 if (q == -1) { 724 quant_idx = get_bits(gb, 4); 725 } else { 726 quant_idx = q; 727 if (quant_idx > 15U) { 728 av_log(c->avctx, AV_LOG_ERROR, "quant_index %d out of range\n", quant_idx); 729 return AVERROR_INVALIDDATA; 730 } 731 } 732 733 *coef_count_ = coef_count; 734 735 return quant_idx; 736} 737 738static void unquantize_dct_coeffs(int32_t block[64], const uint32_t quant[64], 739 int coef_count, int coef_idx[64], 740 const uint8_t *scan) 741{ 742 int i; 743 block[0] = (int)(block[0] * quant[0]) >> 11; 744 for (i = 0; i < coef_count; i++) { 745 int idx = coef_idx[i]; 746 block[scan[idx]] = (int)(block[scan[idx]] * quant[idx]) >> 11; 747 } 748} 749 750/** 751 * Read 8x8 block with residue after motion compensation. 752 * 753 * @param gb context for reading bits 754 * @param block place to store read data 755 * @param masks_count number of masks to decode 756 * @return 0 on success, negative value in other cases 757 */ 758static int read_residue(GetBitContext *gb, int16_t block[64], int masks_count) 759{ 760 int coef_list[128]; 761 int mode_list[128]; 762 int i, sign, mask, ccoef, mode; 763 int list_start = 64, list_end = 64, list_pos; 764 int nz_coeff[64]; 765 int nz_coeff_count = 0; 766 767 coef_list[list_end] = 4; mode_list[list_end++] = 0; 768 coef_list[list_end] = 24; mode_list[list_end++] = 0; 769 coef_list[list_end] = 44; mode_list[list_end++] = 0; 770 coef_list[list_end] = 0; mode_list[list_end++] = 2; 771 772 for (mask = 1 << get_bits(gb, 3); mask; mask >>= 1) { 773 for (i = 0; i < nz_coeff_count; i++) { 774 if (!get_bits1(gb)) 775 continue; 776 if (block[nz_coeff[i]] < 0) 777 block[nz_coeff[i]] -= mask; 778 else 779 block[nz_coeff[i]] += mask; 780 masks_count--; 781 if (masks_count < 0) 782 return 0; 783 } 784 list_pos = list_start; 785 while (list_pos < list_end) { 786 if (!(coef_list[list_pos] | mode_list[list_pos]) || !get_bits1(gb)) { 787 list_pos++; 788 continue; 789 } 790 ccoef = coef_list[list_pos]; 791 mode = mode_list[list_pos]; 792 switch (mode) { 793 case 0: 794 coef_list[list_pos] = ccoef + 4; 795 mode_list[list_pos] = 1; 796 case 2: 797 if (mode == 2) { 798 coef_list[list_pos] = 0; 799 mode_list[list_pos++] = 0; 800 } 801 for (i = 0; i < 4; i++, ccoef++) { 802 if (get_bits1(gb)) { 803 coef_list[--list_start] = ccoef; 804 mode_list[ list_start] = 3; 805 } else { 806 nz_coeff[nz_coeff_count++] = bink_scan[ccoef]; 807 sign = -get_bits1(gb); 808 block[bink_scan[ccoef]] = (mask ^ sign) - sign; 809 masks_count--; 810 if (masks_count < 0) 811 return 0; 812 } 813 } 814 break; 815 case 1: 816 mode_list[list_pos] = 2; 817 for (i = 0; i < 3; i++) { 818 ccoef += 4; 819 coef_list[list_end] = ccoef; 820 mode_list[list_end++] = 2; 821 } 822 break; 823 case 3: 824 nz_coeff[nz_coeff_count++] = bink_scan[ccoef]; 825 sign = -get_bits1(gb); 826 block[bink_scan[ccoef]] = (mask ^ sign) - sign; 827 coef_list[list_pos] = 0; 828 mode_list[list_pos++] = 0; 829 masks_count--; 830 if (masks_count < 0) 831 return 0; 832 break; 833 } 834 } 835 } 836 837 return 0; 838} 839 840/** 841 * Copy 8x8 block from source to destination, where src and dst may be overlapped 842 */ 843static inline void put_pixels8x8_overlapped(uint8_t *dst, uint8_t *src, int stride) 844{ 