1/*
2 * AC-3 encoder float/fixed template
3 * Copyright (c) 2000 Fabrice Bellard
4 * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
5 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24/**
25 * @file
26 * AC-3 encoder float/fixed template
27 */
28
29#include "config_components.h"
30
31#include <stdint.h>
32
33#include "libavutil/attributes.h"
34#include "libavutil/internal.h"
35#include "libavutil/mem_internal.h"
36
37#include "audiodsp.h"
38#include "ac3enc.h"
39#include "eac3enc.h"
40
41
42static int allocate_sample_buffers(AC3EncodeContext *s)
43{
44    int ch;
45
46    if (!FF_ALLOC_TYPED_ARRAY(s->windowed_samples, AC3_WINDOW_SIZE) ||
47        !FF_ALLOCZ_TYPED_ARRAY(s->planar_samples,  s->channels))
48        return AVERROR(ENOMEM);
49
50    for (ch = 0; ch < s->channels; ch++) {
51        if (!(s->planar_samples[ch] = av_mallocz((AC3_FRAME_SIZE + AC3_BLOCK_SIZE) *
52                                                  sizeof(**s->planar_samples))))
53            return AVERROR(ENOMEM);
54    }
55    return 0;
56}
57
58
59/*
60 * Copy input samples.
61 * Channels are reordered from FFmpeg's default order to AC-3 order.
62 */
63static void copy_input_samples(AC3EncodeContext *s, SampleType **samples)
64{
65    int ch;
66
67    /* copy and remap input samples */
68    for (ch = 0; ch < s->channels; ch++) {
69        /* copy last 256 samples of previous frame to the start of the current frame */
70        memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
71               AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
72
73        /* copy new samples for current frame */
74        memcpy(&s->planar_samples[ch][AC3_BLOCK_SIZE],
75               samples[s->channel_map[ch]],
76               AC3_BLOCK_SIZE * s->num_blocks * sizeof(s->planar_samples[0][0]));
77    }
78}
79
80
81/*
82 * Apply the MDCT to input samples to generate frequency coefficients.
83 * This applies the KBD window and normalizes the input to reduce precision
84 * loss due to fixed-point calculations.
85 */
86static void apply_mdct(AC3EncodeContext *s)
87{
88    int blk, ch;
89
90    for (ch = 0; ch < s->channels; ch++) {
91        for (blk = 0; blk < s->num_blocks; blk++) {
92            AC3Block *block = &s->blocks[blk];
93            const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
94
95            s->fdsp->vector_fmul(s->windowed_samples, input_samples,
96                                 s->mdct_window, AC3_BLOCK_SIZE);
97            s->fdsp->vector_fmul_reverse(s->windowed_samples + AC3_BLOCK_SIZE,
98                                         &input_samples[AC3_BLOCK_SIZE],
99                                         s->mdct_window, AC3_BLOCK_SIZE);
100
101            s->mdct.mdct_calc(&s->mdct, block->mdct_coef[ch+1],
102                              s->windowed_samples);
103        }
104    }
105}
106
107
108/*
109 * Calculate coupling channel and coupling coordinates.
110 */
111static void apply_channel_coupling(AC3EncodeContext *s)
112{
113    LOCAL_ALIGNED_16(CoefType, cpl_coords,      [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
114#if AC3ENC_FLOAT
115    LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
116#else
117    int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
118#endif
119    int av_uninit(blk), ch, bnd, i, j;
120    CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
121    int cpl_start, num_cpl_coefs;
122
123    memset(cpl_coords,       0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
124#if AC3ENC_FLOAT
125    memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
126#endif
127
128    /* align start to 16-byte boundary. align length to multiple of 32.
