xref: /third_party/ffmpeg/libavcodec/atrac1.c (revision cabdff1a)
1/*
2 * ATRAC1 compatible decoder
3 * Copyright (c) 2009 Maxim Poliakovski
4 * Copyright (c) 2009 Benjamin Larsson
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file
25 * ATRAC1 compatible decoder.
26 * This decoder handles raw ATRAC1 data and probably SDDS data.
27 */
28
29/* Many thanks to Tim Craig for all the help! */
30
31#include <math.h>
32#include <stddef.h>
33#include <stdio.h>
34
35#include "libavutil/float_dsp.h"
36#include "libavutil/mem_internal.h"
37
38#include "avcodec.h"
39#include "codec_internal.h"
40#include "get_bits.h"
41#include "fft.h"
42#include "internal.h"
43#include "sinewin.h"
44
45#include "atrac.h"
46#include "atrac1data.h"
47
48#define AT1_MAX_BFU      52                 ///< max number of block floating units in a sound unit
49#define AT1_SU_SIZE      212                ///< number of bytes in a sound unit
50#define AT1_SU_SAMPLES   512                ///< number of samples in a sound unit
51#define AT1_FRAME_SIZE   AT1_SU_SIZE * 2
52#define AT1_SU_MAX_BITS  AT1_SU_SIZE * 8
53#define AT1_MAX_CHANNELS 2
54
55#define AT1_QMF_BANDS    3
56#define IDX_LOW_BAND     0
57#define IDX_MID_BAND     1
58#define IDX_HIGH_BAND    2
59
60/**
61 * Sound unit struct, one unit is used per channel
62 */
63typedef struct AT1SUCtx {
64    int                 log2_block_count[AT1_QMF_BANDS];    ///< log2 number of blocks in a band
65    int                 num_bfus;                           ///< number of Block Floating Units
66    float*              spectrum[2];
67    DECLARE_ALIGNED(32, float, spec1)[AT1_SU_SAMPLES];     ///< mdct buffer
68    DECLARE_ALIGNED(32, float, spec2)[AT1_SU_SAMPLES];     ///< mdct buffer
69    DECLARE_ALIGNED(32, float, fst_qmf_delay)[46];         ///< delay line for the 1st stacked QMF filter
70    DECLARE_ALIGNED(32, float, snd_qmf_delay)[46];         ///< delay line for the 2nd stacked QMF filter
71    DECLARE_ALIGNED(32, float, last_qmf_delay)[256+39];    ///< delay line for the last stacked QMF filter
72} AT1SUCtx;
73
74/**
75 * The atrac1 context, holds all needed parameters for decoding
76 */
77typedef struct AT1Ctx {
78    AT1SUCtx            SUs[AT1_MAX_CHANNELS];              ///< channel sound unit
79    DECLARE_ALIGNED(32, float, spec)[AT1_SU_SAMPLES];      ///< the mdct spectrum buffer
80
81    DECLARE_ALIGNED(32, float,  low)[256];
82    DECLARE_ALIGNED(32, float,  mid)[256];
83    DECLARE_ALIGNED(32, float, high)[512];
84    float*              bands[3];
85    FFTContext          mdct_ctx[3];
86    void (*vector_fmul_window)(float *dst, const float *src0,
87                               const float *src1, const float *win, int len);
88} AT1Ctx;
89
90/** size of the transform in samples in the long mode for each QMF band */
91static const uint16_t samples_per_band[3] = {128, 128, 256};
92static const uint8_t   mdct_long_nbits[3] = {7, 7, 8};
93
94
95static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
96                      int rev_spec)
97{
98    FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
99    int transf_size = 1 << nbits;
100
101    if (rev_spec) {
102        int i;
103        for (i = 0; i < transf_size / 2; i++)
104            FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
105    }
106    mdct_context->imdct_half(mdct_context, out, spec);
107}
108
109
110static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
111{
112    int          band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
113    unsigned int start_pos, ref_pos = 0, pos = 0;
114
115    for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
116        float *prev_buf;
117        int j;
118
119        band_samples = samples_per_band[band_num];
120        log2_block_count = su->log2_block_count[band_num];
121
122        /* number of mdct blocks in the current QMF band: 1 - for long mode */
123        /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
124        num_blocks = 1 << log2_block_count;
125
126        if (num_blocks == 1) {
127            /* mdct block size in samples: 128 (long mode, low & mid bands), */
128            /* 256 (long mode, high band) and 32 (short mode, all bands) */
129            block_size = band_samples >> log2_block_count;
130
131            /* calc transform size in bits according to the block_size_mode */
132            nbits = mdct_long_nbits[band_num] - log2_block_count;
133
134            if (nbits != 5 && nbits != 7 && nbits != 8)
135                return AVERROR_INVALIDDATA;
136        } else {
