1cabdff1aSopenharmony_ci/* 2cabdff1aSopenharmony_ci * AMR wideband decoder 3cabdff1aSopenharmony_ci * Copyright (c) 2010 Marcelo Galvao Povoa 4cabdff1aSopenharmony_ci * 5cabdff1aSopenharmony_ci * This file is part of FFmpeg. 6cabdff1aSopenharmony_ci * 7cabdff1aSopenharmony_ci * FFmpeg is free software; you can redistribute it and/or 8cabdff1aSopenharmony_ci * modify it under the terms of the GNU Lesser General Public 9cabdff1aSopenharmony_ci * License as published by the Free Software Foundation; either 10cabdff1aSopenharmony_ci * version 2.1 of the License, or (at your option) any later version. 11cabdff1aSopenharmony_ci * 12cabdff1aSopenharmony_ci * FFmpeg is distributed in the hope that it will be useful, 13cabdff1aSopenharmony_ci * but WITHOUT ANY WARRANTY; without even the implied warranty of 14cabdff1aSopenharmony_ci * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU 15cabdff1aSopenharmony_ci * Lesser General Public License for more details. 16cabdff1aSopenharmony_ci * 17cabdff1aSopenharmony_ci * You should have received a copy of the GNU Lesser General Public 18cabdff1aSopenharmony_ci * License along with FFmpeg; if not, write to the Free Software 19cabdff1aSopenharmony_ci * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 20cabdff1aSopenharmony_ci */ 21cabdff1aSopenharmony_ci 22cabdff1aSopenharmony_ci/** 23cabdff1aSopenharmony_ci * @file 24cabdff1aSopenharmony_ci * AMR wideband decoder 25cabdff1aSopenharmony_ci */ 26cabdff1aSopenharmony_ci 27cabdff1aSopenharmony_ci#include "libavutil/channel_layout.h" 28cabdff1aSopenharmony_ci#include "libavutil/common.h" 29cabdff1aSopenharmony_ci#include "libavutil/float_dsp.h" 30cabdff1aSopenharmony_ci#include "libavutil/lfg.h" 31cabdff1aSopenharmony_ci 32cabdff1aSopenharmony_ci#include "avcodec.h" 33cabdff1aSopenharmony_ci#include "lsp.h" 34cabdff1aSopenharmony_ci#include "celp_filters.h" 35cabdff1aSopenharmony_ci#include "celp_math.h" 36cabdff1aSopenharmony_ci#include "acelp_filters.h" 37cabdff1aSopenharmony_ci#include "acelp_vectors.h" 38cabdff1aSopenharmony_ci#include "acelp_pitch_delay.h" 39cabdff1aSopenharmony_ci#include "codec_internal.h" 40cabdff1aSopenharmony_ci#include "internal.h" 41cabdff1aSopenharmony_ci 42cabdff1aSopenharmony_ci#define AMR_USE_16BIT_TABLES 43cabdff1aSopenharmony_ci#include "amr.h" 44cabdff1aSopenharmony_ci 45cabdff1aSopenharmony_ci#include "amrwbdata.h" 46cabdff1aSopenharmony_ci#include "mips/amrwbdec_mips.h" 47cabdff1aSopenharmony_ci 48cabdff1aSopenharmony_citypedef struct AMRWBContext { 49cabdff1aSopenharmony_ci AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream 50cabdff1aSopenharmony_ci enum Mode fr_cur_mode; ///< mode index of current frame 51cabdff1aSopenharmony_ci uint8_t fr_quality; ///< frame quality index (FQI) 52cabdff1aSopenharmony_ci float isf_cur[LP_ORDER]; ///< working ISF vector from current frame 53cabdff1aSopenharmony_ci float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame 54cabdff1aSopenharmony_ci float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame 55cabdff1aSopenharmony_ci double isp[4][LP_ORDER]; ///< ISP vectors from current frame 56cabdff1aSopenharmony_ci double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame 57cabdff1aSopenharmony_ci 58cabdff1aSopenharmony_ci float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector 59cabdff1aSopenharmony_ci 60cabdff1aSopenharmony_ci uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe 61cabdff1aSopenharmony_ci uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe 62cabdff1aSopenharmony_ci 63cabdff1aSopenharmony_ci float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history 64cabdff1aSopenharmony_ci float *excitation; ///< points to current excitation in excitation_buf[] 65cabdff1aSopenharmony_ci 66cabdff1aSopenharmony_ci float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe 67cabdff1aSopenharmony_ci float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe 68cabdff1aSopenharmony_ci 69cabdff1aSopenharmony_ci float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes 70cabdff1aSopenharmony_ci float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes 71cabdff1aSopenharmony_ci float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes 72cabdff1aSopenharmony_ci 73cabdff1aSopenharmony_ci float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe 74cabdff1aSopenharmony_ci 75cabdff1aSopenharmony_ci float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset" 76cabdff1aSopenharmony_ci uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none 77cabdff1aSopenharmony_ci float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold 78cabdff1aSopenharmony_ci 79cabdff1aSopenharmony_ci float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz 80cabdff1aSopenharmony_ci float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling 81cabdff1aSopenharmony_ci float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz 82cabdff1aSopenharmony_ci 83cabdff1aSopenharmony_ci float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters 84cabdff1aSopenharmony_ci float demph_mem[1]; ///< previous value in the de-emphasis filter 85cabdff1aSopenharmony_ci float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter 86cabdff1aSopenharmony_ci float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter 87cabdff1aSopenharmony_ci 88cabdff1aSopenharmony_ci AVLFG prng; ///< random number generator for white noise excitation 89cabdff1aSopenharmony_ci uint8_t first_frame; ///< flag active during decoding of the first frame 90cabdff1aSopenharmony_ci ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs 91cabdff1aSopenharmony_ci ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs 92cabdff1aSopenharmony_ci CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs 93cabdff1aSopenharmony_ci CELPMContext celpm_ctx; ///< context for fixed point math operations 94cabdff1aSopenharmony_ci 95cabdff1aSopenharmony_ci} AMRWBContext; 96cabdff1aSopenharmony_ci 97cabdff1aSopenharmony_citypedef struct AMRWBChannelsContext { 98cabdff1aSopenharmony_ci AMRWBContext ch[2]; 99cabdff1aSopenharmony_ci} AMRWBChannelsContext; 100cabdff1aSopenharmony_ci 101cabdff1aSopenharmony_cistatic av_cold int amrwb_decode_init(AVCodecContext *avctx) 102cabdff1aSopenharmony_ci{ 103cabdff1aSopenharmony_ci AMRWBChannelsContext *s = avctx->priv_data; 104cabdff1aSopenharmony_ci int i; 105cabdff1aSopenharmony_ci 106cabdff1aSopenharmony_ci if (avctx->ch_layout.nb_channels > 2) { 107cabdff1aSopenharmony_ci avpriv_report_missing_feature(avctx, ">2 channel AMR"); 108cabdff1aSopenharmony_ci return AVERROR_PATCHWELCOME; 109cabdff1aSopenharmony_ci } 110cabdff1aSopenharmony_ci 111cabdff1aSopenharmony_ci if (!avctx->ch_layout.nb_channels) { 112cabdff1aSopenharmony_ci av_channel_layout_uninit(&avctx->ch_layout); 113cabdff1aSopenharmony_ci avctx->ch_layout = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO; 114cabdff1aSopenharmony_ci } 115cabdff1aSopenharmony_ci if (!avctx->sample_rate) 116cabdff1aSopenharmony_ci avctx->sample_rate = 16000; 117cabdff1aSopenharmony_ci avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; 118cabdff1aSopenharmony_ci 119cabdff1aSopenharmony_ci for (int ch = 0; ch < avctx->ch_layout.nb_channels; ch++) { 120cabdff1aSopenharmony_ci AMRWBContext *ctx = &s->ch[ch]; 121cabdff1aSopenharmony_ci 122cabdff1aSopenharmony_ci av_lfg_init(&ctx->prng, 1); 123cabdff1aSopenharmony_ci 124cabdff1aSopenharmony_ci ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1]; 125cabdff1aSopenharmony_ci ctx->first_frame = 1; 126cabdff1aSopenharmony_ci 127cabdff1aSopenharmony_ci for (i = 0; i < LP_ORDER; i++) 128cabdff1aSopenharmony_ci ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15)); 129cabdff1aSopenharmony_ci 130cabdff1aSopenharmony_ci for (i = 0; i < 4; i++) 131cabdff1aSopenharmony_ci ctx->prediction_error[i] = MIN_ENERGY; 132cabdff1aSopenharmony_ci 133cabdff1aSopenharmony_ci ff_acelp_filter_init(&ctx->acelpf_ctx); 134cabdff1aSopenharmony_ci ff_acelp_vectors_init(&ctx->acelpv_ctx); 135cabdff1aSopenharmony_ci ff_celp_filter_init(&ctx->celpf_ctx); 136cabdff1aSopenharmony_ci ff_celp_math_init(&ctx->celpm_ctx); 137cabdff1aSopenharmony_ci } 138cabdff1aSopenharmony_ci 139cabdff1aSopenharmony_ci return 0; 140cabdff1aSopenharmony_ci} 141cabdff1aSopenharmony_ci 142cabdff1aSopenharmony_ci/** 143cabdff1aSopenharmony_ci * Decode the frame header in the "MIME/storage" format. This format 144cabdff1aSopenharmony_ci * is simpler and does not carry the auxiliary frame information. 145cabdff1aSopenharmony_ci * 146cabdff1aSopenharmony_ci * @param[in] ctx The Context 147cabdff1aSopenharmony_ci * @param[in] buf Pointer to the input buffer 148cabdff1aSopenharmony_ci * 149cabdff1aSopenharmony_ci * @return The decoded header length in bytes 150cabdff1aSopenharmony_ci */ 151cabdff1aSopenharmony_cistatic int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf) 152cabdff1aSopenharmony_ci{ 153cabdff1aSopenharmony_ci /* Decode frame header (1st octet) */ 154cabdff1aSopenharmony_ci ctx->fr_cur_mode = buf[0] >> 3 & 0x0F; 155cabdff1aSopenharmony_ci ctx->fr_quality = (buf[0] & 0x4) == 0x4; 156cabdff1aSopenharmony_ci 157cabdff1aSopenharmony_ci return 1; 158cabdff1aSopenharmony_ci} 159cabdff1aSopenharmony_ci 160cabdff1aSopenharmony_ci/** 161cabdff1aSopenharmony_ci * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only). 