xref: /third_party/ffmpeg/libavcodec/alacenc.c (revision cabdff1a)
1/*
2 * ALAC audio encoder
3 * Copyright (c) 2008  Jaikrishnan Menon <realityman@gmx.net>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22#include "libavutil/opt.h"
23
24#include "avcodec.h"
25#include "codec_internal.h"
26#include "encode.h"
27#include "put_bits.h"
28#include "lpc.h"
29#include "mathops.h"
30#include "alac_data.h"
31
32#define DEFAULT_FRAME_SIZE        4096
33#define ALAC_EXTRADATA_SIZE       36
34#define ALAC_FRAME_HEADER_SIZE    55
35#define ALAC_FRAME_FOOTER_SIZE    3
36
37#define ALAC_ESCAPE_CODE          0x1FF
38#define ALAC_MAX_LPC_ORDER        30
39#define DEFAULT_MAX_PRED_ORDER    6
40#define DEFAULT_MIN_PRED_ORDER    4
41#define ALAC_MAX_LPC_PRECISION    9
42#define ALAC_MIN_LPC_SHIFT        0
43#define ALAC_MAX_LPC_SHIFT        9
44
45#define ALAC_CHMODE_LEFT_RIGHT    0
46#define ALAC_CHMODE_LEFT_SIDE     1
47#define ALAC_CHMODE_RIGHT_SIDE    2
48#define ALAC_CHMODE_MID_SIDE      3
49
50typedef struct RiceContext {
51    int history_mult;
52    int initial_history;
53    int k_modifier;
54    int rice_modifier;
55} RiceContext;
56
57typedef struct AlacLPCContext {
58    int lpc_order;
59    int lpc_coeff[ALAC_MAX_LPC_ORDER+1];
60    int lpc_quant;
61} AlacLPCContext;
62
63typedef struct AlacEncodeContext {
64    const AVClass *class;
65    AVCodecContext *avctx;
66    int frame_size;                     /**< current frame size               */
67    int verbatim;                       /**< current frame verbatim mode flag */
68    int compression_level;
69    int min_prediction_order;
70    int max_prediction_order;
71    int max_coded_frame_size;
72    int write_sample_size;
73    int extra_bits;
74    int32_t sample_buf[2][DEFAULT_FRAME_SIZE];
75    int32_t predictor_buf[2][DEFAULT_FRAME_SIZE];
76    int interlacing_shift;
77    int interlacing_leftweight;
78    PutBitContext pbctx;
79    RiceContext rc;
80    AlacLPCContext lpc[2];
81    LPCContext lpc_ctx;
82} AlacEncodeContext;
83
84
85static void init_sample_buffers(AlacEncodeContext *s, int channels,
86                                const uint8_t *samples[2])
87{
88    int ch, i;
89    int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 -
90                s->avctx->bits_per_raw_sample;
91
92#define COPY_SAMPLES(type) do {                             \
93        for (ch = 0; ch < channels; ch++) {                 \
94            int32_t       *bptr = s->sample_buf[ch];        \
95            const type *sptr = (const type *)samples[ch];   \
96            for (i = 0; i < s->frame_size; i++)             \
97                bptr[i] = sptr[i] >> shift;                 \
98        }                                                   \
99    } while (0)
100
101    if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P)
102        COPY_SAMPLES(int32_t);
103    else
104        COPY_SAMPLES(int16_t);
105}
106
107static void encode_scalar(AlacEncodeContext *s, int x,
108                          int k, int write_sample_size)
109{
110    int divisor, q, r;
111
112    k = FFMIN(k, s->rc.k_modifier);
113    divisor = (1<<k) - 1;
114    q = x / divisor;
115    r = x % divisor;
116
117    if (q > 8) {
118        // write escape code and sample value directly
119        put_bits(&s->pbctx, 9, ALAC_ESCAPE_CODE);
120        put_bits(&s->pbctx, write_sample_size, x);
121    } else {
122        if (q)
123            put_bits(&s->pbctx, q, (1<<q) - 1);
124        put_bits(&s->pbctx, 1, 0);
125
126        if (k != 1) {
127            if (r > 0)
128                put_bits(&s->pbctx, k, r+1);
129            else
130                put_bits(&s->pbctx, k-1, 0);
131        }
132    }
133}
134
135static void write_element_header(AlacEncodeContext *s,
