xref: /third_party/ffmpeg/libavcodec/ac3dsp.h (revision cabdff1a)
1/*
2 * AC-3 DSP functions
3 * Copyright (c) 2011 Justin Ruggles
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22#ifndef AVCODEC_AC3DSP_H
23#define AVCODEC_AC3DSP_H
24
25#include <stdint.h>
26
27/**
28 * Number of mantissa bits written for each bap value.
29 * bap values with fractional bits are set to 0 and are calculated separately.
30 */
31extern const uint16_t ff_ac3_bap_bits[16];
32
33typedef struct AC3DSPContext {
34    /**
35     * Set each encoded exponent in a block to the minimum of itself and the
36     * exponents in the same frequency bin of up to 5 following blocks.
37     * @param exp   pointer to the start of the current block of exponents.
38     *              constraints: align 16
39     * @param num_reuse_blocks  number of blocks that will reuse exponents from the current block.
40     *                          constraints: range 0 to 5
41     * @param nb_coefs  number of frequency coefficients.
42     */
43    void (*ac3_exponent_min)(uint8_t *exp, int num_reuse_blocks, int nb_coefs);
44
45    /**
46     * Convert an array of float in range [-1.0,1.0] to int32_t with range
47     * [-(1<<24),(1<<24)]
48     *
49     * @param dst destination array of int32_t.
50     *            constraints: 16-byte aligned
51     * @param src source array of float.
52     *            constraints: 16-byte aligned
53     * @param len number of elements to convert.
54     *            constraints: multiple of 32 greater than zero
55     */
56    void (*float_to_fixed24)(int32_t *dst, const float *src, unsigned int len);
57
58    /**
59     * Calculate bit allocation pointers.
60     * The SNR is the difference between the masking curve and the signal.  AC-3
61     * uses this value for each frequency bin to allocate bits.  The snroffset
62     * parameter is a global adjustment to the SNR for all bins.
63     *
64     * @param[in]  mask       masking curve
65     * @param[in]  psd        signal power for each frequency bin
66     * @param[in]  start      starting bin location
67     * @param[in]  end        ending bin location
68     * @param[in]  snr_offset SNR adjustment
69     * @param[in]  floor      noise floor
70     * @param[in]  bap_tab    look-up table for bit allocation pointers
71     * @param[out] bap        bit allocation pointers
72     */
73    void (*bit_alloc_calc_bap)(int16_t *mask, int16_t *psd, int start, int end,
74                               int snr_offset, int floor,
75                               const uint8_t *bap_tab, uint8_t *bap);
76
77    /**
78     * Update bap counts using the supplied array of bap.
79     *
80     * @param[out] mant_cnt   bap counts for 1 block
81     * @param[in]  bap        array of bap, pointing to start coef bin
82     * @param[in]  len        number of elements to process
83     */
84    void (*update_bap_counts)(uint16_t mant_cnt[16], uint8_t *bap, int len);
85
86    /**
87     * Calculate the number of bits needed to encode a set of mantissas.
88     *
89     * @param[in] mant_cnt    bap counts for all blocks
90     * @return                mantissa bit count
91     */
92    int (*compute_mantissa_size)(uint16_t mant_cnt[6][16]);
93
94    void (*extract_exponents)(uint8_t *exp, int32_t *coef, int nb_coefs);
95
96    void (*sum_square_butterfly_int32)(int64_t sum[4], const int32_t *coef0,
97                                       const int32_t *coef1, int len);
98
99    void (*sum_square_butterfly_float)(float sum[4], const float *coef0,
100                                       const float *coef1, int len);
101
102    int out_channels;
103    int in_channels;
104    void (*downmix)(float **samples, float **matrix, int len);
105    void (*downmix_fixed)(int32_t **samples, int16_t **matrix, int len);
106} AC3DSPContext;
107
108void ff_ac3dsp_init    (AC3DSPContext *c, int bit_exact);
109void ff_ac3dsp_init_arm(AC3DSPContext *c, int bit_exact);
110void ff_ac3dsp_init_x86(AC3DSPContext *c, int bit_exact);
111void ff_ac3dsp_init_mips(AC3DSPContext *c, int bit_exact);
112
113void ff_ac3dsp_downmix(AC3DSPContext *c, float **samples, float **matrix,
114                       int out_ch, int in_ch, int len);
115void ff_ac3dsp_downmix_fixed(AC3DSPContext *c, int32_t **samples, int16_t **matrix,
116                             int out_ch, int in_ch, int len);
117
118void ff_ac3dsp_set_downmix_x86(AC3DSPContext *c);
119
120#endif /* AVCODEC_AC3DSP_H */
121