129        note: coupling start bin % 4 will always be 1 */
130    cpl_start     = s->start_freq[CPL_CH] - 1;
131    num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
132    cpl_start     = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
133
134    /* calculate coupling channel from fbw channels */
135    for (blk = 0; blk < s->num_blocks; blk++) {
136        AC3Block *block = &s->blocks[blk];
137        CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
138        if (!block->cpl_in_use)
139            continue;
140        memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
141        for (ch = 1; ch <= s->fbw_channels; ch++) {
142            CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
143            if (!block->channel_in_cpl[ch])
144                continue;
145            for (i = 0; i < num_cpl_coefs; i++)
146                cpl_coef[i] += ch_coef[i];
147        }
148
149        /* coefficients must be clipped in order to be encoded */
150        clip_coefficients(&s->adsp, cpl_coef, num_cpl_coefs);
151    }
152
153    /* calculate energy in each band in coupling channel and each fbw channel */
154    /* TODO: possibly use SIMD to speed up energy calculation */
155    bnd = 0;
156    i = s->start_freq[CPL_CH];
157    while (i < s->cpl_end_freq) {
158        int band_size = s->cpl_band_sizes[bnd];
159        for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
160            for (blk = 0; blk < s->num_blocks; blk++) {
161                AC3Block *block = &s->blocks[blk];
162                if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
163                    continue;
164                for (j = 0; j < band_size; j++) {
165                    CoefType v = block->mdct_coef[ch][i+j];
166                    MAC_COEF(energy[blk][ch][bnd], v, v);
167                }
168            }
169        }
170        i += band_size;
171        bnd++;
172    }
173
174    /* calculate coupling coordinates for all blocks for all channels */
175    for (blk = 0; blk < s->num_blocks; blk++) {
176        AC3Block *block  = &s->blocks[blk];
177        if (!block->cpl_in_use)
178            continue;
179        for (ch = 1; ch <= s->fbw_channels; ch++) {
180            if (!block->channel_in_cpl[ch])
181                continue;
182            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
183                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
184                                                          energy[blk][CPL_CH][bnd]);
185            }
186        }
187    }
188
189    /* determine which blocks to send new coupling coordinates for */
190    for (blk = 0; blk < s->num_blocks; blk++) {
191        AC3Block *block  = &s->blocks[blk];
192        AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
193
194        memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));
195
196        if (block->cpl_in_use) {
197            /* send new coordinates if this is the first block, if previous
198             * block did not use coupling but this block does, the channels
199             * using coupling has changed from the previous block, or the
200             * coordinate difference from the last block for any channel is
201             * greater than a threshold value. */
202            if (blk == 0 || !block0->cpl_in_use) {
203                for (ch = 1; ch <= s->fbw_channels; ch++)
204                    block->new_cpl_coords[ch] = 1;
205            } else {
206                for (ch = 1; ch <= s->fbw_channels; ch++) {
207                    if (!block->channel_in_cpl[ch])
208                        continue;
209                    if (!block0->channel_in_cpl[ch]) {
210                        block->new_cpl_coords[ch] = 1;
211                    } else {
212                        CoefSumType coord_diff = 0;
213                        for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
214                            coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
215                                                cpl_coords[blk  ][ch][bnd]);
216                        }
217                        coord_diff /= s->num_cpl_bands;
218                        if (coord_diff > NEW_CPL_COORD_THRESHOLD)
219                            block->new_cpl_coords[ch] = 1;
220                    }
221                }
222            }
223        }
224    }
225
226    /* calculate final coupling coordinates, taking into account reusing of
227       coordinates in successive blocks */
228    for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
229        blk = 0;
230        while (blk < s->num_blocks) {
231            int av_uninit(blk1);
232            AC3Block *block  = &s->blocks[blk];
233
234            if (!block->cpl_in_use) {
235                blk++;
236                continue;
237            }
238
239            for (ch = 1; ch <= s->fbw_channels; ch++) {
240                CoefSumType energy_ch, energy_cpl;
241                if (!block->channel_in_cpl[ch])
242                    continue;
243                energy_cpl = energy[blk][CPL_CH][bnd];
244                energy_ch = energy[blk][ch][bnd];
245                blk1 = blk+1;
246                while (blk1 < s->num_blocks && !s->blocks[blk1].new_cpl_coords[ch]) {
247                    if (s->blocks[blk1].cpl_in_use) {
248                        energy_cpl += energy[blk1][CPL_CH][bnd];
249                        energy_ch += energy[blk1][ch][bnd];