845 uint8_t tmp[64]; 846 int i; 847 for (i = 0; i < 8; i++) 848 memcpy(tmp + i*8, src + i*stride, 8); 849 for (i = 0; i < 8; i++) 850 memcpy(dst + i*stride, tmp + i*8, 8); 851} 852 853static int binkb_decode_plane(BinkContext *c, AVFrame *frame, GetBitContext *gb, 854 int plane_idx, int is_key, int is_chroma) 855{ 856 int blk, ret; 857 int i, j, bx, by; 858 uint8_t *dst, *ref, *ref_start, *ref_end; 859 int v, col[2]; 860 const uint8_t *scan; 861 int xoff, yoff; 862 LOCAL_ALIGNED_32(int16_t, block, [64]); 863 LOCAL_ALIGNED_16(int32_t, dctblock, [64]); 864 int coordmap[64]; 865 int ybias = is_key ? -15 : 0; 866 int qp, quant_idx, coef_count, coef_idx[64]; 867 868 const int stride = frame->linesize[plane_idx]; 869 int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3; 870 int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3; 871 872 binkb_init_bundles(c); 873 ref_start = frame->data[plane_idx]; 874 ref_end = frame->data[plane_idx] + ((bh - 1) * frame->linesize[plane_idx] + bw - 1) * 8; 875 876 for (i = 0; i < 64; i++) 877 coordmap[i] = (i & 7) + (i >> 3) * stride; 878 879 for (by = 0; by < bh; by++) { 880 for (i = 0; i < BINKB_NB_SRC; i++) { 881 if ((ret = binkb_read_bundle(c, gb, i)) < 0) 882 return ret; 883 } 884 885 dst = frame->data[plane_idx] + 8*by*stride; 886 for (bx = 0; bx < bw; bx++, dst += 8) { 887 blk = binkb_get_value(c, BINKB_SRC_BLOCK_TYPES); 888 switch (blk) { 889 case 0: 890 break; 891 case 1: 892 scan = bink_patterns[get_bits(gb, 4)]; 893 i = 0; 894 do { 895 int mode, run; 896 897 mode = get_bits1(gb); 898 run = get_bits(gb, binkb_runbits[i]) + 1; 899 900 i += run; 901 if (i > 64) { 902 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n"); 903 return AVERROR_INVALIDDATA; 904 } 905 if (mode) { 906 v = binkb_get_value(c, BINKB_SRC_COLORS); 907 for (j = 0; j < run; j++) 908 dst[coordmap[*scan++]] = v; 909 } else { 910 for (j = 0; j < run; j++) 911 dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS); 912 } 913 } while (i < 63); 914 if (i == 63) 915 dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS); 916 break; 917 case 2: 918 memset(dctblock, 0, sizeof(*dctblock) * 64); 919 dctblock[0] = binkb_get_value(c, BINKB_SRC_INTRA_DC); 920 qp = binkb_get_value(c, BINKB_SRC_INTRA_Q); 921 if ((quant_idx = read_dct_coeffs(c, gb, dctblock, bink_scan, &coef_count, coef_idx, qp)) < 0) 922 return quant_idx; 923 unquantize_dct_coeffs(dctblock, binkb_intra_quant[quant_idx], coef_count, coef_idx, bink_scan); 924 c->binkdsp.idct_put(dst, stride, dctblock); 925 break; 926 case 3: 927 xoff = binkb_get_value(c, BINKB_SRC_X_OFF); 928 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias; 929 ref = dst + xoff + yoff * stride; 930 if (ref < ref_start || ref > ref_end) { 931 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n"); 932 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) { 933 c->put_pixels_tab(dst, ref, stride, 8); 934 } else { 935 put_pixels8x8_overlapped(dst, ref, stride); 936 } 937 c->bdsp.clear_block(block); 938 v = binkb_get_value(c, BINKB_SRC_INTER_COEFS); 939 read_residue(gb, block, v); 940 c->binkdsp.add_pixels8(dst, block, stride); 941 break; 942 case 4: 943 xoff = binkb_get_value(c, BINKB_SRC_X_OFF); 944 