136                                 enum AlacRawDataBlockType element,
137                                 int instance)
138{
139    int encode_fs = 0;
140
141    if (s->frame_size < DEFAULT_FRAME_SIZE)
142        encode_fs = 1;
143
144    put_bits(&s->pbctx, 3,  element);               // element type
145    put_bits(&s->pbctx, 4,  instance);              // element instance
146    put_bits(&s->pbctx, 12, 0);                     // unused header bits
147    put_bits(&s->pbctx, 1,  encode_fs);             // Sample count is in the header
148    put_bits(&s->pbctx, 2,  s->extra_bits >> 3);    // Extra bytes (for 24-bit)
149    put_bits(&s->pbctx, 1,  s->verbatim);           // Audio block is verbatim
150    if (encode_fs)
151        put_bits32(&s->pbctx, s->frame_size);       // No. of samples in the frame
152}
153
154static void calc_predictor_params(AlacEncodeContext *s, int ch)
155{
156    int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
157    int shift[MAX_LPC_ORDER];
158    int opt_order;
159
160    if (s->compression_level == 1) {
161        s->lpc[ch].lpc_order = 6;
162        s->lpc[ch].lpc_quant = 6;
163        s->lpc[ch].lpc_coeff[0] =  160;
164        s->lpc[ch].lpc_coeff[1] = -190;
165        s->lpc[ch].lpc_coeff[2] =  170;
166        s->lpc[ch].lpc_coeff[3] = -130;
167        s->lpc[ch].lpc_coeff[4] =   80;
168        s->lpc[ch].lpc_coeff[5] =  -25;
169    } else {
170        opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, s->sample_buf[ch],
171                                      s->frame_size,
172                                      s->min_prediction_order,
173                                      s->max_prediction_order,
174                                      ALAC_MAX_LPC_PRECISION, coefs, shift,
175                                      FF_LPC_TYPE_LEVINSON, 0,
176                                      ORDER_METHOD_EST, ALAC_MIN_LPC_SHIFT,
177                                      ALAC_MAX_LPC_SHIFT, 1);
178
179        s->lpc[ch].lpc_order = opt_order;
180        s->lpc[ch].lpc_quant = shift[opt_order-1];
181        memcpy(s->lpc[ch].lpc_coeff, coefs[opt_order-1], opt_order*sizeof(int));
182    }
183}
184
185static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
186{
187    int i, best;
188    int32_t lt, rt;
189    uint64_t sum[4];
190    uint64_t score[4];
191
192    /* calculate sum of 2nd order residual for each channel */
193    sum[0] = sum[1] = sum[2] = sum[3] = 0;
194    for (i = 2; i < n; i++) {
195        lt =  left_ch[i] - 2 *  left_ch[i - 1] +  left_ch[i - 2];
196        rt = right_ch[i] - 2 * right_ch[i - 1] + right_ch[i - 2];
197        sum[2] += FFABS((lt + rt) >> 1);
198        sum[3] += FFABS(lt - rt);
199        sum[0] += FFABS(lt);
200        sum[1] += FFABS(rt);
201    }
202
203    /* calculate score for each mode */
204    score[0] = sum[0] + sum[1];
205    score[1] = sum[0] + sum[3];
206    score[2] = sum[1] + sum[3];
207    score[3] = sum[2] + sum[3];
208
209    /* return mode with lowest score */
210    best = 0;
211    for (i = 1; i < 4; i++) {
212        if (score[i] < score[best])
213            best = i;
214    }
215    return best;
216}
217
218static void alac_stereo_decorrelation(AlacEncodeContext *s)
219{
220    int32_t *left = s->sample_buf[0], *right = s->sample_buf[1];
221    int i, mode, n = s->frame_size;
222    int32_t tmp;
223
224    mode = estimate_stereo_mode(left, right, n);
225
226    switch (mode) {
227    case ALAC_CHMODE_LEFT_RIGHT:
228        s->interlacing_leftweight = 0;
229        s->interlacing_shift      = 0;
230        break;
231    case ALAC_CHMODE_LEFT_SIDE:
232        for (i = 0; i < n; i++)
233            right[i] = left[i] - right[i];
234        s->interlacing_leftweight = 1;
235        s->interlacing_shift      = 0;
236        break;