162cabdff1aSopenharmony_ci * 163cabdff1aSopenharmony_ci * @param[in] ind Array of 5 indexes 164cabdff1aSopenharmony_ci * @param[out] isf_q Buffer for isf_q[LP_ORDER] 165cabdff1aSopenharmony_ci */ 166cabdff1aSopenharmony_cistatic void decode_isf_indices_36b(uint16_t *ind, float *isf_q) 167cabdff1aSopenharmony_ci{ 168cabdff1aSopenharmony_ci int i; 169cabdff1aSopenharmony_ci 170cabdff1aSopenharmony_ci for (i = 0; i < 9; i++) 171cabdff1aSopenharmony_ci isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15)); 172cabdff1aSopenharmony_ci 173cabdff1aSopenharmony_ci for (i = 0; i < 7; i++) 174cabdff1aSopenharmony_ci isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15)); 175cabdff1aSopenharmony_ci 176cabdff1aSopenharmony_ci for (i = 0; i < 5; i++) 177cabdff1aSopenharmony_ci isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15)); 178cabdff1aSopenharmony_ci 179cabdff1aSopenharmony_ci for (i = 0; i < 4; i++) 180cabdff1aSopenharmony_ci isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15)); 181cabdff1aSopenharmony_ci 182cabdff1aSopenharmony_ci for (i = 0; i < 7; i++) 183cabdff1aSopenharmony_ci isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15)); 184cabdff1aSopenharmony_ci} 185cabdff1aSopenharmony_ci 186cabdff1aSopenharmony_ci/** 187cabdff1aSopenharmony_ci * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode). 188cabdff1aSopenharmony_ci * 189cabdff1aSopenharmony_ci * @param[in] ind Array of 7 indexes 190cabdff1aSopenharmony_ci * @param[out] isf_q Buffer for isf_q[LP_ORDER] 191cabdff1aSopenharmony_ci */ 192cabdff1aSopenharmony_cistatic void decode_isf_indices_46b(uint16_t *ind, float *isf_q) 193cabdff1aSopenharmony_ci{ 194cabdff1aSopenharmony_ci int i; 195cabdff1aSopenharmony_ci 196cabdff1aSopenharmony_ci for (i = 0; i < 9; i++) 197cabdff1aSopenharmony_ci isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15)); 198cabdff1aSopenharmony_ci 199cabdff1aSopenharmony_ci for (i = 0; i < 7; i++) 200cabdff1aSopenharmony_ci isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15)); 201cabdff1aSopenharmony_ci 202cabdff1aSopenharmony_ci for (i = 0; i < 3; i++) 203cabdff1aSopenharmony_ci isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15)); 204cabdff1aSopenharmony_ci 205cabdff1aSopenharmony_ci for (i = 0; i < 3; i++) 206cabdff1aSopenharmony_ci isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15)); 207cabdff1aSopenharmony_ci 208cabdff1aSopenharmony_ci for (i = 0; i < 3; i++) 209cabdff1aSopenharmony_ci isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15)); 210cabdff1aSopenharmony_ci 211cabdff1aSopenharmony_ci for (i = 0; i < 3; i++) 212cabdff1aSopenharmony_ci isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15)); 213cabdff1aSopenharmony_ci 214cabdff1aSopenharmony_ci for (i = 0; i < 4; i++) 215cabdff1aSopenharmony_ci isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15)); 216cabdff1aSopenharmony_ci} 217cabdff1aSopenharmony_ci 218cabdff1aSopenharmony_ci/** 219cabdff1aSopenharmony_ci * Apply mean and past ISF values using the prediction factor. 220cabdff1aSopenharmony_ci * Updates past ISF vector. 221cabdff1aSopenharmony_ci * 222cabdff1aSopenharmony_ci * @param[in,out] isf_q Current quantized ISF 223cabdff1aSopenharmony_ci * @param[in,out] isf_past Past quantized ISF 224cabdff1aSopenharmony_ci */ 225cabdff1aSopenharmony_cistatic void isf_add_mean_and_past(float *isf_q, float *isf_past) 226cabdff1aSopenharmony_ci{ 227cabdff1aSopenharmony_ci int i; 228cabdff1aSopenharmony_ci float tmp; 229cabdff1aSopenharmony_ci 230cabdff1aSopenharmony_ci for (i = 0; i < LP_ORDER; i++) { 231cabdff1aSopenharmony_ci tmp = isf_q[i]; 232cabdff1aSopenharmony_ci isf_q[i] += isf_mean[i] * (1.0f / (1 << 15)); 233cabdff1aSopenharmony_ci isf_q[i] += PRED_FACTOR * isf_past[i]; 234cabdff1aSopenharmony_ci isf_past[i] = tmp; 235cabdff1aSopenharmony_ci } 236cabdff1aSopenharmony_ci} 237cabdff1aSopenharmony_ci 238cabdff1aSopenharmony_ci/** 239cabdff1aSopenharmony_ci * Interpolate the fourth ISP vector from current and past frames 240cabdff1aSopenharmony_ci * to obtain an ISP vector for each subframe. 241cabdff1aSopenharmony_ci * 242cabdff1aSopenharmony_ci * @param[in,out] isp_q ISPs for each subframe 243cabdff1aSopenharmony_ci * @param[in] isp4_past Past ISP for subframe 4 244cabdff1aSopenharmony_ci */ 245cabdff1aSopenharmony_cistatic void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past) 246cabdff1aSopenharmony_ci{ 247cabdff1aSopenharmony_ci int i, k; 248cabdff1aSopenharmony_ci 249cabdff1aSopenharmony_ci for (k = 0; k < 3; k++) { 250cabdff1aSopenharmony_ci float c = isfp_inter[k]; 251cabdff1aSopenharmony_ci for (i = 0; i < LP_ORDER; i++) 252cabdff1aSopenharmony_ci isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i]; 253cabdff1aSopenharmony_ci } 254cabdff1aSopenharmony_ci} 255cabdff1aSopenharmony_ci 256cabdff1aSopenharmony_ci/** 257cabdff1aSopenharmony_ci * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes). 258cabdff1aSopenharmony_ci * Calculate integer lag and fractional lag always using 1/4 resolution. 259cabdff1aSopenharmony_ci * In 1st and 3rd subframes the index is relative to last subframe integer lag. 260cabdff1aSopenharmony_ci * 261cabdff1aSopenharmony_ci * @param[out] lag_int Decoded integer pitch lag 262cabdff1aSopenharmony_ci * @param[out] lag_frac Decoded fractional pitch lag 263cabdff1aSopenharmony_ci * @param[in] pitch_index Adaptive codebook pitch index 264cabdff1aSopenharmony_ci * @param[in,out] base_lag_int Base integer lag used in relative subframes 265cabdff1aSopenharmony_ci * @param[in] subframe Current subframe index (0 to 3) 266cabdff1aSopenharmony_ci */ 267cabdff1aSopenharmony_cistatic void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index, 268cabdff1aSopenharmony_ci uint8_t *base_lag_int, int subframe) 269cabdff1aSopenharmony_ci{ 270cabdff1aSopenharmony_ci if (subframe == 0 || subframe == 2) { 271cabdff1aSopenharmony_ci if (pitch_index < 376) { 272cabdff1aSopenharmony_ci *lag_int = (pitch_index + 137) >> 2; 273cabdff1aSopenharmony_ci *lag_frac = pitch_index - (*lag_int << 2) + 136; 274cabdff1aSopenharmony_ci } else if (pitch_index < 440) { 275cabdff1aSopenharmony_ci *lag_int = (pitch_index + 257 - 376) >> 1; 276cabdff1aSopenharmony_ci *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) * 2; 277cabdff1aSopenharmony_ci /* the actual resolution is 1/2 but expressed as 1/4 */ 278cabdff1aSopenharmony_ci } else { 279cabdff1aSopenharmony_ci *lag_int = pitch_index - 280; 280cabdff1aSopenharmony_ci *lag_frac = 0; 281cabdff1aSopenharmony_ci } 282cabdff1aSopenharmony_ci /* minimum lag for next subframe */ 283cabdff1aSopenharmony_ci *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0), 284cabdff1aSopenharmony_ci AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15); 285cabdff1aSopenharmony_ci // XXX: the spec states clearly that *base_lag_int should be 286cabdff1aSopenharmony_ci // the nearest integer to *lag_int (minus 8), but the ref code 287cabdff1aSopenharmony_ci // actually always uses its floor, I'm following the latter 288cabdff1aSopenharmony_ci } else { 289cabdff1aSopenharmony_ci *lag_int = (pitch_index + 1) >> 2; 290cabdff1aSopenharmony_ci *lag_frac = pitch_index - (*lag_int << 2); 291cabdff1aSopenharmony_ci *lag_int += *base_lag_int; 292cabdff1aSopenharmony_ci } 293cabdff1aSopenharmony_ci} 294cabdff1aSopenharmony_ci 295cabdff1aSopenharmony_ci/** 296cabdff1aSopenharmony_ci * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes. 297cabdff1aSopenharmony_ci * The description is analogous to decode_pitch_lag_high, but in 6k60 the 298cabdff1aSopenharmony_ci * relative index is used for all subframes except the first. 299cabdff1aSopenharmony_ci */ 300cabdff1aSopenharmony_cistatic void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index, 301cabdff1aSopenharmony_ci uint8_t *base_lag_int, int subframe, enum Mode mode) 302cabdff1aSopenharmony_ci{ 303cabdff1aSopenharmony_ci if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) { 304cabdff1aSopenharmony_ci if (pitch_index < 116) { 305cabdff1aSopenharmony_ci *lag_int = (pitch_index + 69) >> 1; 306cabdff1aSopenharmony_ci *lag_frac = (pitch_index - (*lag_int << 1) + 68) * 2; 307cabdff1aSopenharmony_ci } else { 308cabdff1aSopenharmony_ci *lag_int = pitch_index - 24; 309cabdff1aSopenharmony_ci *lag_frac = 0; 310cabdff1aSopenharmony_ci } 311cabdff1aSopenharmony_ci // XXX: same problem as before 312cabdff1aSopenharmony_ci *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0), 313cabdff1aSopenharmony_ci AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15); 314cabdff1aSopenharmony_ci } else { 315cabdff1aSopenharmony_ci *lag_int = (pitch_index + 1) >> 1; 316cabdff1aSopenharmony_ci *lag_frac = (pitch_index - (*lag_int << 1)) * 2; 317cabdff1aSopenharmony_ci *lag_int += *base_lag_int; 318cabdff1aSopenharmony_ci } 319cabdff1aSopenharmony_ci} 320cabdff1aSopenharmony_ci 321cabdff1aSopenharmony_ci/** 322cabdff1aSopenharmony_ci * Find the pitch vector by interpolating the past excitation at the 323cabdff1aSopenharmony_ci * pitch delay, which is obtained in this function. 