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias; 945 ref = dst + xoff + yoff * stride; 946 if (ref < ref_start || ref > ref_end) { 947 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n"); 948 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) { 949 c->put_pixels_tab(dst, ref, stride, 8); 950 } else { 951 put_pixels8x8_overlapped(dst, ref, stride); 952 } 953 memset(dctblock, 0, sizeof(*dctblock) * 64); 954 dctblock[0] = binkb_get_value(c, BINKB_SRC_INTER_DC); 955 qp = binkb_get_value(c, BINKB_SRC_INTER_Q); 956 if ((quant_idx = read_dct_coeffs(c, gb, dctblock, bink_scan, &coef_count, coef_idx, qp)) < 0) 957 return quant_idx; 958 unquantize_dct_coeffs(dctblock, binkb_inter_quant[quant_idx], coef_count, coef_idx, bink_scan); 959 c->binkdsp.idct_add(dst, stride, dctblock); 960 break; 961 case 5: 962 v = binkb_get_value(c, BINKB_SRC_COLORS); 963 c->bdsp.fill_block_tab[1](dst, v, stride, 8); 964 break; 965 case 6: 966 for (i = 0; i < 2; i++) 967 col[i] = binkb_get_value(c, BINKB_SRC_COLORS); 968 for (i = 0; i < 8; i++) { 969 v = binkb_get_value(c, BINKB_SRC_PATTERN); 970 for (j = 0; j < 8; j++, v >>= 1) 971 dst[i*stride + j] = col[v & 1]; 972 } 973 break; 974 case 7: 975 xoff = binkb_get_value(c, BINKB_SRC_X_OFF); 976 yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias; 977 ref = dst + xoff + yoff * stride; 978 if (ref < ref_start || ref > ref_end) { 979 av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n"); 980 } else if (ref + 8*stride < dst || ref >= dst + 8*stride) { 981 c->put_pixels_tab(dst, ref, stride, 8); 982 } else { 983 put_pixels8x8_overlapped(dst, ref, stride); 984 } 985 break; 986 case 8: 987 for (i = 0; i < 8; i++) 988 memcpy(dst + i*stride, c->bundle[BINKB_SRC_COLORS].cur_ptr + i*8, 8); 989 c->bundle[BINKB_SRC_COLORS].cur_ptr += 64; 990 break; 991 default: 992 av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk); 993 return AVERROR_INVALIDDATA; 994 } 995 } 996 } 997 if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary 998 skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F)); 999 1000 return 0; 1001} 1002 1003static int bink_put_pixels(BinkContext *c, 1004 uint8_t *dst, uint8_t *prev, int stride, 1005 uint8_t *ref_start, 1006 uint8_t *ref_end) 1007{ 1008 int xoff = get_value(c, BINK_SRC_X_OFF); 1009 int yoff = get_value(c, BINK_SRC_Y_OFF); 1010 uint8_t *ref = prev + xoff + yoff * stride; 1011 if (ref < ref_start || ref > ref_end) { 1012 av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n", 1013 xoff, yoff); 1014 return AVERROR_INVALIDDATA; 1015 } 1016 c->put_pixels_tab(dst, ref, stride, 8); 1017 1018 return 0; 1019} 1020 1021static int bink_decode_plane(BinkContext *c, AVFrame *frame, GetBitContext *gb, 1022 int plane_idx, int is_chroma) 1023{ 1024 int blk, ret; 1025 int i, j, bx, by; 1026 uint8_t *dst, *prev, *ref_start, *ref_end; 1027 int v, col[2]; 1028 const uint8_t *scan; 1029 LOCAL_ALIGNED_32(int16_t, block, [64]); 1030 LOCAL_ALIGNED_16(uint8_t, ublock, [64]); 1031 LOCAL_ALIGNED_16(int32_t, dctblock, [64]); 1032 int coordmap[64], quant_idx, coef_count, coef_idx[64]; 1033 1034 const int stride = frame->linesize[plane_idx]; 1035 int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3; 1036 