1/*
2 * adaptive and fixed codebook vector operations for ACELP-based codecs
3 *
4 * Copyright (c) 2008 Vladimir Voroshilov
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23#include <inttypes.h>
24
25#include "libavutil/avassert.h"
26#include "libavutil/common.h"
27#include "libavutil/float_dsp.h"
28#include "avcodec.h"
29#include "acelp_vectors.h"
30
31const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
32{
33  1,  3,
34  8,  6,
35  18, 16,
36  11, 13,
37  38, 36,
38  31, 33,
39  21, 23,
40  28, 26,
41};
42
43const uint8_t ff_fc_2pulses_9bits_track2_gray[32] =
44{
45  0,  2,
46  5,  4,
47  12, 10,
48  7,  9,
49  25, 24,
50  20, 22,
51  14, 15,
52  19, 17,
53  36, 31,
54  21, 26,
55  1,  6,
56  16, 11,
57  27, 29,
58  32, 30,
59  39, 37,
60  34, 35,
61};
62
63const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
64{
65  0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
66};
67
68const uint8_t ff_fc_4pulses_8bits_track_4[32] =
69{
70    3,  4,
71    8,  9,
72    13, 14,
73    18, 19,
74    23, 24,
75    28, 29,
76    33, 34,
77    38, 39,
78    43, 44,
79    48, 49,
80    53, 54,
81    58, 59,
82    63, 64,
83    68, 69,
84    73, 74,
85    78, 79,
86};
87
88const float ff_pow_0_7[10] = {
89    0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
90    0.117649, 0.082354, 0.057648, 0.040354, 0.028248
91};
92
93const float ff_pow_0_75[10] = {
94    0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
95    0.177979, 0.133484, 0.100113, 0.075085, 0.056314
96};
97
98const float ff_pow_0_55[10] = {
99    0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
100    0.027681, 0.015224, 0.008373, 0.004605, 0.002533
101};
102
103const float ff_b60_sinc[61] = {
104 0.898529  ,  0.865051  ,  0.769257  ,  0.624054  ,  0.448639  ,  0.265289   ,
105 0.0959167 , -0.0412598 , -0.134338  , -0.178986  , -0.178528  , -0.142609   ,
106-0.0849304 , -0.0205078 ,  0.0369568 ,  0.0773926 ,  0.0955200 ,  0.0912781  ,
107 0.0689392 ,  0.0357056 ,  0.0       , -0.0305481 , -0.0504150 , -0.0570068  ,
108-0.0508423 , -0.0350037 , -0.0141602 ,  0.00665283,  0.0230713 ,  0.0323486  ,
109 0.0335388 ,  0.0275879 ,  0.0167847 ,  0.00411987, -0.00747681, -0.0156860  ,
110-0.0193481 , -0.0183716 , -0.0137634 , -0.00704956,  0.0       ,  0.00582886 ,
111 0.00939941,  0.0103760 ,  0.00903320,  0.00604248,  0.00238037, -0.00109863 ,
112-0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
113 0.00103760,  0.00222778,  0.00277710,  0.00271606,  0.00213623,  0.00115967 ,
114 0.
115};
116
117void ff_acelp_fc_pulse_per_track(
118        int16_t* fc_v,
119        const uint8_t *tab1,
120        const uint8_t *tab2,
121        int pulse_indexes,
122        int pulse_signs,
123        int pulse_count,
124        int bits)
125{
126    int mask = (1 << bits) - 1;
127    int i;
128
129    for(i=0; i<pulse_count; i++)
130    {
131        fc_v[i + tab1[pulse_indexes & mask]] +=
132                (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
133
134        pulse_indexes >>= bits;
135        pulse_signs >>= 1;
136    }
137
138    fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
139}
140
141void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
142                                AMRFixed *fixed_sparse,
143                                const uint8_t *gray_decode,
144                                int half_pulse_count, int bits)
145{
146    int i;
147    int mask = (1 << bits) - 1;
148
149    fixed_sparse->no_repeat_mask = 0;
150    fixed_sparse->n = 2 * half_pulse_count;
151    for (i = 0; i < half_pulse_count; i++) {
152        const int pos1   = gray_decode[fixed_index[2*i+1] & mask] + i;
153        const int pos2   = gray_decode[fixed_index[2*i  ] & mask] + i;
154        const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
155        fixed_sparse->x[2*i+1] = pos1;
156        fixed_sparse->x[2*i  ] = pos2;
157        fixed_sparse->y[2*i+1] = sign;
158        fixed_sparse->y[2*i  ] = pos2 < pos1 ? -sign : sign;
159    }
160}
161
162void ff_acelp_weighted_vector_sum(
163        int16_t* out,
164        const int16_t *in_a,
165        const int16_t *in_b,
166        int16_t weight_coeff_a,
167        int16_t weight_coeff_b,
168        int16_t rounder,
169        int shift,
170        int length)
171{
172    int i;
173
174    // Clipping required here; breaks OVERFLOW test.
175    for(i=0; i<length; i++)
176        out[i] = av_clip_int16((
177                 in_a[i] * weight_coeff_a +
178                 in_b[i] * weight_coeff_b +
179                 rounder) >> shift);
180}
181
182void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
183                             float weight_coeff_a, float weight_coeff_b, int length)
184{
185    int i;
186
187    for(i=0; i<length; i++)
188        out[i] = weight_coeff_a * in_a[i]
189               + weight_coeff_b * in_b[i];
190}
191
192void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
193                              int size, float alpha, float *gain_mem)
194{
195    int i;
196    float postfilter_energ = avpriv_scalarproduct_float_c(in, in, size);
197    float gain_scale_factor = 1.0;
198    float mem = *gain_mem;
199
200    if (postfilter_energ)
201        gain_scale_factor = sqrt(speech_energ / postfilter_energ);
202
203    gain_scale_factor *= 1.0 - alpha;
204
205    for (i = 0; i < size; i++) {
206        mem = alpha * mem + gain_scale_factor;
207        out[i] = in[i] * mem;
208    }
209
210    *gain_mem = mem;
211}
212
213void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
214                                             float sum_of_squares, const int n)
215{
216    int i;
217    float scalefactor = avpriv_scalarproduct_float_c(in, in, n);
218    if (scalefactor)
219        scalefactor = sqrt(sum_of_squares / scalefactor);
220    for (i = 0; i < n; i++)
221        out[i] = in[i] * scalefactor;
222}
223
224void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
225{
226    int i;
227
228    for (i=0; i < in->n; i++) {
229        int x   = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
230        float y = in->y[i] * scale;
231
232        if (in->pitch_lag > 0) {
233            av_assert0(x < size);
234            do {
235                out[x] += y;
236                y *= in->pitch_fac;
237                x += in->pitch_lag;
238            } while (x < size && repeats);
239        }
240    }
241}
242
243void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
244{
245    int i;
246
247    for (i=0; i < in->n; i++) {
248        int x  = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
249
250        if (in->pitch_lag > 0)
251            do {
252                out[x] = 0.0;
253                x += in->pitch_lag;
254            } while (x < size && repeats);
255    }
256}
257
258void ff_acelp_vectors_init(ACELPVContext *c)
259{
260    c->weighted_vector_sumf   = ff_weighted_vector_sumf;
261
262#if HAVE_MIPSFPU
263    ff_acelp_vectors_init_mips(c);
264#endif
265}
266