1/*
2 * Copyright (c) 2013
3 *      MIPS Technologies, Inc., California.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its
14 *    contributors may be used to endorse or promote products derived from
15 *    this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * AAC Spectral Band Replication decoding functions (fixed-point)
30 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
31 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
32 *
33 * This file is part of FFmpeg.
34 *
35 * FFmpeg is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU Lesser General Public
37 * License as published by the Free Software Foundation; either
38 * version 2.1 of the License, or (at your option) any later version.
39 *
40 * FFmpeg is distributed in the hope that it will be useful,
41 * but WITHOUT ANY WARRANTY; without even the implied warranty of
42 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43 * Lesser General Public License for more details.
44 *
45 * You should have received a copy of the GNU Lesser General Public
46 * License along with FFmpeg; if not, write to the Free Software
47 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
48 */
49
50/**
51 * @file
52 * AAC Spectral Band Replication decoding functions (fixed-point)
53 * Note: Rounding-to-nearest used unless otherwise stated
54 * @author Robert Swain ( rob opendot cl )
55 * @author Stanislav Ocovaj ( stanislav.ocovaj imgtec com )
56 */
57#define USE_FIXED 1
58
59#include "aac.h"
60#include "sbr.h"
61#include "aacsbr.h"
62#include "aacsbrdata.h"
63#include "fft.h"
64#include "aacps.h"
65#include "sbrdsp.h"
66#include "libavutil/internal.h"
67#include "libavutil/libm.h"
68#include "libavutil/avassert.h"
69
70#include <stdint.h>
71#include <float.h>
72#include <math.h>
73
74static VLC vlc_sbr[10];
75static void aacsbr_func_ptr_init(AACSBRContext *c);
76static const int CONST_LN2       = Q31(0.6931471806/256);  // ln(2)/256
77static const int CONST_RECIP_LN2 = Q31(0.7213475204);      // 0.5/ln(2)
78static const int CONST_076923    = Q31(0.76923076923076923077f);
79
80static const int fixed_log_table[10] =
81{
82    Q31(1.0/2), Q31(1.0/3), Q31(1.0/4), Q31(1.0/5), Q31(1.0/6),
83    Q31(1.0/7), Q31(1.0/8), Q31(1.0/9), Q31(1.0/10), Q31(1.0/11)
84};
85
86static int fixed_log(int x)
87{
88    int i, ret, xpow, tmp;
89
90    ret = x;
91    xpow = x;
92    for (i=0; i<10; i+=2){
93        xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
94        tmp = (int)(((int64_t)xpow * fixed_log_table[i] + 0x40000000) >> 31);
95        ret -= tmp;
96
97        xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
98        tmp = (int)(((int64_t)xpow * fixed_log_table[i+1] + 0x40000000) >> 31);
99        ret += tmp;
100    }
101
102    return ret;
103}
104
105static const int fixed_exp_table[7] =
106{
107    Q31(1.0/2), Q31(1.0/6), Q31(1.0/24), Q31(1.0/120),
108    Q31(1.0/720), Q31(1.0/5040), Q31(1.0/40320)
109};
110
111static int fixed_exp(int x)
112{
113    int i, ret, xpow, tmp;
114
115    ret = 0x800000 + x;
116    xpow = x;
117    for (i=0; i<7; i++){
118        xpow = (int)(((int64_t)xpow * x + 0x400000) >> 23);
119        tmp = (int)(((int64_t)xpow * fixed_exp_table[i] + 0x40000000) >> 31);
120        ret += tmp;
121    }
122
123    return ret;
124}
125
126static void make_bands(int16_t* bands, int start, int stop, int num_bands)
127{
128    int k, previous, present;
129    int base, prod, nz = 0;
130
131    base = (stop << 23) / start;
132    while (base < 0x40000000){
133        base <<= 1;
134        nz++;
135    }
136    base = fixed_log(base - 0x80000000);
137    base = (((base + 0x80) >> 8) + (8-nz)*CONST_LN2) / num_bands;
138    base = fixed_exp(base);
139
140    previous = start;
141    prod = start << 23;
142
143    for (k = 0; k < num_bands-1; k++) {
144        prod = (int)(((int64_t)prod * base + 0x400000) >> 23);
145        present = (prod + 0x400000) >> 23;
146        bands[k] = present - previous;
147        previous = present;
148    }
149    bands[num_bands-1] = stop - previous;
150}
151
152/// Dequantization and stereo decoding (14496-3 sp04 p203)
153static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
154{
155    int k, e;
156    int ch;
157
158    if (id_aac == TYPE_CPE && sbr->bs_coupling) {
159        int alpha      = sbr->data[0].bs_amp_res ?  2 :  1;
160        int pan_offset = sbr->data[0].bs_amp_res ? 12 : 24;
161        for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
162            for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
163                SoftFloat temp1, temp2, fac;
164
165                temp1.exp = sbr->data[0].env_facs_q[e][k] * alpha + 14;
166                if (temp1.exp & 1)
167                  temp1.mant = 759250125;
168                else
169                  temp1.mant = 0x20000000;
170                temp1.exp = (temp1.exp >> 1) + 1;
171                if (temp1.exp > 66) { // temp1 > 1E20
172                    av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
173                    temp1 = FLOAT_1;