int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3; 1037 int width = c->avctx->width >> is_chroma; 1038 int height = c->avctx->height >> is_chroma; 1039 1040 if (c->version == 'k' && get_bits1(gb)) { 1041 int fill = get_bits(gb, 8); 1042 1043 dst = frame->data[plane_idx]; 1044 1045 for (i = 0; i < height; i++) 1046 memset(dst + i * stride, fill, width); 1047 goto end; 1048 } 1049 1050 init_lengths(c, FFMAX(width, 8), bw); 1051 for (i = 0; i < BINK_NB_SRC; i++) { 1052 ret = read_bundle(gb, c, i); 1053 if (ret < 0) 1054 return ret; 1055 } 1056 1057 ref_start = c->last->data[plane_idx] ? c->last->data[plane_idx] 1058 : frame->data[plane_idx]; 1059 ref_end = ref_start 1060 + (bw - 1 + c->last->linesize[plane_idx] * (bh - 1)) * 8; 1061 1062 for (i = 0; i < 64; i++) 1063 coordmap[i] = (i & 7) + (i >> 3) * stride; 1064 1065 for (by = 0; by < bh; by++) { 1066 if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_BLOCK_TYPES])) < 0) 1067 return ret; 1068 if ((ret = read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_SUB_BLOCK_TYPES])) < 0) 1069 return ret; 1070 if ((ret = read_colors(gb, &c->bundle[BINK_SRC_COLORS], c)) < 0) 1071 return ret; 1072 if ((ret = read_patterns(c->avctx, gb, &c->bundle[BINK_SRC_PATTERN])) < 0) 1073 return ret; 1074 if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_X_OFF])) < 0) 1075 return ret; 1076 if ((ret = read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_Y_OFF])) < 0) 1077 return ret; 1078 if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTRA_DC], DC_START_BITS, 0)) < 0) 1079 return ret; 1080 if ((ret = read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTER_DC], DC_START_BITS, 1)) < 0) 1081 return ret; 1082 if ((ret = read_runs(c->avctx, gb, &c->bundle[BINK_SRC_RUN])) < 0) 1083 return ret; 1084 1085 dst = frame->data[plane_idx] + 8*by*stride; 1086 prev = (c->last->data[plane_idx] ? c->last->data[plane_idx] 1087 : frame->data[plane_idx]) + 8*by*stride; 1088 for (bx = 0; bx < bw; bx++, dst += 8, prev += 8) { 1089 blk = get_value(c, BINK_SRC_BLOCK_TYPES); 1090 // 16x16 block type on odd line means part of the already decoded block, so skip it 1091 if (((by & 1) || (bx & 1)) && blk == SCALED_BLOCK) { 1092 bx++; 1093 dst += 8; 1094 prev += 8; 1095 continue; 1096 } 1097 switch (blk) { 1098 case SKIP_BLOCK: 1099 c->put_pixels_tab(dst, prev, stride, 8); 1100 break; 1101 case SCALED_BLOCK: 1102 blk = get_value(c, BINK_SRC_SUB_BLOCK_TYPES); 1103 switch (blk) { 1104 case RUN_BLOCK: 1105 if (get_bits_left(gb) < 4) 1106 return AVERROR_INVALIDDATA; 1107 scan = bink_patterns[get_bits(gb, 4)]; 1108 i = 0; 1109 do { 1110 int run = get_value(c, BINK_SRC_RUN) + 1; 1111 1112 i += run; 1113 if (i > 64) { 1114 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n"); 1115 return AVERROR_INVALIDDATA; 1116 } 1117 if (get_bits1(gb)) { 1118 v = get_value(c, BINK_SRC_COLORS); 1119 for (j = 0; j < run; j++) 1120 ublock[*scan++] = v; 1121 } else { 1122 for (j = 0; j < run; j++) 1123 ublock[*scan++] = get_value(c, BINK_SRC_COLORS); 1124 } 1125 } while (i < 63); 1126 if (i == 63) 1127 ublock[*scan++] = get_value(c, BINK_SRC_COLORS); 1128 break; 1129 case INTRA_BLOCK: 1130 memset(dctblock, 0, sizeof(*dctblock) * 64); 1131 