324cabdff1aSopenharmony_ci * 325cabdff1aSopenharmony_ci * @param[in,out] ctx The context 326cabdff1aSopenharmony_ci * @param[in] amr_subframe Current subframe data 327cabdff1aSopenharmony_ci * @param[in] subframe Current subframe index (0 to 3) 328cabdff1aSopenharmony_ci */ 329cabdff1aSopenharmony_cistatic void decode_pitch_vector(AMRWBContext *ctx, 330cabdff1aSopenharmony_ci const AMRWBSubFrame *amr_subframe, 331cabdff1aSopenharmony_ci const int subframe) 332cabdff1aSopenharmony_ci{ 333cabdff1aSopenharmony_ci int pitch_lag_int, pitch_lag_frac; 334cabdff1aSopenharmony_ci int i; 335cabdff1aSopenharmony_ci float *exc = ctx->excitation; 336cabdff1aSopenharmony_ci enum Mode mode = ctx->fr_cur_mode; 337cabdff1aSopenharmony_ci 338cabdff1aSopenharmony_ci if (mode <= MODE_8k85) { 339cabdff1aSopenharmony_ci decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap, 340cabdff1aSopenharmony_ci &ctx->base_pitch_lag, subframe, mode); 341cabdff1aSopenharmony_ci } else 342cabdff1aSopenharmony_ci decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap, 343cabdff1aSopenharmony_ci &ctx->base_pitch_lag, subframe); 344cabdff1aSopenharmony_ci 345cabdff1aSopenharmony_ci ctx->pitch_lag_int = pitch_lag_int; 346cabdff1aSopenharmony_ci pitch_lag_int += pitch_lag_frac > 0; 347cabdff1aSopenharmony_ci 348cabdff1aSopenharmony_ci /* Calculate the pitch vector by interpolating the past excitation at the 349cabdff1aSopenharmony_ci pitch lag using a hamming windowed sinc function */ 350cabdff1aSopenharmony_ci ctx->acelpf_ctx.acelp_interpolatef(exc, 351cabdff1aSopenharmony_ci exc + 1 - pitch_lag_int, 352cabdff1aSopenharmony_ci ac_inter, 4, 353cabdff1aSopenharmony_ci pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4), 354cabdff1aSopenharmony_ci LP_ORDER, AMRWB_SFR_SIZE + 1); 355cabdff1aSopenharmony_ci 356cabdff1aSopenharmony_ci /* Check which pitch signal path should be used 357cabdff1aSopenharmony_ci * 6k60 and 8k85 modes have the ltp flag set to 0 */ 358cabdff1aSopenharmony_ci if (amr_subframe->ltp) { 359cabdff1aSopenharmony_ci memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float)); 360cabdff1aSopenharmony_ci } else { 361cabdff1aSopenharmony_ci for (i = 0; i < AMRWB_SFR_SIZE; i++) 362cabdff1aSopenharmony_ci ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] + 363cabdff1aSopenharmony_ci 0.18 * exc[i + 1]; 364cabdff1aSopenharmony_ci memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float)); 365cabdff1aSopenharmony_ci } 366cabdff1aSopenharmony_ci} 367cabdff1aSopenharmony_ci 368cabdff1aSopenharmony_ci/** Get x bits in the index interval [lsb,lsb+len-1] inclusive */ 369cabdff1aSopenharmony_ci#define BIT_STR(x,lsb,len) av_mod_uintp2((x) >> (lsb), (len)) 370cabdff1aSopenharmony_ci 371cabdff1aSopenharmony_ci/** Get the bit at specified position */ 372cabdff1aSopenharmony_ci#define BIT_POS(x, p) (((x) >> (p)) & 1) 373cabdff1aSopenharmony_ci 374cabdff1aSopenharmony_ci/** 375cabdff1aSopenharmony_ci * The next six functions decode_[i]p_track decode exactly i pulses 376cabdff1aSopenharmony_ci * positions and amplitudes (-1 or 1) in a subframe track using 377cabdff1aSopenharmony_ci * an encoded pulse indexing (TS 26.190 section 5.8.2). 378cabdff1aSopenharmony_ci * 379cabdff1aSopenharmony_ci * The results are given in out[], in which a negative number means 380cabdff1aSopenharmony_ci * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ). 381cabdff1aSopenharmony_ci * 382cabdff1aSopenharmony_ci * @param[out] out Output buffer (writes i elements) 383cabdff1aSopenharmony_ci * @param[in] code Pulse index (no. of bits varies, see below) 384cabdff1aSopenharmony_ci * @param[in] m (log2) Number of potential positions 385cabdff1aSopenharmony_ci * @param[in] off Offset for decoded positions 386cabdff1aSopenharmony_ci */ 387cabdff1aSopenharmony_cistatic inline void decode_1p_track(int *out, int code, int m, int off) 388cabdff1aSopenharmony_ci{ 389cabdff1aSopenharmony_ci int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits 390cabdff1aSopenharmony_ci 391cabdff1aSopenharmony_ci out[0] = BIT_POS(code, m) ? -pos : pos; 392cabdff1aSopenharmony_ci} 393cabdff1aSopenharmony_ci 394cabdff1aSopenharmony_cistatic inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits 395cabdff1aSopenharmony_ci{ 396cabdff1aSopenharmony_ci int pos0 = BIT_STR(code, m, m) + off; 397cabdff1aSopenharmony_ci int pos1 = BIT_STR(code, 0, m) + off; 398cabdff1aSopenharmony_ci 399cabdff1aSopenharmony_ci out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0; 400cabdff1aSopenharmony_ci out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1; 401cabdff1aSopenharmony_ci out[1] = pos0 > pos1 ? -out[1] : out[1]; 402cabdff1aSopenharmony_ci} 403cabdff1aSopenharmony_ci 404cabdff1aSopenharmony_cistatic void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits 405cabdff1aSopenharmony_ci{ 406cabdff1aSopenharmony_ci int half_2p = BIT_POS(code, 2*m - 1) << (m - 1); 407cabdff1aSopenharmony_ci 408cabdff1aSopenharmony_ci decode_2p_track(out, BIT_STR(code, 0, 2*m - 1), 409cabdff1aSopenharmony_ci m - 1, off + half_2p); 410cabdff1aSopenharmony_ci decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off); 411cabdff1aSopenharmony_ci} 412cabdff1aSopenharmony_ci 413cabdff1aSopenharmony_cistatic void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits 414cabdff1aSopenharmony_ci{ 415cabdff1aSopenharmony_ci int half_4p, subhalf_2p; 416cabdff1aSopenharmony_ci int b_offset = 1 << (m - 1); 417cabdff1aSopenharmony_ci 418cabdff1aSopenharmony_ci switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */ 419cabdff1aSopenharmony_ci case 0: /* 0 pulses in A, 4 pulses in B or vice versa */ 420cabdff1aSopenharmony_ci half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses 421cabdff1aSopenharmony_ci subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2); 422cabdff1aSopenharmony_ci 423cabdff1aSopenharmony_ci decode_2p_track(out, BIT_STR(code, 0, 2*m - 3), 424cabdff1aSopenharmony_ci m - 2, off + half_4p + subhalf_2p); 425cabdff1aSopenharmony_ci decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1), 426cabdff1aSopenharmony_ci m - 1, off + half_4p); 427cabdff1aSopenharmony_ci break; 428cabdff1aSopenharmony_ci case 1: /* 1 pulse in A, 3 pulses in B */ 429cabdff1aSopenharmony_ci decode_1p_track(out, BIT_STR(code, 3*m - 2, m), 430cabdff1aSopenharmony_ci m - 1, off); 431cabdff1aSopenharmony_ci decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2), 432cabdff1aSopenharmony_ci m - 1, off + b_offset); 433cabdff1aSopenharmony_ci break; 434cabdff1aSopenharmony_ci case 2: /* 2 pulses in each half */ 435cabdff1aSopenharmony_ci decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1), 436cabdff1aSopenharmony_ci m - 1, off); 437cabdff1aSopenharmony_ci decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1), 438cabdff1aSopenharmony_ci m - 1, off + b_offset); 439cabdff1aSopenharmony_ci break; 440cabdff1aSopenharmony_ci case 3: /* 3 pulses in A, 1 pulse in B */ 441cabdff1aSopenharmony_ci decode_3p_track(out, BIT_STR(code, m, 3*m - 2), 442cabdff1aSopenharmony_ci m - 1, off); 443cabdff1aSopenharmony_ci decode_1p_track(out + 3, BIT_STR(code, 0, m), 444cabdff1aSopenharmony_ci m - 1, off + b_offset); 445cabdff1aSopenharmony_ci break; 446cabdff1aSopenharmony_ci } 447cabdff1aSopenharmony_ci} 448cabdff1aSopenharmony_ci 449cabdff1aSopenharmony_cistatic void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits 450cabdff1aSopenharmony_ci{ 451cabdff1aSopenharmony_ci int half_3p = BIT_POS(code, 5*m - 1) << (m - 1); 452cabdff1aSopenharmony_ci 453cabdff1aSopenharmony_ci decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2), 454cabdff1aSopenharmony_ci m - 1, off + half_3p); 455cabdff1aSopenharmony_ci 456cabdff1aSopenharmony_ci decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off); 457cabdff1aSopenharmony_ci} 458cabdff1aSopenharmony_ci 459cabdff1aSopenharmony_cistatic void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits 460cabdff1aSopenharmony_ci{ 461cabdff1aSopenharmony_ci int b_offset = 1 << (m - 1); 462cabdff1aSopenharmony_ci /* which half has more pulses in cases 0 to 2 */ 463cabdff1aSopenharmony_ci int half_more = BIT_POS(code, 6*m - 5) << (m - 1); 464cabdff1aSopenharmony_ci int half_other = b_offset - half_more; 465cabdff1aSopenharmony_ci 466cabdff1aSopenharmony_ci switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */ 467cabdff1aSopenharmony_ci case 0: /* 0 pulses in A, 6 pulses in B or vice versa */ 468cabdff1aSopenharmony_ci decode_1p_track(out, BIT_STR(code, 0, m), 469cabdff1aSopenharmony_ci m - 1, off + half_more); 470cabdff1aSopenharmony_ci decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5), 471cabdff1aSopenharmony_ci m - 1, off + half_more); 472cabdff1aSopenharmony_ci break; 473cabdff1aSopenharmony_ci case 1: /* 1 pulse in A, 5 pulses in B or vice versa */ 474cabdff1aSopenharmony_ci decode_1p_track(out, BIT_STR(code, 0, m), 475cabdff1aSopenharmony_ci m - 1, off + half_other); 476cabdff1aSopenharmony_ci decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5), 477cabdff1aSopenharmony_ci m - 1, off + half_more); 478cabdff1aSopenharmony_ci break; 479cabdff1aSopenharmony_ci case 2: /* 2 pulses in A, 4 pulses in B or vice versa */ 480cabdff1aSopenharmony_ci decode_2p_track(out, BIT_STR(code, 0, 2*m - 1), 481cabdff1aSopenharmony_ci m - 1, off + half_other); 482cabdff1aSopenharmony_ci decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4), 483cabdff1aSopenharmony_ci m - 1, off + half_more); 484cabdff1aSopenharmony_ci break; 485cabdff1aSopenharmony_ci case 3: /* 3 pulses in A, 3 pulses in B */ 486cabdff1aSopenharmony_ci decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2), 487cabdff1aSopenharmony_ci m - 1, off); 488cabdff1aSopenharmony_ci decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2), 489cabdff1aSopenharmony_ci m - 1, off + b_offset); 490cabdff1aSopenharmony_ci break; 491cabdff1aSopenharmony_ci } 492cabdff1aSopenharmony_ci} 493cabdff1aSopenharmony_ci 494cabdff1aSopenharmony_ci/** 495cabdff1aSopenharmony_ci * Decode the algebraic codebook index to pulse positions and signs, 496cabdff1aSopenharmony_ci * then construct the algebraic codebook vector. 