137            block_size = 32;
138            nbits = 5;
139        }
140
141        start_pos = 0;
142        prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
143        for (j=0; j < num_blocks; j++) {
144            at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
145
146            /* overlap and window */
147            q->vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
148                                  &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16);
149
150            prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
151            start_pos += block_size;
152            pos += block_size;
153        }
154
155        if (num_blocks == 1)
156            memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
157
158        ref_pos += band_samples;
159    }
160
161    /* Swap buffers so the mdct overlap works */
162    FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
163
164    return 0;
165}
166
167/**
168 * Parse the block size mode byte
169 */
170
171static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
172{
173    int log2_block_count_tmp, i;
174
175    for (i = 0; i < 2; i++) {
176        /* low and mid band */
177        log2_block_count_tmp = get_bits(gb, 2);
178        if (log2_block_count_tmp & 1)
179            return AVERROR_INVALIDDATA;
180        log2_block_cnt[i] = 2 - log2_block_count_tmp;
181    }
182
183    /* high band */
184    log2_block_count_tmp = get_bits(gb, 2);
185    if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
186        return AVERROR_INVALIDDATA;
187    log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
188
189    skip_bits(gb, 2);
190    return 0;
191}
192
193
194static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
195                              float spec[AT1_SU_SAMPLES])
196{
197    int bits_used, band_num, bfu_num, i;
198    uint8_t idwls[AT1_MAX_BFU];                 ///< the word length indexes for each BFU
199    uint8_t idsfs[AT1_MAX_BFU];                 ///< the scalefactor indexes for each BFU
200
201    /* parse the info byte (2nd byte) telling how much BFUs were coded */
202    su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
203
204    /* calc number of consumed bits:
205        num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
206        + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
207    bits_used = su->num_bfus * 10 + 32 +
208                bfu_amount_tab2[get_bits(gb, 2)] +
209                (bfu_amount_tab3[get_bits(gb, 3)] << 1);
210
211    /* get word length index (idwl) for each BFU */
212    for (i = 0; i < su->num_bfus; i++)
213        idwls[i] = get_bits(gb, 4);
214
215    /* get scalefactor index (idsf) for each BFU */
216    for (i = 0; i < su->num_bfus; i++)
217        idsfs[i] = get_bits(gb, 6);
218
219    /* zero idwl/idsf for empty BFUs */
220    for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
221        idwls[i] = idsfs[i] = 0;
222
223    /* read in the spectral data and reconstruct MDCT spectrum of this channel */
224    for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
225        for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
226            int pos;
227
228            int num_specs = specs_per_bfu[bfu_num];
229            int word_len  = !!idwls[bfu_num] + idwls[bfu_num];
230            float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]];
231            bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
232
233            /* check for bitstream overflow */
234            if (bits_used > AT1_SU_MAX_BITS)
235                return AVERROR_INVALIDDATA;
236
237            /* get the position of the 1st spec according to the block size mode */
238            pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
239
240            if (word_len) {
241                float   max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
242
243                for (i = 0; i < num_specs; i++) {
244                    /* read in a quantized spec and convert it to
245                     * signed int and then inverse quantization
246                     */
247                    spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
248                }
249            } else { /* word_len = 0 -> empty BFU, zero all specs in the empty BFU */
250                memset(&spec[pos], 0, num_specs * sizeof(float));
251            }
252        }
253    }
254
255    return 0;
256}
257
258
259static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
260{