dctblock[0] = get_value(c, BINK_SRC_INTRA_DC); 1132 if ((quant_idx = read_dct_coeffs(c, gb, dctblock, bink_scan, &coef_count, coef_idx, -1)) < 0) 1133 return quant_idx; 1134 unquantize_dct_coeffs(dctblock, bink_intra_quant[quant_idx], coef_count, coef_idx, bink_scan); 1135 c->binkdsp.idct_put(ublock, 8, dctblock); 1136 break; 1137 case FILL_BLOCK: 1138 v = get_value(c, BINK_SRC_COLORS); 1139 c->bdsp.fill_block_tab[0](dst, v, stride, 16); 1140 break; 1141 case PATTERN_BLOCK: 1142 for (i = 0; i < 2; i++) 1143 col[i] = get_value(c, BINK_SRC_COLORS); 1144 for (j = 0; j < 8; j++) { 1145 v = get_value(c, BINK_SRC_PATTERN); 1146 for (i = 0; i < 8; i++, v >>= 1) 1147 ublock[i + j*8] = col[v & 1]; 1148 } 1149 break; 1150 case RAW_BLOCK: 1151 for (j = 0; j < 8; j++) 1152 for (i = 0; i < 8; i++) 1153 ublock[i + j*8] = get_value(c, BINK_SRC_COLORS); 1154 break; 1155 default: 1156 av_log(c->avctx, AV_LOG_ERROR, "Incorrect 16x16 block type %d\n", blk); 1157 return AVERROR_INVALIDDATA; 1158 } 1159 if (blk != FILL_BLOCK) 1160 c->binkdsp.scale_block(ublock, dst, stride); 1161 bx++; 1162 dst += 8; 1163 prev += 8; 1164 break; 1165 case MOTION_BLOCK: 1166 ret = bink_put_pixels(c, dst, prev, stride, 1167 ref_start, ref_end); 1168 if (ret < 0) 1169 return ret; 1170 break; 1171 case RUN_BLOCK: 1172 scan = bink_patterns[get_bits(gb, 4)]; 1173 i = 0; 1174 do { 1175 int run = get_value(c, BINK_SRC_RUN) + 1; 1176 1177 i += run; 1178 if (i > 64) { 1179 av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n"); 1180 return AVERROR_INVALIDDATA; 1181 } 1182 if (get_bits1(gb)) { 1183 v = get_value(c, BINK_SRC_COLORS); 1184 for (j = 0; j < run; j++) 1185 dst[coordmap[*scan++]] = v; 1186 } else { 1187 for (j = 0; j < run; j++) 1188 dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS); 1189 } 1190 } while (i < 63); 1191 if (i == 63) 1192 dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS); 1193 break; 1194 case RESIDUE_BLOCK: 1195 ret = bink_put_pixels(c, dst, prev, stride, 1196 ref_start, ref_end); 1197 if (ret < 0) 1198 return ret; 1199 c->bdsp.clear_block(block); 1200 v = get_bits(gb, 7); 1201 read_residue(gb, block, v); 1202 c->binkdsp.add_pixels8(dst, block, stride); 1203 break; 1204 case INTRA_BLOCK: 1205 memset(dctblock, 0, sizeof(*dctblock) * 64); 1206 dctblock[0] = get_value(c, BINK_SRC_INTRA_DC); 1207 if ((quant_idx = read_dct_coeffs(c, gb, dctblock, bink_scan, &coef_count, coef_idx, -1)) < 0) 1208 return quant_idx; 1209 unquantize_dct_coeffs(dctblock, bink_intra_quant[quant_idx], coef_count, coef_idx, bink_scan); 1210 c->binkdsp.idct_put(dst, stride, dctblock); 1211 break; 1212 case FILL_BLOCK: 1213 v = get_value(c, BINK_SRC_COLORS); 1214 c->bdsp.fill_block_tab[1](dst, v, stride, 8); 1215 break; 1216 case INTER_BLOCK: 1217 ret = bink_put_pixels(c, dst, prev, stride, 1218 ref_start, ref_end); 1219 if (ret < 0) 1220 return ret; 1221 memset(dctblock, 0, sizeof(*dctblock) * 64); 1222 dctblock[0] = get_value(c, BINK_SRC_INTER_DC); 1223 if ((quant_idx = read_dct_coeffs(c, gb, dctblock, bink_scan, &coef_count, coef_idx, -1)) < 0) 1224 return quant_idx; 1225 unquantize_dct_coeffs(dctblock, bink_inter_quant[quant_idx], coef_count, coef_idx, bink_scan); 1226 c->binkdsp.idct_add(dst, stride, dctblock); 