497cabdff1aSopenharmony_ci * 498cabdff1aSopenharmony_ci * @param[out] fixed_vector Buffer for the fixed codebook excitation 499cabdff1aSopenharmony_ci * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only) 500cabdff1aSopenharmony_ci * @param[in] pulse_lo LSBs part of the pulse index array 501cabdff1aSopenharmony_ci * @param[in] mode Mode of the current frame 502cabdff1aSopenharmony_ci */ 503cabdff1aSopenharmony_cistatic void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi, 504cabdff1aSopenharmony_ci const uint16_t *pulse_lo, const enum Mode mode) 505cabdff1aSopenharmony_ci{ 506cabdff1aSopenharmony_ci /* sig_pos stores for each track the decoded pulse position indexes 507cabdff1aSopenharmony_ci * (1-based) multiplied by its corresponding amplitude (+1 or -1) */ 508cabdff1aSopenharmony_ci int sig_pos[4][6]; 509cabdff1aSopenharmony_ci int spacing = (mode == MODE_6k60) ? 2 : 4; 510cabdff1aSopenharmony_ci int i, j; 511cabdff1aSopenharmony_ci 512cabdff1aSopenharmony_ci switch (mode) { 513cabdff1aSopenharmony_ci case MODE_6k60: 514cabdff1aSopenharmony_ci for (i = 0; i < 2; i++) 515cabdff1aSopenharmony_ci decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1); 516cabdff1aSopenharmony_ci break; 517cabdff1aSopenharmony_ci case MODE_8k85: 518cabdff1aSopenharmony_ci for (i = 0; i < 4; i++) 519cabdff1aSopenharmony_ci decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1); 520cabdff1aSopenharmony_ci break; 521cabdff1aSopenharmony_ci case MODE_12k65: 522cabdff1aSopenharmony_ci for (i = 0; i < 4; i++) 523cabdff1aSopenharmony_ci decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1); 524cabdff1aSopenharmony_ci break; 525cabdff1aSopenharmony_ci case MODE_14k25: 526cabdff1aSopenharmony_ci for (i = 0; i < 2; i++) 527cabdff1aSopenharmony_ci decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1); 528cabdff1aSopenharmony_ci for (i = 2; i < 4; i++) 529cabdff1aSopenharmony_ci decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1); 530cabdff1aSopenharmony_ci break; 531cabdff1aSopenharmony_ci case MODE_15k85: 532cabdff1aSopenharmony_ci for (i = 0; i < 4; i++) 533cabdff1aSopenharmony_ci decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1); 534cabdff1aSopenharmony_ci break; 535cabdff1aSopenharmony_ci case MODE_18k25: 536cabdff1aSopenharmony_ci for (i = 0; i < 4; i++) 537cabdff1aSopenharmony_ci decode_4p_track(sig_pos[i], (int) pulse_lo[i] + 538cabdff1aSopenharmony_ci ((int) pulse_hi[i] << 14), 4, 1); 539cabdff1aSopenharmony_ci break; 540cabdff1aSopenharmony_ci case MODE_19k85: 541cabdff1aSopenharmony_ci for (i = 0; i < 2; i++) 542cabdff1aSopenharmony_ci decode_5p_track(sig_pos[i], (int) pulse_lo[i] + 543cabdff1aSopenharmony_ci ((int) pulse_hi[i] << 10), 4, 1); 544cabdff1aSopenharmony_ci for (i = 2; i < 4; i++) 545cabdff1aSopenharmony_ci decode_4p_track(sig_pos[i], (int) pulse_lo[i] + 546cabdff1aSopenharmony_ci ((int) pulse_hi[i] << 14), 4, 1); 547cabdff1aSopenharmony_ci break; 548cabdff1aSopenharmony_ci case MODE_23k05: 549cabdff1aSopenharmony_ci case MODE_23k85: 550cabdff1aSopenharmony_ci for (i = 0; i < 4; i++) 551cabdff1aSopenharmony_ci decode_6p_track(sig_pos[i], (int) pulse_lo[i] + 552cabdff1aSopenharmony_ci ((int) pulse_hi[i] << 11), 4, 1); 553cabdff1aSopenharmony_ci break; 554cabdff1aSopenharmony_ci } 555cabdff1aSopenharmony_ci 556cabdff1aSopenharmony_ci memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE); 557cabdff1aSopenharmony_ci 558cabdff1aSopenharmony_ci for (i = 0; i < 4; i++) 559cabdff1aSopenharmony_ci for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) { 560cabdff1aSopenharmony_ci int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i; 561cabdff1aSopenharmony_ci 562cabdff1aSopenharmony_ci fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0; 563cabdff1aSopenharmony_ci } 564cabdff1aSopenharmony_ci} 565cabdff1aSopenharmony_ci 566cabdff1aSopenharmony_ci/** 567cabdff1aSopenharmony_ci * Decode pitch gain and fixed gain correction factor. 568cabdff1aSopenharmony_ci * 569cabdff1aSopenharmony_ci * @param[in] vq_gain Vector-quantized index for gains 570cabdff1aSopenharmony_ci * @param[in] mode Mode of the current frame 571cabdff1aSopenharmony_ci * @param[out] fixed_gain_factor Decoded fixed gain correction factor 572cabdff1aSopenharmony_ci * @param[out] pitch_gain Decoded pitch gain 573cabdff1aSopenharmony_ci */ 574cabdff1aSopenharmony_cistatic void decode_gains(const uint8_t vq_gain, const enum Mode mode, 575cabdff1aSopenharmony_ci float *fixed_gain_factor, float *pitch_gain) 576cabdff1aSopenharmony_ci{ 577cabdff1aSopenharmony_ci const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] : 578cabdff1aSopenharmony_ci qua_gain_7b[vq_gain]); 579cabdff1aSopenharmony_ci 580cabdff1aSopenharmony_ci *pitch_gain = gains[0] * (1.0f / (1 << 14)); 581cabdff1aSopenharmony_ci *fixed_gain_factor = gains[1] * (1.0f / (1 << 11)); 582cabdff1aSopenharmony_ci} 583cabdff1aSopenharmony_ci 584cabdff1aSopenharmony_ci/** 585cabdff1aSopenharmony_ci * Apply pitch sharpening filters to the fixed codebook vector. 586cabdff1aSopenharmony_ci * 587cabdff1aSopenharmony_ci * @param[in] ctx The context 588cabdff1aSopenharmony_ci * @param[in,out] fixed_vector Fixed codebook excitation 589cabdff1aSopenharmony_ci */ 590cabdff1aSopenharmony_ci// XXX: Spec states this procedure should be applied when the pitch 591cabdff1aSopenharmony_ci// lag is less than 64, but this checking seems absent in reference and AMR-NB 592cabdff1aSopenharmony_cistatic void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector) 593cabdff1aSopenharmony_ci{ 594cabdff1aSopenharmony_ci int i; 595cabdff1aSopenharmony_ci 596cabdff1aSopenharmony_ci /* Tilt part */ 597cabdff1aSopenharmony_ci for (i = AMRWB_SFR_SIZE - 1; i != 0; i--) 598cabdff1aSopenharmony_ci fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef; 599cabdff1aSopenharmony_ci 600cabdff1aSopenharmony_ci /* Periodicity enhancement part */ 601cabdff1aSopenharmony_ci for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++) 602cabdff1aSopenharmony_ci fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85; 603cabdff1aSopenharmony_ci} 604cabdff1aSopenharmony_ci 605cabdff1aSopenharmony_ci/** 606cabdff1aSopenharmony_ci * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced). 607cabdff1aSopenharmony_ci * 608cabdff1aSopenharmony_ci * @param[in] p_vector, f_vector Pitch and fixed excitation vectors 609cabdff1aSopenharmony_ci * @param[in] p_gain, f_gain Pitch and fixed gains 610cabdff1aSopenharmony_ci * @param[in] ctx The context 611cabdff1aSopenharmony_ci */ 612cabdff1aSopenharmony_ci// XXX: There is something wrong with the precision here! The magnitudes 613cabdff1aSopenharmony_ci// of the energies are not correct. Please check the reference code carefully 614cabdff1aSopenharmony_cistatic float voice_factor(float *p_vector, float p_gain, 615cabdff1aSopenharmony_ci float *f_vector, float f_gain, 616cabdff1aSopenharmony_ci CELPMContext *ctx) 617cabdff1aSopenharmony_ci{ 618cabdff1aSopenharmony_ci double p_ener = (double) ctx->dot_productf(p_vector, p_vector, 619cabdff1aSopenharmony_ci AMRWB_SFR_SIZE) * 620cabdff1aSopenharmony_ci p_gain * p_gain; 621cabdff1aSopenharmony_ci double f_ener = (double) ctx->dot_productf(f_vector, f_vector, 622cabdff1aSopenharmony_ci AMRWB_SFR_SIZE) * 623cabdff1aSopenharmony_ci f_gain * f_gain; 624cabdff1aSopenharmony_ci 625cabdff1aSopenharmony_ci return (p_ener - f_ener) / (p_ener + f_ener + 0.01); 626cabdff1aSopenharmony_ci} 627cabdff1aSopenharmony_ci 628cabdff1aSopenharmony_ci/** 629cabdff1aSopenharmony_ci * Reduce fixed vector sparseness by smoothing with one of three IR filters, 630cabdff1aSopenharmony_ci * also known as "adaptive phase dispersion". 