250                    }
251                    blk1++;
252                }
253                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
254            }
255            blk = blk1;
256        }
257    }
258
259    /* calculate exponents/mantissas for coupling coordinates */
260    for (blk = 0; blk < s->num_blocks; blk++) {
261        AC3Block *block = &s->blocks[blk];
262        if (!block->cpl_in_use)
263            continue;
264
265#if AC3ENC_FLOAT
266        s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
267                                   cpl_coords[blk][1],
268                                   s->fbw_channels * 16);
269#endif
270        s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
271                                    fixed_cpl_coords[blk][1],
272                                    s->fbw_channels * 16);
273
274        for (ch = 1; ch <= s->fbw_channels; ch++) {
275            int bnd, min_exp, max_exp, master_exp;
276
277            if (!block->new_cpl_coords[ch])
278                continue;
279
280            /* determine master exponent */
281            min_exp = max_exp = block->cpl_coord_exp[ch][0];
282            for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
283                int exp = block->cpl_coord_exp[ch][bnd];
284                min_exp = FFMIN(exp, min_exp);
285                max_exp = FFMAX(exp, max_exp);
286            }
287            master_exp = ((max_exp - 15) + 2) / 3;
288            master_exp = FFMAX(master_exp, 0);
289            while (min_exp < master_exp * 3)
290                master_exp--;
291            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
292                block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
293                                                        master_exp * 3, 0, 15);
294            }
295            block->cpl_master_exp[ch] = master_exp;
296
297            /* quantize mantissas */
298            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
299                int cpl_exp  = block->cpl_coord_exp[ch][bnd];
300                int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
301                if (cpl_exp == 15)
302                    cpl_mant >>= 1;
303                else
304                    cpl_mant -= 16;
305
306                block->cpl_coord_mant[ch][bnd] = cpl_mant;
307            }
308        }
309    }
310
311    if (AC3ENC_FLOAT && CONFIG_EAC3_ENCODER && s->eac3)
312        ff_eac3_set_cpl_states(s);
313}
314
315
316/*
317 * Determine rematrixing flags for each block and band.
318 */
319static void compute_rematrixing_strategy(AC3EncodeContext *s)
320{
321    int nb_coefs;
322    int blk, bnd;
323    AC3Block *block, *block0 = NULL;
324
325    if (s->channel_mode != AC3_CHMODE_STEREO)
326        return;
327
328    for (blk = 0; blk < s->num_blocks; blk++) {
329        block = &s->blocks[blk];
330        block->new_rematrixing_strategy = !blk;
331
332        block->num_rematrixing_bands = 4;
333        if (block->cpl_in_use) {
334            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
335            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
336            if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
337                block->new_rematrixing_strategy = 1;
338        }
339        nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
340
341        if (!s->rematrixing_enabled) {
342            block0 = block;
343            continue;
344        }
345
346        for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
347            /* calculate sum of squared coeffs for one band in one block */
348            int start = ff_ac3_rematrix_band_tab[bnd];
349            int end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
350            CoefSumType sum[4];
351            sum_square_butterfly(s, sum, block->mdct_coef[1] + start,
352                                 block->mdct_coef[2] + start, end - start);
353
354            /* compare sums to determine if rematrixing will be used for this band */
355            if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
356                block->rematrixing_flags[bnd] = 1;
357            else
358                block->rematrixing_flags[bnd] = 0;
359
360            /* determine if new rematrixing flags will be sent */
361            if (blk &&
362                block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
363                block->new_rematrixing_strategy = 1;
364            }
365        }
366        block0 = block;
367    }
368}
369
370
371int AC3_NAME(encode_frame)(AVCodecContext *avctx, AVPacket *avpkt,
372                           const AVFrame *frame, int *got_packet_ptr)
373{
374    AC3EncodeContext *s = avctx->priv_data;
375    int ret;
376
377    if (s->options.allow_per_frame_metadata) {
378        ret = ff_ac3_validate_metadata(s);
379        if (ret)
380            return ret;
381    }
382
383    if (s->bit_alloc.sr_code == 1 || (AC3ENC_FLOAT && s->eac3))
384        ff_ac3_adjust_frame_size(s);
385
386    copy_input_samples(s, (SampleType **)frame->extended_data);
387
388    apply_mdct(s);
389
390    s->cpl_on = s->cpl_enabled;
391    ff_ac3_compute_coupling_strategy(s);
392
393    if (s->cpl_on)
394        apply_channel_coupling(s);
395
396    compute_rematrixing_strategy(s);
397
398#if AC3ENC_FLOAT
399    scale_coefficients(s);
400#endif
401
402    return ff_ac3_encode_frame_common_end(avctx, avpkt, frame, got_packet_ptr);
403}
404