237    case ALAC_CHMODE_RIGHT_SIDE:
238        for (i = 0; i < n; i++) {
239            tmp = right[i];
240            right[i] = left[i] - right[i];
241            left[i]  = tmp + (right[i] >> 31);
242        }
243        s->interlacing_leftweight = 1;
244        s->interlacing_shift      = 31;
245        break;
246    default:
247        for (i = 0; i < n; i++) {
248            tmp = left[i];
249            left[i]  = (tmp + right[i]) >> 1;
250            right[i] =  tmp - right[i];
251        }
252        s->interlacing_leftweight = 1;
253        s->interlacing_shift      = 1;
254        break;
255    }
256}
257
258static void alac_linear_predictor(AlacEncodeContext *s, int ch)
259{
260    int i;
261    AlacLPCContext lpc = s->lpc[ch];
262    int32_t *residual = s->predictor_buf[ch];
263
264    if (lpc.lpc_order == 31) {
265        residual[0] = s->sample_buf[ch][0];
266
267        for (i = 1; i < s->frame_size; i++) {
268            residual[i] = s->sample_buf[ch][i    ] -
269                          s->sample_buf[ch][i - 1];
270        }
271
272        return;
273    }
274
275    // generalised linear predictor
276
277    if (lpc.lpc_order > 0) {
278        int32_t *samples  = s->sample_buf[ch];
279
280        // generate warm-up samples
281        residual[0] = samples[0];
282        for (i = 1; i <= lpc.lpc_order; i++)
283            residual[i] = sign_extend(samples[i] - samples[i-1], s->write_sample_size);
284
285        // perform lpc on remaining samples
286        for (i = lpc.lpc_order + 1; i < s->frame_size; i++) {
287            int sum = 1 << (lpc.lpc_quant - 1), res_val, j;
288
289            for (j = 0; j < lpc.lpc_order; j++) {
290                sum += (samples[lpc.lpc_order-j] - samples[0]) *
291                       lpc.lpc_coeff[j];
292            }
293
294            sum >>= lpc.lpc_quant;
295            sum += samples[0];
296            residual[i] = sign_extend(samples[lpc.lpc_order+1] - sum,
297                                      s->write_sample_size);
298            res_val = residual[i];
299
300            if (res_val) {
301                int index = lpc.lpc_order - 1;
302                int neg = (res_val < 0);
303
304                while (index >= 0 && (neg ? (res_val < 0) : (res_val > 0))) {
305                    int val  = samples[0] - samples[lpc.lpc_order - index];
306                    int sign = (val ? FFSIGN(val) : 0);
307
308                    if (neg)
309                        sign *= -1;
310
311                    lpc.lpc_coeff[index] -= sign;
312                    val *= sign;
313                    res_val -= (val >> lpc.lpc_quant) * (lpc.lpc_order - index);
314                    index--;
315                }
316            }
317            samples++;
318        }
319    }
320}
321
322static void alac_entropy_coder(AlacEncodeContext *s, int ch)
323{
324    unsigned int history = s->rc.initial_history;
325    int sign_modifier = 0, i, k;
326    int32_t *samples = s->predictor_buf[ch];
327
328    for (i = 0; i < s->frame_size;) {
329        int x;
330
331        k = av_log2((history >> 9) + 3);
332
333        x  = -2 * (*samples) -1;
334        x ^= x >> 31;
335
336        samples++;
337        i++;
338
339        encode_scalar(s, x - sign_modifier, k, s->write_sample_size);
340
341        history += x * s->rc.history_mult -
342                   ((history * s->rc.history_mult) >> 9);
343
344        sign_modifier = 0;
345        if (x > 0xFFFF)
346            history = 0xFFFF;
347
348        if (history < 128 && i < s->frame_size) {
349            unsigned int block_size = 0;
350
351            k = 7 - av_log2(history) + ((history + 16) >> 6);
352
353            while (*samples == 0 && i < s->frame_size) {
354                samples++;
355                i++;