631cabdff1aSopenharmony_ci * 632cabdff1aSopenharmony_ci * @param[in] ctx The context 633cabdff1aSopenharmony_ci * @param[in,out] fixed_vector Unfiltered fixed vector 634cabdff1aSopenharmony_ci * @param[out] buf Space for modified vector if necessary 635cabdff1aSopenharmony_ci * 636cabdff1aSopenharmony_ci * @return The potentially overwritten filtered fixed vector address 637cabdff1aSopenharmony_ci */ 638cabdff1aSopenharmony_cistatic float *anti_sparseness(AMRWBContext *ctx, 639cabdff1aSopenharmony_ci float *fixed_vector, float *buf) 640cabdff1aSopenharmony_ci{ 641cabdff1aSopenharmony_ci int ir_filter_nr; 642cabdff1aSopenharmony_ci 643cabdff1aSopenharmony_ci if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes 644cabdff1aSopenharmony_ci return fixed_vector; 645cabdff1aSopenharmony_ci 646cabdff1aSopenharmony_ci if (ctx->pitch_gain[0] < 0.6) { 647cabdff1aSopenharmony_ci ir_filter_nr = 0; // strong filtering 648cabdff1aSopenharmony_ci } else if (ctx->pitch_gain[0] < 0.9) { 649cabdff1aSopenharmony_ci ir_filter_nr = 1; // medium filtering 650cabdff1aSopenharmony_ci } else 651cabdff1aSopenharmony_ci ir_filter_nr = 2; // no filtering 652cabdff1aSopenharmony_ci 653cabdff1aSopenharmony_ci /* detect 'onset' */ 654cabdff1aSopenharmony_ci if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) { 655cabdff1aSopenharmony_ci if (ir_filter_nr < 2) 656cabdff1aSopenharmony_ci ir_filter_nr++; 657cabdff1aSopenharmony_ci } else { 658cabdff1aSopenharmony_ci int i, count = 0; 659cabdff1aSopenharmony_ci 660cabdff1aSopenharmony_ci for (i = 0; i < 6; i++) 661cabdff1aSopenharmony_ci if (ctx->pitch_gain[i] < 0.6) 662cabdff1aSopenharmony_ci count++; 663cabdff1aSopenharmony_ci 664cabdff1aSopenharmony_ci if (count > 2) 665cabdff1aSopenharmony_ci ir_filter_nr = 0; 666cabdff1aSopenharmony_ci 667cabdff1aSopenharmony_ci if (ir_filter_nr > ctx->prev_ir_filter_nr + 1) 668cabdff1aSopenharmony_ci ir_filter_nr--; 669cabdff1aSopenharmony_ci } 670cabdff1aSopenharmony_ci 671cabdff1aSopenharmony_ci /* update ir filter strength history */ 672cabdff1aSopenharmony_ci ctx->prev_ir_filter_nr = ir_filter_nr; 673cabdff1aSopenharmony_ci 674cabdff1aSopenharmony_ci ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85); 675cabdff1aSopenharmony_ci 676cabdff1aSopenharmony_ci if (ir_filter_nr < 2) { 677cabdff1aSopenharmony_ci int i; 678cabdff1aSopenharmony_ci const float *coef = ir_filters_lookup[ir_filter_nr]; 679cabdff1aSopenharmony_ci 680cabdff1aSopenharmony_ci /* Circular convolution code in the reference 681cabdff1aSopenharmony_ci * decoder was modified to avoid using one 682cabdff1aSopenharmony_ci * extra array. The filtered vector is given by: 683cabdff1aSopenharmony_ci * 684cabdff1aSopenharmony_ci * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) } 685cabdff1aSopenharmony_ci */ 686cabdff1aSopenharmony_ci 687cabdff1aSopenharmony_ci memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE); 688cabdff1aSopenharmony_ci for (i = 0; i < AMRWB_SFR_SIZE; i++) 689cabdff1aSopenharmony_ci if (fixed_vector[i]) 690cabdff1aSopenharmony_ci ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i], 691cabdff1aSopenharmony_ci AMRWB_SFR_SIZE); 692cabdff1aSopenharmony_ci fixed_vector = buf; 693cabdff1aSopenharmony_ci } 694cabdff1aSopenharmony_ci 695cabdff1aSopenharmony_ci return fixed_vector; 696cabdff1aSopenharmony_ci} 697cabdff1aSopenharmony_ci 698cabdff1aSopenharmony_ci/** 699cabdff1aSopenharmony_ci * Calculate a stability factor {teta} based on distance between 700cabdff1aSopenharmony_ci * current and past isf. A value of 1 shows maximum signal stability. 701cabdff1aSopenharmony_ci */ 702cabdff1aSopenharmony_cistatic float stability_factor(const float *isf, const float *isf_past) 703cabdff1aSopenharmony_ci{ 704cabdff1aSopenharmony_ci int i; 705cabdff1aSopenharmony_ci float acc = 0.0; 706cabdff1aSopenharmony_ci 707cabdff1aSopenharmony_ci for (i = 0; i < LP_ORDER - 1; i++) 708cabdff1aSopenharmony_ci acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]); 709cabdff1aSopenharmony_ci 710cabdff1aSopenharmony_ci // XXX: This part is not so clear from the reference code 711cabdff1aSopenharmony_ci // the result is more accurate changing the "/ 256" to "* 512" 712cabdff1aSopenharmony_ci return FFMAX(0.0, 1.25 - acc * 0.8 * 512); 713cabdff1aSopenharmony_ci} 714cabdff1aSopenharmony_ci 715cabdff1aSopenharmony_ci/** 716cabdff1aSopenharmony_ci * Apply a non-linear fixed gain smoothing in order to reduce 717cabdff1aSopenharmony_ci * fluctuation in the energy of excitation. 718cabdff1aSopenharmony_ci * 719cabdff1aSopenharmony_ci * @param[in] fixed_gain Unsmoothed fixed gain 720cabdff1aSopenharmony_ci * @param[in,out] prev_tr_gain Previous threshold gain (updated) 721cabdff1aSopenharmony_ci * @param[in] voice_fac Frame voicing factor 722cabdff1aSopenharmony_ci * @param[in] stab_fac Frame stability factor 723cabdff1aSopenharmony_ci * 724cabdff1aSopenharmony_ci * @return The smoothed gain 725cabdff1aSopenharmony_ci */ 726cabdff1aSopenharmony_cistatic float noise_enhancer(float fixed_gain, float *prev_tr_gain, 727cabdff1aSopenharmony_ci float voice_fac, float stab_fac) 728cabdff1aSopenharmony_ci{ 729cabdff1aSopenharmony_ci float sm_fac = 0.5 * (1 - voice_fac) * stab_fac; 730cabdff1aSopenharmony_ci float g0; 731cabdff1aSopenharmony_ci 732cabdff1aSopenharmony_ci // XXX: the following fixed-point constants used to in(de)crement 733cabdff1aSopenharmony_ci // gain by 1.5dB were taken from the reference code, maybe it could 734cabdff1aSopenharmony_ci // be simpler 735cabdff1aSopenharmony_ci if (fixed_gain < *prev_tr_gain) { 736cabdff1aSopenharmony_ci g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain * 737cabdff1aSopenharmony_ci (6226 * (1.0f / (1 << 15)))); // +1.5 dB 738cabdff1aSopenharmony_ci } else 739cabdff1aSopenharmony_ci g0 = FFMAX(*prev_tr_gain, fixed_gain * 740cabdff1aSopenharmony_ci (27536 * (1.0f / (1 << 15)))); // -1.5 dB 741cabdff1aSopenharmony_ci 742cabdff1aSopenharmony_ci *prev_tr_gain = g0; // update next frame threshold 743cabdff1aSopenharmony_ci 744cabdff1aSopenharmony_ci return sm_fac * g0 + (1 - sm_fac) * fixed_gain; 745cabdff1aSopenharmony_ci} 746cabdff1aSopenharmony_ci 747cabdff1aSopenharmony_ci/** 748cabdff1aSopenharmony_ci * Filter the fixed_vector to emphasize the higher frequencies. 749cabdff1aSopenharmony_ci * 750cabdff1aSopenharmony_ci * @param[in,out] fixed_vector Fixed codebook vector 751cabdff1aSopenharmony_ci * @param[in] voice_fac Frame voicing factor 752cabdff1aSopenharmony_ci */ 753cabdff1aSopenharmony_cistatic void pitch_enhancer(float *fixed_vector, float voice_fac) 754cabdff1aSopenharmony_ci{ 755cabdff1aSopenharmony_ci int i; 756cabdff1aSopenharmony_ci float cpe = 0.125 * (1 + voice_fac); 757cabdff1aSopenharmony_ci float last = fixed_vector[0]; // holds c(i - 1) 758cabdff1aSopenharmony_ci 759cabdff1aSopenharmony_ci fixed_vector[0] -= cpe * fixed_vector[1]; 760cabdff1aSopenharmony_ci 761cabdff1aSopenharmony_ci for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) { 762cabdff1aSopenharmony_ci float cur = fixed_vector[i]; 763cabdff1aSopenharmony_ci 764cabdff1aSopenharmony_ci fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]); 765cabdff1aSopenharmony_ci last = cur; 766cabdff1aSopenharmony_ci } 767cabdff1aSopenharmony_ci 768cabdff1aSopenharmony_ci fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last; 769cabdff1aSopenharmony_ci} 770cabdff1aSopenharmony_ci 771cabdff1aSopenharmony_ci/** 772cabdff1aSopenharmony_ci * Conduct 16th order linear predictive coding synthesis from excitation. 773cabdff1aSopenharmony_ci * 774cabdff1aSopenharmony_ci * @param[in] ctx Pointer to the AMRWBContext 775cabdff1aSopenharmony_ci * @param[in] lpc Pointer to the LPC coefficients 776cabdff1aSopenharmony_ci * @param[out] excitation Buffer for synthesis final excitation 777cabdff1aSopenharmony_ci * @param[in] fixed_gain Fixed codebook gain for synthesis 778cabdff1aSopenharmony_ci * @param[in] fixed_vector Algebraic codebook vector 779cabdff1aSopenharmony_ci * @param[in,out] samples Pointer to the output samples and memory 780cabdff1aSopenharmony_ci */ 781cabdff1aSopenharmony_cistatic void synthesis(AMRWBContext *ctx, float *lpc, float *excitation, 782cabdff1aSopenharmony_ci float fixed_gain, const float *fixed_vector, 783cabdff1aSopenharmony_ci float *samples) 784cabdff1aSopenharmony_ci{ 785cabdff1aSopenharmony_ci ctx->acelpv_ctx.weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector, 786cabdff1aSopenharmony_ci ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE); 787cabdff1aSopenharmony_ci 788cabdff1aSopenharmony_ci /* emphasize pitch vector contribution in low bitrate modes */ 789cabdff1aSopenharmony_ci if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) { 790cabdff1aSopenharmony_ci int i; 791cabdff1aSopenharmony_ci float energy = ctx->celpm_ctx.dot_productf(excitation, excitation, 792cabdff1aSopenharmony_ci AMRWB_SFR_SIZE); 793cabdff1aSopenharmony_ci 794cabdff1aSopenharmony_ci // XXX: Weird part in both ref code and spec. A unknown parameter 795cabdff1aSopenharmony_ci // {beta} seems to be identical to the current pitch gain 796cabdff1aSopenharmony_ci float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0]; 797cabdff1aSopenharmony_ci 798cabdff1aSopenharmony_ci for (i = 0; i < AMRWB_SFR_SIZE; i++) 799cabdff1aSopenharmony_ci excitation[i] += pitch_factor * ctx->pitch_vector[i]; 800cabdff1aSopenharmony_ci 801cabdff1aSopenharmony_ci ff_scale_vector_to_given_sum_of_squares(excitation, excitation, 802cabdff1aSopenharmony_ci energy, AMRWB_SFR_SIZE); 803cabdff1aSopenharmony_ci } 804cabdff1aSopenharmony_ci 805cabdff1aSopenharmony_ci ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation, 806cabdff1aSopenharmony_ci AMRWB_SFR_SIZE, LP_ORDER); 807cabdff1aSopenharmony_ci} 808cabdff1aSopenharmony_ci 809cabdff1aSopenharmony_ci/** 810cabdff1aSopenharmony_ci * Apply to synthesis a de-emphasis filter of the form: 811cabdff1aSopenharmony_ci * H(z) = 1 / (1 - m * z^-1) 812cabdff1aSopenharmony_ci * 813cabdff1aSopenharmony_ci * @param[out] out Output buffer 814cabdff1aSopenharmony_ci * @param[in] in Input samples array with in[-1] 815cabdff1aSopenharmony_ci * @param[in] m Filter coefficient 816cabdff1aSopenharmony_ci * @param[in,out] mem State from last filtering 817cabdff1aSopenharmony_ci */ 818cabdff1aSopenharmony_cistatic void de_emphasis(float *out, float *in, float m, float mem[1]) 819cabdff1aSopenharmony_ci{ 820cabdff1aSopenharmony_ci int i; 821cabdff1aSopenharmony_ci 822cabdff1aSopenharmony_ci out[0] = in[0] + m * mem[0]; 823cabdff1aSopenharmony_ci 824cabdff1aSopenharmony_ci for (i = 1; i < AMRWB_SFR_SIZE; i++) 825cabdff1aSopenharmony_ci out[i] = in[i] + out[i - 1] * m; 826cabdff1aSopenharmony_ci 827cabdff1aSopenharmony_ci mem[0] = out[AMRWB_SFR_SIZE - 1]; 828cabdff1aSopenharmony_ci} 829cabdff1aSopenharmony_ci 830cabdff1aSopenharmony_ci/** 831cabdff1aSopenharmony_ci * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using 832cabdff1aSopenharmony_ci * a FIR interpolation filter. Uses past data from before *in address. 