261    float temp[256];
262    float iqmf_temp[512 + 46];
263
264    /* combine low and middle bands */
265    ff_atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
266
267    /* delay the signal of the high band by 39 samples */
268    memcpy( su->last_qmf_delay,    &su->last_qmf_delay[256], sizeof(float) *  39);
269    memcpy(&su->last_qmf_delay[39], q->bands[2],             sizeof(float) * 256);
270
271    /* combine (low + middle) and high bands */
272    ff_atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
273}
274
275
276static int atrac1_decode_frame(AVCodecContext *avctx, AVFrame *frame,
277                               int *got_frame_ptr, AVPacket *avpkt)
278{
279    const uint8_t *buf = avpkt->data;
280    int buf_size       = avpkt->size;
281    AT1Ctx *q          = avctx->priv_data;
282    int channels       = avctx->ch_layout.nb_channels;
283    int ch, ret;
284    GetBitContext gb;
285
286
287    if (buf_size < 212 * channels) {
288        av_log(avctx, AV_LOG_ERROR, "Not enough data to decode!\n");
289        return AVERROR_INVALIDDATA;
290    }
291
292    /* get output buffer */
293    frame->nb_samples = AT1_SU_SAMPLES;
294    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
295        return ret;
296
297    for (ch = 0; ch < channels; ch++) {
298        AT1SUCtx* su = &q->SUs[ch];
299
300        init_get_bits(&gb, &buf[212 * ch], 212 * 8);
301
302        /* parse block_size_mode, 1st byte */
303        ret = at1_parse_bsm(&gb, su->log2_block_count);
304        if (ret < 0)
305            return ret;
306
307        ret = at1_unpack_dequant(&gb, su, q->spec);
308        if (ret < 0)
309            return ret;
310
311        ret = at1_imdct_block(su, q);
312        if (ret < 0)
313            return ret;
314        at1_subband_synthesis(q, su, (float *)frame->extended_data[ch]);
315    }
316
317    *got_frame_ptr = 1;
318
319    return avctx->block_align;
320}
321
322
323static av_cold int atrac1_decode_end(AVCodecContext * avctx)
324{
325    AT1Ctx *q = avctx->priv_data;
326
327    ff_mdct_end(&q->mdct_ctx[0]);
328    ff_mdct_end(&q->mdct_ctx[1]);
329    ff_mdct_end(&q->mdct_ctx[2]);
330
331    return 0;
332}
333
334
335static av_cold int atrac1_decode_init(AVCodecContext *avctx)
336{
337    AT1Ctx *q = avctx->priv_data;
338    AVFloatDSPContext *fdsp;
339    int channels = avctx->ch_layout.nb_channels;
340    int ret;
341
342    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
343
344    if (channels < 1 || channels > AT1_MAX_CHANNELS) {
345        av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n",
346               channels);
347        return AVERROR(EINVAL);
348    }
349
350    if (avctx->block_align <= 0) {
351        av_log(avctx, AV_LOG_ERROR, "Unsupported block align.");
352        return AVERROR_PATCHWELCOME;
353    }
354
355    /* Init the mdct transforms */
356    if ((ret = ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15))) ||
357        (ret = ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15))) ||
358        (ret = ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15)))) {
359        av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
360        return ret;
361    }
362
363    ff_init_ff_sine_windows(5);
364
365    ff_atrac_generate_tables();
366
367    fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
368    if (!fdsp)
369        return AVERROR(ENOMEM);
370    q->vector_fmul_window = fdsp->vector_fmul_window;
371    av_free(fdsp);
372
373    q->bands[0] = q->low;
374    q->bands[1] = q->mid;
375    q->bands[2] = q->high;
376
377    /* Prepare the mdct overlap buffers */
378    q->SUs[0].spectrum[0] = q->SUs[0].spec1;
379    q->SUs[0].spectrum[1] = q->SUs[0].spec2;
380    q->SUs[1].spectrum[0] = q->SUs[1].spec1;
381    q->SUs[1].spectrum[1] = q->SUs[1].spec2;
382
383    return 0;
384}
385
386
387const FFCodec ff_atrac1_decoder = {
388    .p.name         = "atrac1",
389    .p.long_name    = NULL_IF_CONFIG_SMALL("ATRAC1 (Adaptive TRansform Acoustic Coding)"),
390    .p.type         = AVMEDIA_TYPE_AUDIO,
391    .p.id           = AV_CODEC_ID_ATRAC1,
392    .priv_data_size = sizeof(AT1Ctx),
393    .init           = atrac1_decode_init,
394    .close          = atrac1_decode_end,
395    FF_CODEC_DECODE_CB(atrac1_decode_frame),
396    .p.capabilities = AV_CODEC_CAP_DR1,
397    .p.sample_fmts  = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
398                                                      AV_SAMPLE_FMT_NONE },
399    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
400};
401