1227 break; 1228 case PATTERN_BLOCK: 1229 for (i = 0; i < 2; i++) 1230 col[i] = get_value(c, BINK_SRC_COLORS); 1231 for (i = 0; i < 8; i++) { 1232 v = get_value(c, BINK_SRC_PATTERN); 1233 for (j = 0; j < 8; j++, v >>= 1) 1234 dst[i*stride + j] = col[v & 1]; 1235 } 1236 break; 1237 case RAW_BLOCK: 1238 for (i = 0; i < 8; i++) 1239 memcpy(dst + i*stride, c->bundle[BINK_SRC_COLORS].cur_ptr + i*8, 8); 1240 c->bundle[BINK_SRC_COLORS].cur_ptr += 64; 1241 break; 1242 default: 1243 av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk); 1244 return AVERROR_INVALIDDATA; 1245 } 1246 } 1247 } 1248 1249end: 1250 if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary 1251 skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F)); 1252 1253 return 0; 1254} 1255 1256static int decode_frame(AVCodecContext *avctx, AVFrame *frame, 1257 int *got_frame, AVPacket *pkt) 1258{ 1259 BinkContext * const c = avctx->priv_data; 1260 GetBitContext gb; 1261 int plane, plane_idx, ret; 1262 int bits_count = pkt->size << 3; 1263 1264 if (c->version > 'b') { 1265 if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0) 1266 return ret; 1267 } else { 1268 if ((ret = ff_reget_buffer(avctx, c->last, 0)) < 0) 1269 return ret; 1270 if ((ret = av_frame_ref(frame, c->last)) < 0) 1271 return ret; 1272 } 1273 1274 init_get_bits(&gb, pkt->data, bits_count); 1275 if (c->has_alpha) { 1276 if (c->version >= 'i') 1277 skip_bits_long(&gb, 32); 1278 if ((ret = bink_decode_plane(c, frame, &gb, 3, 0)) < 0) 1279 return ret; 1280 } 1281 if (c->version >= 'i') 1282 skip_bits_long(&gb, 32); 1283 1284 c->frame_num++; 1285 1286 for (plane = 0; plane < 3; plane++) { 1287 plane_idx = (!plane || !c->swap_planes) ? plane : (plane ^ 3); 1288 1289 if (c->version > 'b') { 1290 if ((ret = bink_decode_plane(c, frame, &gb, plane_idx, !!plane)) < 0) 1291 return ret; 1292 } else { 1293 if ((ret = binkb_decode_plane(c, frame, &gb, plane_idx, 1294 c->frame_num == 1, !!plane)) < 0) 1295 return ret; 1296 } 1297 if (get_bits_count(&gb) >= bits_count) 1298 break; 1299 } 1300 emms_c(); 1301 1302 if (c->version > 'b') { 1303 av_frame_unref(c->last); 1304 if ((ret = av_frame_ref(c->last, frame)) < 0) 1305 return ret; 1306 } 1307 1308 *got_frame = 1; 1309 1310 /* always report that the buffer was completely consumed */ 1311 return pkt->size; 1312} 1313 1314static av_cold void bink_init_vlcs(void) 1315{ 1316 for (int i = 0, offset = 0; i < 16; i++) { 1317 static VLCElem table[976]; 1318 const int maxbits = bink_tree_lens[i][15]; 1319 bink_trees[i].table = table + offset; 1320 bink_trees[i].table_allocated = 1 << maxbits; 1321 offset += bink_trees[i].table_allocated; 1322 init_vlc(&bink_trees[i], maxbits, 16, 1323 bink_tree_lens[i], 1, 1, 1324 bink_tree_bits[i], 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE); 1325 } 1326} 1327 1328/** 1329 * Calculate quantization tables for version b 1330 */ 1331static av_cold void binkb_calc_quant(void) 1332{ 1333 uint8_t inv_bink_scan[64]; 1334 static const int s[64]={ 1335 1073741824,1489322693,1402911301,1262586814,1073741824, 843633538, 581104888, 296244703, 1336 1489322693,2065749918,1945893874,1751258219,1489322693,1170153332, 806015634, 410903207, 1337 