833cabdff1aSopenharmony_ci * 834cabdff1aSopenharmony_ci * @param[out] out Buffer for interpolated signal 835cabdff1aSopenharmony_ci * @param[in] in Current signal data (length 0.8*o_size) 836cabdff1aSopenharmony_ci * @param[in] o_size Output signal length 837cabdff1aSopenharmony_ci * @param[in] ctx The context 838cabdff1aSopenharmony_ci */ 839cabdff1aSopenharmony_cistatic void upsample_5_4(float *out, const float *in, int o_size, CELPMContext *ctx) 840cabdff1aSopenharmony_ci{ 841cabdff1aSopenharmony_ci const float *in0 = in - UPS_FIR_SIZE + 1; 842cabdff1aSopenharmony_ci int i, j, k; 843cabdff1aSopenharmony_ci int int_part = 0, frac_part; 844cabdff1aSopenharmony_ci 845cabdff1aSopenharmony_ci i = 0; 846cabdff1aSopenharmony_ci for (j = 0; j < o_size / 5; j++) { 847cabdff1aSopenharmony_ci out[i] = in[int_part]; 848cabdff1aSopenharmony_ci frac_part = 4; 849cabdff1aSopenharmony_ci i++; 850cabdff1aSopenharmony_ci 851cabdff1aSopenharmony_ci for (k = 1; k < 5; k++) { 852cabdff1aSopenharmony_ci out[i] = ctx->dot_productf(in0 + int_part, 853cabdff1aSopenharmony_ci upsample_fir[4 - frac_part], 854cabdff1aSopenharmony_ci UPS_MEM_SIZE); 855cabdff1aSopenharmony_ci int_part++; 856cabdff1aSopenharmony_ci frac_part--; 857cabdff1aSopenharmony_ci i++; 858cabdff1aSopenharmony_ci } 859cabdff1aSopenharmony_ci } 860cabdff1aSopenharmony_ci} 861cabdff1aSopenharmony_ci 862cabdff1aSopenharmony_ci/** 863cabdff1aSopenharmony_ci * Calculate the high-band gain based on encoded index (23k85 mode) or 864cabdff1aSopenharmony_ci * on the low-band speech signal and the Voice Activity Detection flag. 865cabdff1aSopenharmony_ci * 866cabdff1aSopenharmony_ci * @param[in] ctx The context 867cabdff1aSopenharmony_ci * @param[in] synth LB speech synthesis at 12.8k 868cabdff1aSopenharmony_ci * @param[in] hb_idx Gain index for mode 23k85 only 869cabdff1aSopenharmony_ci * @param[in] vad VAD flag for the frame 870cabdff1aSopenharmony_ci */ 871cabdff1aSopenharmony_cistatic float find_hb_gain(AMRWBContext *ctx, const float *synth, 872cabdff1aSopenharmony_ci uint16_t hb_idx, uint8_t vad) 873cabdff1aSopenharmony_ci{ 874cabdff1aSopenharmony_ci int wsp = (vad > 0); 875cabdff1aSopenharmony_ci float tilt; 876cabdff1aSopenharmony_ci float tmp; 877cabdff1aSopenharmony_ci 878cabdff1aSopenharmony_ci if (ctx->fr_cur_mode == MODE_23k85) 879cabdff1aSopenharmony_ci return qua_hb_gain[hb_idx] * (1.0f / (1 << 14)); 880cabdff1aSopenharmony_ci 881cabdff1aSopenharmony_ci tmp = ctx->celpm_ctx.dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1); 882cabdff1aSopenharmony_ci 883cabdff1aSopenharmony_ci if (tmp > 0) { 884cabdff1aSopenharmony_ci tilt = tmp / ctx->celpm_ctx.dot_productf(synth, synth, AMRWB_SFR_SIZE); 885cabdff1aSopenharmony_ci } else 886cabdff1aSopenharmony_ci tilt = 0; 887cabdff1aSopenharmony_ci 888cabdff1aSopenharmony_ci /* return gain bounded by [0.1, 1.0] */ 889cabdff1aSopenharmony_ci return av_clipf((1.0 - tilt) * (1.25 - 0.25 * wsp), 0.1, 1.0); 890cabdff1aSopenharmony_ci} 891cabdff1aSopenharmony_ci 892cabdff1aSopenharmony_ci/** 893cabdff1aSopenharmony_ci * Generate the high-band excitation with the same energy from the lower 894cabdff1aSopenharmony_ci * one and scaled by the given gain. 895cabdff1aSopenharmony_ci * 896cabdff1aSopenharmony_ci * @param[in] ctx The context 897cabdff1aSopenharmony_ci * @param[out] hb_exc Buffer for the excitation 898cabdff1aSopenharmony_ci * @param[in] synth_exc Low-band excitation used for synthesis 899cabdff1aSopenharmony_ci * @param[in] hb_gain Wanted excitation gain 900cabdff1aSopenharmony_ci */ 901cabdff1aSopenharmony_cistatic void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc, 902cabdff1aSopenharmony_ci const float *synth_exc, float hb_gain) 903cabdff1aSopenharmony_ci{ 904cabdff1aSopenharmony_ci int i; 905cabdff1aSopenharmony_ci float energy = ctx->celpm_ctx.dot_productf(synth_exc, synth_exc, 906cabdff1aSopenharmony_ci AMRWB_SFR_SIZE); 907cabdff1aSopenharmony_ci 908cabdff1aSopenharmony_ci /* Generate a white-noise excitation */ 909cabdff1aSopenharmony_ci for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) 910cabdff1aSopenharmony_ci hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng); 911cabdff1aSopenharmony_ci 912cabdff1aSopenharmony_ci ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc, 913cabdff1aSopenharmony_ci energy * hb_gain * hb_gain, 914cabdff1aSopenharmony_ci AMRWB_SFR_SIZE_16k); 915cabdff1aSopenharmony_ci} 916cabdff1aSopenharmony_ci 917cabdff1aSopenharmony_ci/** 918cabdff1aSopenharmony_ci * Calculate the auto-correlation for the ISF difference vector. 919cabdff1aSopenharmony_ci */ 920cabdff1aSopenharmony_cistatic float auto_correlation(float *diff_isf, float mean, int lag) 921cabdff1aSopenharmony_ci{ 922cabdff1aSopenharmony_ci int i; 923cabdff1aSopenharmony_ci float sum = 0.0; 924cabdff1aSopenharmony_ci 925cabdff1aSopenharmony_ci for (i = 7; i < LP_ORDER - 2; i++) { 926cabdff1aSopenharmony_ci float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean); 927cabdff1aSopenharmony_ci sum += prod * prod; 928cabdff1aSopenharmony_ci } 929cabdff1aSopenharmony_ci return sum; 930cabdff1aSopenharmony_ci} 931cabdff1aSopenharmony_ci 932cabdff1aSopenharmony_ci/** 933cabdff1aSopenharmony_ci * Extrapolate a ISF vector to the 16kHz range (20th order LP) 934cabdff1aSopenharmony_ci * used at mode 6k60 LP filter for the high frequency band. 935cabdff1aSopenharmony_ci * 936cabdff1aSopenharmony_ci * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER 937cabdff1aSopenharmony_ci * values on input 938cabdff1aSopenharmony_ci */ 939cabdff1aSopenharmony_cistatic void extrapolate_isf(float isf[LP_ORDER_16k]) 940cabdff1aSopenharmony_ci{ 941cabdff1aSopenharmony_ci float diff_isf[LP_ORDER - 2], diff_mean; 942cabdff1aSopenharmony_ci float corr_lag[3]; 943cabdff1aSopenharmony_ci float est, scale; 944cabdff1aSopenharmony_ci int i, j, i_max_corr; 945cabdff1aSopenharmony_ci 946cabdff1aSopenharmony_ci isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1]; 947cabdff1aSopenharmony_ci 948cabdff1aSopenharmony_ci /* Calculate the difference vector */ 949cabdff1aSopenharmony_ci for (i = 0; i < LP_ORDER - 2; i++) 950cabdff1aSopenharmony_ci diff_isf[i] = isf[i + 1] - isf[i]; 951cabdff1aSopenharmony_ci 952cabdff1aSopenharmony_ci diff_mean = 0.0; 953cabdff1aSopenharmony_ci for (i = 2; i < LP_ORDER - 2; i++) 954cabdff1aSopenharmony_ci diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4)); 955cabdff1aSopenharmony_ci 956cabdff1aSopenharmony_ci /* Find which is the maximum autocorrelation */ 957cabdff1aSopenharmony_ci i_max_corr = 0; 958cabdff1aSopenharmony_ci for (i = 0; i < 3; i++) { 959cabdff1aSopenharmony_ci corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2); 960cabdff1aSopenharmony_ci 961cabdff1aSopenharmony_ci if (corr_lag[i] > corr_lag[i_max_corr]) 962cabdff1aSopenharmony_ci i_max_corr = i; 963cabdff1aSopenharmony_ci } 964cabdff1aSopenharmony_ci i_max_corr++; 965cabdff1aSopenharmony_ci 966cabdff1aSopenharmony_ci for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++) 967cabdff1aSopenharmony_ci isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr] 968cabdff1aSopenharmony_ci - isf[i - 2 - i_max_corr]; 969cabdff1aSopenharmony_ci 970cabdff1aSopenharmony_ci /* Calculate an estimate for ISF(18) and scale ISF based on the error */ 971cabdff1aSopenharmony_ci est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0; 972cabdff1aSopenharmony_ci scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) / 973cabdff1aSopenharmony_ci (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]); 974cabdff1aSopenharmony_ci 975cabdff1aSopenharmony_ci for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++) 976cabdff1aSopenharmony_ci diff_isf[j] = scale * (isf[i] - isf[i - 1]); 977cabdff1aSopenharmony_ci 978cabdff1aSopenharmony_ci /* Stability insurance */ 979cabdff1aSopenharmony_ci for (i = 1; i < LP_ORDER_16k - LP_ORDER; i++) 980cabdff1aSopenharmony_ci if (diff_isf[i] + diff_isf[i - 1] < 5.0) { 981cabdff1aSopenharmony_ci if (diff_isf[i] > diff_isf[i - 1]) { 982cabdff1aSopenharmony_ci diff_isf[i - 1] = 5.0 - diff_isf[i]; 983cabdff1aSopenharmony_ci } else 984cabdff1aSopenharmony_ci diff_isf[i] = 5.0 - diff_isf[i - 1]; 985cabdff1aSopenharmony_ci } 986cabdff1aSopenharmony_ci 987cabdff1aSopenharmony_ci for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++) 988cabdff1aSopenharmony_ci isf[i] = isf[i - 1] + diff_isf[j] * (1.0f / (1 << 15)); 989cabdff1aSopenharmony_ci 990cabdff1aSopenharmony_ci /* Scale the ISF vector for 16000 Hz */ 991cabdff1aSopenharmony_ci for (i = 0; i < LP_ORDER_16k - 1; i++) 992cabdff1aSopenharmony_ci isf[i] *= 0.8; 993cabdff1aSopenharmony_ci} 994cabdff1aSopenharmony_ci 995cabdff1aSopenharmony_ci/** 