356                block_size++;
357            }
358            encode_scalar(s, block_size, k, 16);
359            sign_modifier = (block_size <= 0xFFFF);
360            history = 0;
361        }
362
363    }
364}
365
366static void write_element(AlacEncodeContext *s,
367                          enum AlacRawDataBlockType element, int instance,
368                          const uint8_t *samples0, const uint8_t *samples1)
369{
370    const uint8_t *samples[2] = { samples0, samples1 };
371    int i, j, channels;
372    int prediction_type = 0;
373    PutBitContext *pb = &s->pbctx;
374
375    channels = element == TYPE_CPE ? 2 : 1;
376
377    if (s->verbatim) {
378        write_element_header(s, element, instance);
379        /* samples are channel-interleaved in verbatim mode */
380        if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P) {
381            int shift = 32 - s->avctx->bits_per_raw_sample;
382            const int32_t *samples_s32[2] = { (const int32_t *)samples0,
383                                              (const int32_t *)samples1 };
384            for (i = 0; i < s->frame_size; i++)
385                for (j = 0; j < channels; j++)
386                    put_sbits(pb, s->avctx->bits_per_raw_sample,
387                              samples_s32[j][i] >> shift);
388        } else {
389            const int16_t *samples_s16[2] = { (const int16_t *)samples0,
390                                              (const int16_t *)samples1 };
391            for (i = 0; i < s->frame_size; i++)
392                for (j = 0; j < channels; j++)
393                    put_sbits(pb, s->avctx->bits_per_raw_sample,
394                              samples_s16[j][i]);
395        }
396    } else {
397        s->write_sample_size = s->avctx->bits_per_raw_sample - s->extra_bits +
398                               channels - 1;
399
400        init_sample_buffers(s, channels, samples);
401        write_element_header(s, element, instance);
402
403        // extract extra bits if needed
404        if (s->extra_bits) {
405            uint32_t mask = (1 << s->extra_bits) - 1;
406            for (j = 0; j < channels; j++) {
407                int32_t *extra = s->predictor_buf[j];
408                int32_t *smp   = s->sample_buf[j];
409                for (i = 0; i < s->frame_size; i++) {
410                    extra[i] = smp[i] & mask;
411                    smp[i] >>= s->extra_bits;
412                }
413            }
414        }
415
416        if (channels == 2)
417            alac_stereo_decorrelation(s);
418        else
419            s->interlacing_shift = s->interlacing_leftweight = 0;
420        put_bits(pb, 8, s->interlacing_shift);
421        put_bits(pb, 8, s->interlacing_leftweight);
422
423        for (i = 0; i < channels; i++) {
424            calc_predictor_params(s, i);
425
426            put_bits(pb, 4, prediction_type);
427            put_bits(pb, 4, s->lpc[i].lpc_quant);
428
429            put_bits(pb, 3, s->rc.rice_modifier);
430            put_bits(pb, 5, s->lpc[i].lpc_order);
431            // predictor coeff. table
432            for (j = 0; j < s->lpc[i].lpc_order; j++)
433                put_sbits(pb, 16, s->lpc[i].lpc_coeff[j]);
434        }
435
436        // write extra bits if needed
437        if (s->extra_bits) {
438            for (i = 0; i < s->frame_size; i++) {
439                for (j = 0; j < channels; j++) {
440                    put_bits(pb, s->extra_bits, s->predictor_buf[j][i]);
441                }
442            }
443        }
444
445        // apply lpc and entropy coding to audio samples
446        for (i = 0; i < channels; i++) {
447            alac_linear_predictor(s, i);
448
449            // TODO: determine when this will actually help. for now it's not used.