1402911301,1945893874,1832991949,1649649171,1402911301,1102260336, 759250125, 387062357, 1338 1262586814,1751258219,1649649171,1484645031,1262586814, 992008094, 683307060, 348346918, 1339 1073741824,1489322693,1402911301,1262586814,1073741824, 843633538, 581104888, 296244703, 1340 843633538,1170153332,1102260336, 992008094, 843633538, 662838617, 456571181, 232757969, 1341 581104888, 806015634, 759250125, 683307060, 581104888, 456571181, 314491699, 160326478, 1342 296244703, 410903207, 387062357, 348346918, 296244703, 232757969, 160326478, 81733730, 1343 }; 1344 int i, j; 1345#define C (1LL<<30) 1346 for (i = 0; i < 64; i++) 1347 inv_bink_scan[bink_scan[i]] = i; 1348 1349 for (j = 0; j < 16; j++) { 1350 for (i = 0; i < 64; i++) { 1351 int k = inv_bink_scan[i]; 1352 binkb_intra_quant[j][k] = binkb_intra_seed[i] * (int64_t)s[i] * 1353 binkb_num[j]/(binkb_den[j] * (C>>12)); 1354 binkb_inter_quant[j][k] = binkb_inter_seed[i] * (int64_t)s[i] * 1355 binkb_num[j]/(binkb_den[j] * (C>>12)); 1356 } 1357 } 1358} 1359 1360static av_cold int decode_init(AVCodecContext *avctx) 1361{ 1362 static AVOnce init_static_once = AV_ONCE_INIT; 1363 BinkContext * const c = avctx->priv_data; 1364 HpelDSPContext hdsp; 1365 int ret; 1366 int flags; 1367 1368 c->version = avctx->codec_tag >> 24; 1369 if (avctx->extradata_size < 4) { 1370 av_log(avctx, AV_LOG_ERROR, "Extradata missing or too short\n"); 1371 return AVERROR_INVALIDDATA; 1372 } 1373 flags = AV_RL32(avctx->extradata); 1374 c->has_alpha = flags & BINK_FLAG_ALPHA; 1375 c->swap_planes = c->version >= 'h'; 1376 c->avctx = avctx; 1377 1378 if ((ret = av_image_check_size(avctx->width, avctx->height, 0, avctx)) < 0) 1379 return ret; 1380 1381 c->last = av_frame_alloc(); 1382 if (!c->last) 1383 return AVERROR(ENOMEM); 1384 1385 avctx->pix_fmt = c->has_alpha ? AV_PIX_FMT_YUVA420P : AV_PIX_FMT_YUV420P; 1386 avctx->color_range = c->version == 'k' ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG; 1387 1388 ff_blockdsp_init(&c->bdsp, avctx); 1389 ff_hpeldsp_init(&hdsp, avctx->flags); 1390 c->put_pixels_tab = hdsp.put_pixels_tab[1][0]; 1391 ff_binkdsp_init(&c->binkdsp); 1392 1393 if ((ret = init_bundles(c)) < 0) 1394 return ret; 1395 1396 if (c->version == 'b') { 1397 static AVOnce binkb_init_once = AV_ONCE_INIT; 1398 ff_thread_once(&binkb_init_once, binkb_calc_quant); 1399 } 1400 ff_thread_once(&init_static_once, bink_init_vlcs); 1401 1402 return 0; 1403} 1404 1405static av_cold int decode_end(AVCodecContext *avctx) 1406{ 1407 BinkContext * const c = avctx->priv_data; 1408 1409 av_frame_free(&c->last); 1410 1411 free_bundles(c); 1412 return 0; 1413} 1414 1415static void flush(AVCodecContext *avctx) 1416{ 1417 BinkContext * const c = avctx->priv_data; 1418 1419 c->frame_num = 0; 1420} 1421 1422const FFCodec ff_bink_decoder = { 1423 .p.name = "binkvideo", 1424 .p.long_name = NULL_IF_CONFIG_SMALL("Bink video"), 1425 .p.type = AVMEDIA_TYPE_VIDEO, 1426 .p.id = AV_CODEC_ID_BINKVIDEO, 1427 .priv_data_size = sizeof(BinkContext), 1428 .init = decode_init, 1429 .close = decode_end, 1430 FF_CODEC_DECODE_CB(decode_frame), 1431 .flush = flush, 1432 .p.capabilities = AV_CODEC_CAP_DR1, 1433 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, 1434}; 1435