996cabdff1aSopenharmony_ci * Spectral expand the LP coefficients using the equation: 997cabdff1aSopenharmony_ci * y[i] = x[i] * (gamma ** i) 998cabdff1aSopenharmony_ci * 999cabdff1aSopenharmony_ci * @param[out] out Output buffer (may use input array) 1000cabdff1aSopenharmony_ci * @param[in] lpc LP coefficients array 1001cabdff1aSopenharmony_ci * @param[in] gamma Weighting factor 1002cabdff1aSopenharmony_ci * @param[in] size LP array size 1003cabdff1aSopenharmony_ci */ 1004cabdff1aSopenharmony_cistatic void lpc_weighting(float *out, const float *lpc, float gamma, int size) 1005cabdff1aSopenharmony_ci{ 1006cabdff1aSopenharmony_ci int i; 1007cabdff1aSopenharmony_ci float fac = gamma; 1008cabdff1aSopenharmony_ci 1009cabdff1aSopenharmony_ci for (i = 0; i < size; i++) { 1010cabdff1aSopenharmony_ci out[i] = lpc[i] * fac; 1011cabdff1aSopenharmony_ci fac *= gamma; 1012cabdff1aSopenharmony_ci } 1013cabdff1aSopenharmony_ci} 1014cabdff1aSopenharmony_ci 1015cabdff1aSopenharmony_ci/** 1016cabdff1aSopenharmony_ci * Conduct 20th order linear predictive coding synthesis for the high 1017cabdff1aSopenharmony_ci * frequency band excitation at 16kHz. 1018cabdff1aSopenharmony_ci * 1019cabdff1aSopenharmony_ci * @param[in] ctx The context 1020cabdff1aSopenharmony_ci * @param[in] subframe Current subframe index (0 to 3) 1021cabdff1aSopenharmony_ci * @param[in,out] samples Pointer to the output speech samples 1022cabdff1aSopenharmony_ci * @param[in] exc Generated white-noise scaled excitation 1023cabdff1aSopenharmony_ci * @param[in] isf Current frame isf vector 1024cabdff1aSopenharmony_ci * @param[in] isf_past Past frame final isf vector 1025cabdff1aSopenharmony_ci */ 1026cabdff1aSopenharmony_cistatic void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples, 1027cabdff1aSopenharmony_ci const float *exc, const float *isf, const float *isf_past) 1028cabdff1aSopenharmony_ci{ 1029cabdff1aSopenharmony_ci float hb_lpc[LP_ORDER_16k]; 1030cabdff1aSopenharmony_ci enum Mode mode = ctx->fr_cur_mode; 1031cabdff1aSopenharmony_ci 1032cabdff1aSopenharmony_ci if (mode == MODE_6k60) { 1033cabdff1aSopenharmony_ci float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation 1034cabdff1aSopenharmony_ci double e_isp[LP_ORDER_16k]; 1035cabdff1aSopenharmony_ci 1036cabdff1aSopenharmony_ci ctx->acelpv_ctx.weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe], 1037cabdff1aSopenharmony_ci 1.0 - isfp_inter[subframe], LP_ORDER); 1038cabdff1aSopenharmony_ci 1039cabdff1aSopenharmony_ci extrapolate_isf(e_isf); 1040cabdff1aSopenharmony_ci 1041cabdff1aSopenharmony_ci e_isf[LP_ORDER_16k - 1] *= 2.0; 1042cabdff1aSopenharmony_ci ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k); 1043cabdff1aSopenharmony_ci ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k); 1044cabdff1aSopenharmony_ci 1045cabdff1aSopenharmony_ci lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k); 1046cabdff1aSopenharmony_ci } else { 1047cabdff1aSopenharmony_ci lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER); 1048cabdff1aSopenharmony_ci } 1049cabdff1aSopenharmony_ci 1050cabdff1aSopenharmony_ci ctx->celpf_ctx.celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k, 1051cabdff1aSopenharmony_ci (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER); 1052cabdff1aSopenharmony_ci} 1053cabdff1aSopenharmony_ci 1054cabdff1aSopenharmony_ci/** 1055cabdff1aSopenharmony_ci * Apply a 15th order filter to high-band samples. 1056cabdff1aSopenharmony_ci * The filter characteristic depends on the given coefficients. 1057cabdff1aSopenharmony_ci * 1058cabdff1aSopenharmony_ci * @param[out] out Buffer for filtered output 1059cabdff1aSopenharmony_ci * @param[in] fir_coef Filter coefficients 1060cabdff1aSopenharmony_ci * @param[in,out] mem State from last filtering (updated) 1061cabdff1aSopenharmony_ci * @param[in] in Input speech data (high-band) 1062cabdff1aSopenharmony_ci * 1063cabdff1aSopenharmony_ci * @remark It is safe to pass the same array in in and out parameters 1064cabdff1aSopenharmony_ci */ 1065cabdff1aSopenharmony_ci 1066cabdff1aSopenharmony_ci#ifndef hb_fir_filter 1067cabdff1aSopenharmony_cistatic void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1], 1068cabdff1aSopenharmony_ci float mem[HB_FIR_SIZE], const float *in) 1069cabdff1aSopenharmony_ci{ 1070cabdff1aSopenharmony_ci int i, j; 1071cabdff1aSopenharmony_ci float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples 1072cabdff1aSopenharmony_ci 1073cabdff1aSopenharmony_ci memcpy(data, mem, HB_FIR_SIZE * sizeof(float)); 1074cabdff1aSopenharmony_ci memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float)); 1075cabdff1aSopenharmony_ci 1076cabdff1aSopenharmony_ci for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) { 1077cabdff1aSopenharmony_ci out[i] = 0.0; 1078cabdff1aSopenharmony_ci for (j = 0; j <= HB_FIR_SIZE; j++) 1079cabdff1aSopenharmony_ci out[i] += data[i + j] * fir_coef[j]; 1080cabdff1aSopenharmony_ci } 1081cabdff1aSopenharmony_ci 1082cabdff1aSopenharmony_ci memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float)); 1083cabdff1aSopenharmony_ci} 1084cabdff1aSopenharmony_ci#endif /* hb_fir_filter */ 1085cabdff1aSopenharmony_ci 1086cabdff1aSopenharmony_ci/** 1087cabdff1aSopenharmony_ci * Update context state before the next subframe. 1088cabdff1aSopenharmony_ci */ 1089cabdff1aSopenharmony_cistatic void update_sub_state(AMRWBContext *ctx) 1090cabdff1aSopenharmony_ci{ 1091cabdff1aSopenharmony_ci memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE], 1092cabdff1aSopenharmony_ci (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float)); 1093cabdff1aSopenharmony_ci 1094cabdff1aSopenharmony_ci memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float)); 1095cabdff1aSopenharmony_ci memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float)); 1096cabdff1aSopenharmony_ci 1097cabdff1aSopenharmony_ci memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE], 1098cabdff1aSopenharmony_ci LP_ORDER * sizeof(float)); 1099cabdff1aSopenharmony_ci memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE], 1100cabdff1aSopenharmony_ci UPS_MEM_SIZE * sizeof(float)); 1101cabdff1aSopenharmony_ci memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k], 1102cabdff1aSopenharmony_ci LP_ORDER_16k * sizeof(float)); 1103cabdff1aSopenharmony_ci} 1104cabdff1aSopenharmony_ci 1105cabdff1aSopenharmony_cistatic int amrwb_decode_frame(AVCodecContext *avctx, AVFrame *frame, 1106cabdff1aSopenharmony_ci int *got_frame_ptr, AVPacket *avpkt) 1107cabdff1aSopenharmony_ci{ 1108cabdff1aSopenharmony_ci AMRWBChannelsContext *s = avctx->priv_data; 1109cabdff1aSopenharmony_ci const uint8_t *buf = avpkt->data; 1110cabdff1aSopenharmony_ci int buf_size = avpkt->size; 1111cabdff1aSopenharmony_ci int sub, i, ret; 1112cabdff1aSopenharmony_ci 1113cabdff1aSopenharmony_ci /* get output buffer */ 1114cabdff1aSopenharmony_ci frame->nb_samples = 4 * AMRWB_SFR_SIZE_16k; 1115cabdff1aSopenharmony_ci if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) 1116cabdff1aSopenharmony_ci return ret; 1117cabdff1aSopenharmony_ci 1118cabdff1aSopenharmony_ci for (int ch = 0; ch < avctx->ch_layout.nb_channels; ch++) { 1119cabdff1aSopenharmony_ci AMRWBContext *ctx = &s->ch[ch]; 1120cabdff1aSopenharmony_ci AMRWBFrame *cf = &ctx->frame; 1121cabdff1aSopenharmony_ci int expected_fr_size, header_size; 1122cabdff1aSopenharmony_ci float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing 1123cabdff1aSopenharmony_ci float fixed_gain_factor; // fixed gain correction factor (gamma) 1124cabdff1aSopenharmony_ci float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use 1125cabdff1aSopenharmony_ci float synth_fixed_gain; // the fixed gain that synthesis should use 1126cabdff1aSopenharmony_ci float voice_fac, stab_fac; // parameters used for gain smoothing 1127cabdff1aSopenharmony_ci float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis 1128cabdff1aSopenharmony_ci float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band 1129cabdff1aSopenharmony_ci float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis 1130cabdff1aSopenharmony_ci float hb_gain; 1131cabdff1aSopenharmony_ci float *buf_out = (float *)frame->extended_data[ch]; 1132cabdff1aSopenharmony_ci 1133cabdff1aSopenharmony_ci header_size = decode_mime_header(ctx, buf); 1134cabdff1aSopenharmony_ci expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1; 1135cabdff1aSopenharmony_ci 1136cabdff1aSopenharmony_ci if (!ctx->fr_quality) 1137cabdff1aSopenharmony_ci av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n"); 1138cabdff1aSopenharmony_ci 1139cabdff1aSopenharmony_ci if (ctx->fr_cur_mode == NO_DATA || !ctx->fr_quality) { 1140cabdff1aSopenharmony_ci /* The specification suggests a "random signal" and 1141cabdff1aSopenharmony_ci "a muting technique" to "gradually decrease the output level". */ 1142cabdff1aSopenharmony_ci av_samples_set_silence(&frame->extended_data[ch], 0, frame->nb_samples, 1, AV_SAMPLE_FMT_FLT); 1143cabdff1aSopenharmony_ci buf += expected_fr_size; 1144cabdff1aSopenharmony_ci buf_size -= expected_fr_size; 1145cabdff1aSopenharmony_ci continue; 1146cabdff1aSopenharmony_ci } 1147cabdff1aSopenharmony_ci if (ctx->fr_cur_mode > MODE_SID) { 1148cabdff1aSopenharmony_ci av_log(avctx, AV_LOG_ERROR, 1149cabdff1aSopenharmony_ci "Invalid mode %d\n", ctx->fr_cur_mode); 1150cabdff1aSopenharmony_ci return AVERROR_INVALIDDATA; 1151cabdff1aSopenharmony_ci } 1152cabdff1aSopenharmony_ci 1153cabdff1aSopenharmony_ci if (buf_size < expected_fr_size) { 1154cabdff1aSopenharmony_ci av_log(avctx, AV_LOG_ERROR, 1155cabdff1aSopenharmony_ci "Frame too small (%d bytes). Truncated file?