450            if (prediction_type == 15) {
451                // 2nd pass 1st order filter
452                int32_t *residual = s->predictor_buf[i];
453                for (j = s->frame_size - 1; j > 0; j--)
454                    residual[j] -= residual[j - 1];
455            }
456            alac_entropy_coder(s, i);
457        }
458    }
459}
460
461static int write_frame(AlacEncodeContext *s, AVPacket *avpkt,
462                       uint8_t * const *samples)
463{
464    PutBitContext *pb = &s->pbctx;
465    int channels = s->avctx->ch_layout.nb_channels;
466    const enum AlacRawDataBlockType *ch_elements = ff_alac_channel_elements[channels - 1];
467    const uint8_t *ch_map = ff_alac_channel_layout_offsets[channels - 1];
468    int ch, element, sce, cpe;
469
470    init_put_bits(pb, avpkt->data, avpkt->size);
471
472    ch = element = sce = cpe = 0;
473    while (ch < channels) {
474        if (ch_elements[element] == TYPE_CPE) {
475            write_element(s, TYPE_CPE, cpe, samples[ch_map[ch]],
476                          samples[ch_map[ch + 1]]);
477            cpe++;
478            ch += 2;
479        } else {
480            write_element(s, TYPE_SCE, sce, samples[ch_map[ch]], NULL);
481            sce++;
482            ch++;
483        }
484        element++;
485    }
486
487    put_bits(pb, 3, TYPE_END);
488    flush_put_bits(pb);
489
490    return put_bytes_output(pb);
491}
492
493static av_always_inline int get_max_frame_size(int frame_size, int ch, int bps)
494{
495    int header_bits = 23 + 32 * (frame_size < DEFAULT_FRAME_SIZE);
496    return FFALIGN(header_bits + bps * ch * frame_size + 3, 8) / 8;
497}
498
499static av_cold int alac_encode_close(AVCodecContext *avctx)
500{
501    AlacEncodeContext *s = avctx->priv_data;
502    ff_lpc_end(&s->lpc_ctx);
503    return 0;
504}
505
506static av_cold int alac_encode_init(AVCodecContext *avctx)
507{
508    AlacEncodeContext *s = avctx->priv_data;
509    int ret;
510    uint8_t *alac_extradata;
511
512    avctx->frame_size = s->frame_size = DEFAULT_FRAME_SIZE;
513
514    if (avctx->sample_fmt == AV_SAMPLE_FMT_S32P) {
515        if (avctx->bits_per_raw_sample != 24)
516            av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
517        avctx->bits_per_raw_sample = 24;
518    } else {
519        avctx->bits_per_raw_sample = 16;
520        s->extra_bits              = 0;
521    }
522
523    // Set default compression level
524    if (avctx->compression_level == FF_COMPRESSION_DEFAULT)
525        s->compression_level = 2;
526    else
527        s->compression_level = av_clip(avctx->compression_level, 0, 2);
528
529    // Initialize default Rice parameters
530    s->rc.history_mult    = 40;
531    s->rc.initial_history = 10;
532    s->rc.k_modifier      = 14;
533    s->rc.rice_modifier   = 4;
534
535    s->max_coded_frame_size = get_max_frame_size(avctx->frame_size,
536                                                 avctx->ch_layout.nb_channels,
537                                                 avctx->bits_per_raw_sample);
538
539    avctx->extradata = av_mallocz(ALAC_EXTRADATA_SIZE + AV_INPUT_BUFFER_PADDING_SIZE);
540    if (!avctx->extradata)
541        return AVERROR(ENOMEM);
542    avctx->extradata_size = ALAC_EXTRADATA_SIZE;
543
544    alac_extradata = avctx->extradata;
545    AV_WB32(alac_extradata,    ALAC_EXTRADATA_SIZE);
546    AV_WB32(alac_extradata+4,  MKBETAG('a','l','a','c'));
547    AV_WB32(alac_extradata+12, avctx->frame_size);
548    AV_WB8 (alac_extradata+17, avctx->bits_per_raw_sample);
549    AV_WB8 (alac_extradata+21, avctx->ch_layout.nb_channels);
550    AV_WB32(alac_extradata+24, s->max_coded_frame_size);
551    AV_WB32(alac_extradata+28,
552            avctx->sample_rate * avctx->ch_layout.nb_channels * avctx->bits_per_raw_sample); // average bitrate
553    AV_WB32(alac_extradata+32, avctx->sample_rate);
554
555    // Set relevant extradata fields
556    if (s->compression_level > 0) {
557        AV_WB8(alac_extradata+18, s->rc.history_mult);
558        AV_WB8(alac_extradata+19, s->rc.initial_history);