\n", buf_size); 1156cabdff1aSopenharmony_ci *got_frame_ptr = 0; 1157cabdff1aSopenharmony_ci return AVERROR_INVALIDDATA; 1158cabdff1aSopenharmony_ci } 1159cabdff1aSopenharmony_ci 1160cabdff1aSopenharmony_ci if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */ 1161cabdff1aSopenharmony_ci avpriv_request_sample(avctx, "SID mode"); 1162cabdff1aSopenharmony_ci return AVERROR_PATCHWELCOME; 1163cabdff1aSopenharmony_ci } 1164cabdff1aSopenharmony_ci 1165cabdff1aSopenharmony_ci ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame), 1166cabdff1aSopenharmony_ci buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]); 1167cabdff1aSopenharmony_ci 1168cabdff1aSopenharmony_ci /* Decode the quantized ISF vector */ 1169cabdff1aSopenharmony_ci if (ctx->fr_cur_mode == MODE_6k60) { 1170cabdff1aSopenharmony_ci decode_isf_indices_36b(cf->isp_id, ctx->isf_cur); 1171cabdff1aSopenharmony_ci } else { 1172cabdff1aSopenharmony_ci decode_isf_indices_46b(cf->isp_id, ctx->isf_cur); 1173cabdff1aSopenharmony_ci } 1174cabdff1aSopenharmony_ci 1175cabdff1aSopenharmony_ci isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past); 1176cabdff1aSopenharmony_ci ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1); 1177cabdff1aSopenharmony_ci 1178cabdff1aSopenharmony_ci stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final); 1179cabdff1aSopenharmony_ci 1180cabdff1aSopenharmony_ci ctx->isf_cur[LP_ORDER - 1] *= 2.0; 1181cabdff1aSopenharmony_ci ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER); 1182cabdff1aSopenharmony_ci 1183cabdff1aSopenharmony_ci /* Generate a ISP vector for each subframe */ 1184cabdff1aSopenharmony_ci if (ctx->first_frame) { 1185cabdff1aSopenharmony_ci ctx->first_frame = 0; 1186cabdff1aSopenharmony_ci memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double)); 1187cabdff1aSopenharmony_ci } 1188cabdff1aSopenharmony_ci interpolate_isp(ctx->isp, ctx->isp_sub4_past); 1189cabdff1aSopenharmony_ci 1190cabdff1aSopenharmony_ci for (sub = 0; sub < 4; sub++) 1191cabdff1aSopenharmony_ci ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER); 1192cabdff1aSopenharmony_ci 1193cabdff1aSopenharmony_ci for (sub = 0; sub < 4; sub++) { 1194cabdff1aSopenharmony_ci const AMRWBSubFrame *cur_subframe = &cf->subframe[sub]; 1195cabdff1aSopenharmony_ci float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k; 1196cabdff1aSopenharmony_ci 1197cabdff1aSopenharmony_ci /* Decode adaptive codebook (pitch vector) */ 1198cabdff1aSopenharmony_ci decode_pitch_vector(ctx, cur_subframe, sub); 1199cabdff1aSopenharmony_ci /* Decode innovative codebook (fixed vector) */ 1200cabdff1aSopenharmony_ci decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih, 1201cabdff1aSopenharmony_ci cur_subframe->pul_il, ctx->fr_cur_mode); 1202cabdff1aSopenharmony_ci 1203cabdff1aSopenharmony_ci pitch_sharpening(ctx, ctx->fixed_vector); 1204cabdff1aSopenharmony_ci 1205cabdff1aSopenharmony_ci decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode, 1206cabdff1aSopenharmony_ci &fixed_gain_factor, &ctx->pitch_gain[0]); 1207cabdff1aSopenharmony_ci 1208cabdff1aSopenharmony_ci ctx->fixed_gain[0] = 1209cabdff1aSopenharmony_ci ff_amr_set_fixed_gain(fixed_gain_factor, 1210cabdff1aSopenharmony_ci ctx->celpm_ctx.dot_productf(ctx->fixed_vector, 1211cabdff1aSopenharmony_ci ctx->fixed_vector, 1212cabdff1aSopenharmony_ci AMRWB_SFR_SIZE) / 1213cabdff1aSopenharmony_ci AMRWB_SFR_SIZE, 1214cabdff1aSopenharmony_ci ctx->prediction_error, 1215cabdff1aSopenharmony_ci ENERGY_MEAN, energy_pred_fac); 1216cabdff1aSopenharmony_ci 1217cabdff1aSopenharmony_ci /* Calculate voice factor and store tilt for next subframe */ 1218cabdff1aSopenharmony_ci voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0], 1219cabdff1aSopenharmony_ci ctx->fixed_vector, ctx->fixed_gain[0], 1220cabdff1aSopenharmony_ci &ctx->celpm_ctx); 1221cabdff1aSopenharmony_ci ctx->tilt_coef = voice_fac * 0.25 + 0.25; 1222cabdff1aSopenharmony_ci 1223cabdff1aSopenharmony_ci /* Construct current excitation */ 1224cabdff1aSopenharmony_ci for (i = 0; i < AMRWB_SFR_SIZE; i++) { 1225cabdff1aSopenharmony_ci ctx->excitation[i] *= ctx->pitch_gain[0]; 1226cabdff1aSopenharmony_ci ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i]; 1227cabdff1aSopenharmony_ci ctx->excitation[i] = truncf(ctx->excitation[i]); 1228cabdff1aSopenharmony_ci } 1229cabdff1aSopenharmony_ci 1230cabdff1aSopenharmony_ci /* Post-processing of excitation elements */ 1231cabdff1aSopenharmony_ci synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain, 1232cabdff1aSopenharmony_ci voice_fac, stab_fac); 1233cabdff1aSopenharmony_ci 1234cabdff1aSopenharmony_ci synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector, 1235cabdff1aSopenharmony_ci spare_vector); 1236cabdff1aSopenharmony_ci 1237cabdff1aSopenharmony_ci pitch_enhancer(synth_fixed_vector, voice_fac); 1238cabdff1aSopenharmony_ci 1239cabdff1aSopenharmony_ci synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain, 1240cabdff1aSopenharmony_ci synth_fixed_vector, &ctx->samples_az[LP_ORDER]); 1241cabdff1aSopenharmony_ci 1242cabdff1aSopenharmony_ci /* Synthesis speech post-processing */ 1243cabdff1aSopenharmony_ci de_emphasis(&ctx->samples_up[UPS_MEM_SIZE], 1244cabdff1aSopenharmony_ci &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem); 1245cabdff1aSopenharmony_ci 1246cabdff1aSopenharmony_ci ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE], 1247cabdff1aSopenharmony_ci &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles, 1248cabdff1aSopenharmony_ci hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE); 1249cabdff1aSopenharmony_ci 1250cabdff1aSopenharmony_ci upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE], 1251cabdff1aSopenharmony_ci AMRWB_SFR_SIZE_16k, &ctx->celpm_ctx); 1252cabdff1aSopenharmony_ci 1253cabdff1aSopenharmony_ci /* High frequency band (6.4 - 7.0 kHz) generation part */ 1254cabdff1aSopenharmony_ci ctx->acelpf_ctx.acelp_apply_order_2_transfer_function(hb_samples, 1255cabdff1aSopenharmony_ci &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles, 1256cabdff1aSopenharmony_ci hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE); 1257cabdff1aSopenharmony_ci 1258cabdff1aSopenharmony_ci hb_gain = find_hb_gain(ctx, hb_samples, 1259cabdff1aSopenharmony_ci cur_subframe->hb_gain, cf->vad); 1260cabdff1aSopenharmony_ci 1261cabdff1aSopenharmony_ci scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain); 1262cabdff1aSopenharmony_ci 1263cabdff1aSopenharmony_ci hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k], 1264cabdff1aSopenharmony_ci hb_exc, ctx->isf_cur, ctx->isf_past_final); 1265cabdff1aSopenharmony_ci 1266cabdff1aSopenharmony_ci /* High-band post-processing filters */ 1267cabdff1aSopenharmony_ci hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem, 1268cabdff1aSopenharmony_ci &ctx->samples_hb[LP_ORDER_16k]); 1269cabdff1aSopenharmony_ci 1270cabdff1aSopenharmony_ci if (ctx->fr_cur_mode == MODE_23k85) 1271cabdff1aSopenharmony_ci hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem, 1272cabdff1aSopenharmony_ci hb_samples); 1273cabdff1aSopenharmony_ci 1274cabdff1aSopenharmony_ci /* Add the low and high frequency bands */ 1275cabdff1aSopenharmony_ci for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) 1276cabdff1aSopenharmony_ci sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15)); 1277cabdff1aSopenharmony_ci 1278cabdff1aSopenharmony_ci /* Update buffers and history */ 1279cabdff1aSopenharmony_ci update_sub_state(ctx); 1280cabdff1aSopenharmony_ci } 1281cabdff1aSopenharmony_ci 1282cabdff1aSopenharmony_ci /* update state for next frame */ 1283cabdff1aSopenharmony_ci memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0])); 1284cabdff1aSopenharmony_ci memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float)); 1285cabdff1aSopenharmony_ci 1286cabdff1aSopenharmony_ci buf += expected_fr_size; 1287cabdff1aSopenharmony_ci buf_size -= expected_fr_size; 1288cabdff1aSopenharmony_ci } 1289cabdff1aSopenharmony_ci 1290cabdff1aSopenharmony_ci *got_frame_ptr = 1; 1291cabdff1aSopenharmony_ci 1292cabdff1aSopenharmony_ci return avpkt->size; 1293cabdff1aSopenharmony_ci} 1294cabdff1aSopenharmony_ci 1295cabdff1aSopenharmony_ciconst FFCodec ff_amrwb_decoder = { 1296cabdff1aSopenharmony_ci .p.name = "amrwb", 1297cabdff1aSopenharmony_ci .p.long_name = NULL_IF_CONFIG_SMALL("AMR-WB (Adaptive Multi-Rate WideBand)"), 1298cabdff1aSopenharmony_ci .p.type = AVMEDIA_TYPE_AUDIO, 1299cabdff1aSopenharmony_ci .p.id = AV_CODEC_ID_AMR_WB, 1300cabdff1aSopenharmony_ci .priv_data_size = sizeof(AMRWBChannelsContext), 1301cabdff1aSopenharmony_ci .init = amrwb_decode_init, 1302cabdff1aSopenharmony_ci FF_CODEC_DECODE_CB(amrwb_decode_frame), 1303cabdff1aSopenharmony_ci .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF, 1304cabdff1aSopenharmony_ci .p.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT, 1305cabdff1aSopenharmony_ci AV_SAMPLE_FMT_NONE }, 1306cabdff1aSopenharmony_ci .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, 1307cabdff1aSopenharmony_ci}; 1308