559        AV_WB8(alac_extradata+20, s->rc.k_modifier);
560    }
561
562    if (s->max_prediction_order < s->min_prediction_order) {
563        av_log(avctx, AV_LOG_ERROR,
564               "invalid prediction orders: min=%d max=%d\n",
565               s->min_prediction_order, s->max_prediction_order);
566        return AVERROR(EINVAL);
567    }
568
569    s->avctx = avctx;
570
571    if ((ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
572                           s->max_prediction_order,
573                           FF_LPC_TYPE_LEVINSON)) < 0) {
574        return ret;
575    }
576
577    return 0;
578}
579
580static int alac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
581                             const AVFrame *frame, int *got_packet_ptr)
582{
583    AlacEncodeContext *s = avctx->priv_data;
584    int out_bytes, max_frame_size, ret;
585
586    s->frame_size = frame->nb_samples;
587
588    if (frame->nb_samples < DEFAULT_FRAME_SIZE)
589        max_frame_size = get_max_frame_size(s->frame_size, avctx->ch_layout.nb_channels,
590                                            avctx->bits_per_raw_sample);
591    else
592        max_frame_size = s->max_coded_frame_size;
593
594    if ((ret = ff_alloc_packet(avctx, avpkt, 4 * max_frame_size)) < 0)
595        return ret;
596
597    /* use verbatim mode for compression_level 0 */
598    if (s->compression_level) {
599        s->verbatim   = 0;
600        s->extra_bits = avctx->bits_per_raw_sample - 16;
601    } else {
602        s->verbatim   = 1;
603        s->extra_bits = 0;
604    }
605
606    out_bytes = write_frame(s, avpkt, frame->extended_data);
607
608    if (out_bytes > max_frame_size) {
609        /* frame too large. use verbatim mode */
610        s->verbatim = 1;
611        s->extra_bits = 0;
612        out_bytes = write_frame(s, avpkt, frame->extended_data);
613    }
614
615    avpkt->size = out_bytes;
616    *got_packet_ptr = 1;
617    return 0;
618}
619
620#if FF_API_OLD_CHANNEL_LAYOUT
621static const uint64_t alac_channel_layouts[ALAC_MAX_CHANNELS + 1] = {
622    AV_CH_LAYOUT_MONO,
623    AV_CH_LAYOUT_STEREO,
624    AV_CH_LAYOUT_SURROUND,
625    AV_CH_LAYOUT_4POINT0,
626    AV_CH_LAYOUT_5POINT0_BACK,
627    AV_CH_LAYOUT_5POINT1_BACK,
628    AV_CH_LAYOUT_6POINT1_BACK,
629    AV_CH_LAYOUT_7POINT1_WIDE_BACK,
630    0
631};
632#endif
633
634
635#define OFFSET(x) offsetof(AlacEncodeContext, x)
636#define AE AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
637static const AVOption options[] = {
638    { "min_prediction_order", NULL, OFFSET(min_prediction_order), AV_OPT_TYPE_INT, { .i64 = DEFAULT_MIN_PRED_ORDER }, MIN_LPC_ORDER, ALAC_MAX_LPC_ORDER, AE },
639    { "max_prediction_order", NULL, OFFSET(max_prediction_order), AV_OPT_TYPE_INT, { .i64 = DEFAULT_MAX_PRED_ORDER }, MIN_LPC_ORDER, ALAC_MAX_LPC_ORDER, AE },
640
641    { NULL },
642};
643
644static const AVClass alacenc_class = {
645    .class_name = "alacenc",
646    .item_name  = av_default_item_name,
647    .option     = options,
648    .version    = LIBAVUTIL_VERSION_INT,
649};
650
651FF_DISABLE_DEPRECATION_WARNINGS
652const FFCodec ff_alac_encoder = {
653    .p.name         = "alac",
654    .p.long_name    = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),
655    .p.type         = AVMEDIA_TYPE_AUDIO,
656    .p.id           = AV_CODEC_ID_ALAC,
657    .priv_data_size = sizeof(AlacEncodeContext),
658    .p.priv_class   = &alacenc_class,
659    .init           = alac_encode_init,
660    FF_CODEC_ENCODE_CB(alac_encode_frame),
661    .close          = alac_encode_close,
662    .p.capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME,
663#if FF_API_OLD_CHANNEL_LAYOUT
664    .p.channel_layouts = alac_channel_layouts,
665#endif
666    .p.ch_layouts   = ff_alac_ch_layouts,
667    .p.sample_fmts  = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32P,
668                                                     AV_SAMPLE_FMT_S16P,
669                                                     AV_SAMPLE_FMT_NONE },
670    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
671};
672FF_ENABLE_DEPRECATION_WARNINGS
673