174                }
175
176                temp2.exp = (pan_offset - sbr->data[1].env_facs_q[e][k]) * alpha;
177                if (temp2.exp & 1)
178                  temp2.mant = 759250125;
179                else
180                  temp2.mant = 0x20000000;
181                temp2.exp = (temp2.exp >> 1) + 1;
182                fac   = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2));
183                sbr->data[0].env_facs[e][k] = fac;
184                sbr->data[1].env_facs[e][k] = av_mul_sf(fac, temp2);
185            }
186        }
187        for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
188            for (k = 0; k < sbr->n_q; k++) {
189                SoftFloat temp1, temp2, fac;
190
191                temp1.exp = NOISE_FLOOR_OFFSET - \
192                    sbr->data[0].noise_facs_q[e][k] + 2;
193                temp1.mant = 0x20000000;
194                av_assert0(temp1.exp <= 66);
195                temp2.exp = 12 - sbr->data[1].noise_facs_q[e][k] + 1;
196                temp2.mant = 0x20000000;
197                fac   = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2));
198                sbr->data[0].noise_facs[e][k] = fac;
199                sbr->data[1].noise_facs[e][k] = av_mul_sf(fac, temp2);
200            }
201        }
202    } else { // SCE or one non-coupled CPE
203        for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
204            int alpha = sbr->data[ch].bs_amp_res ? 2 : 1;
205            for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
206                for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
207                    SoftFloat temp1;
208
209                    temp1.exp = alpha * sbr->data[ch].env_facs_q[e][k] + 12;
210                    if (temp1.exp & 1)
211                        temp1.mant = 759250125;
212                    else
213                        temp1.mant = 0x20000000;
214                    temp1.exp = (temp1.exp >> 1) + 1;
215                    if (temp1.exp > 66) { // temp1 > 1E20
216                        av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
217                        temp1 = FLOAT_1;
218                    }
219                    sbr->data[ch].env_facs[e][k] = temp1;
220                }
221            for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
222                for (k = 0; k < sbr->n_q; k++){
223                    sbr->data[ch].noise_facs[e][k].exp = NOISE_FLOOR_OFFSET - \
224                        sbr->data[ch].noise_facs_q[e][k] + 1;
225                    sbr->data[ch].noise_facs[e][k].mant = 0x20000000;
226                }
227        }
228    }
229}
230
231/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
232 * (14496-3 sp04 p214)
233 * Warning: This routine does not seem numerically stable.
234 */
235static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
236                                  int (*alpha0)[2], int (*alpha1)[2],
237                                  const int X_low[32][40][2], int k0)
238{
239    int k;
240    int shift, round;
241
242    for (k = 0; k < k0; k++) {
243        SoftFloat phi[3][2][2];
244        SoftFloat a00, a01, a10, a11;
245        SoftFloat dk;
246
247        dsp->autocorrelate(X_low[k], phi);
248
249        dk = av_sub_sf(av_mul_sf(phi[2][1][0], phi[1][0][0]),
250             av_mul_sf(av_add_sf(av_mul_sf(phi[1][1][0], phi[1][1][0]),
251             av_mul_sf(phi[1][1][1], phi[1][1][1])), FLOAT_0999999));
252
253        if (!dk.mant) {
254            a10 = FLOAT_0;
255            a11 = FLOAT_0;
256        } else {
257            SoftFloat temp_real, temp_im;
258            temp_real = av_sub_sf(av_sub_sf(av_mul_sf(phi[0][0][0], phi[1][1][0]),
259                                            av_mul_sf(phi[0][0][1], phi[1][1][1])),
260                                  av_mul_sf(phi[0][1][0], phi[1][0][0]));
261            temp_im   = av_sub_sf(av_add_sf(av_mul_sf(phi[0][0][0], phi[1][1][1]),
262                                            av_mul_sf(phi[0][0][1], phi[1][1][0])),
263                                  av_mul_sf(phi[0][1][1], phi[1][0][0]));
264
265            a10 = av_div_sf(temp_real, dk);
266            a11 = av_div_sf(temp_im,   dk);
267        }
268
269        if (!phi[1][0][0].mant) {
270            a00 = FLOAT_0;
271            a01 = FLOAT_0;
272        } else {
273            SoftFloat temp_real, temp_im;
274            temp_real = av_add_sf(phi[0][0][0],
275                                  av_add_sf(av_mul_sf(a10, phi[1][1][0]),
276                                            av_mul_sf(a11, phi[1][1][1])));
277            temp_im   = av_add_sf(phi[0][0][1],
278                                  av_sub_sf(av_mul_sf(a11, phi[1][1][0]),
279                                            av_mul_sf(a10, phi[1][1][1])));
280
281            temp_real.mant = -temp_real.mant;
282            temp_im.mant   = -temp_im.mant;
283            a00 = av_div_sf(temp_real, phi[1][0][0]);
284            a01 = av_div_sf(temp_im,   phi[1][0][0]);
285        }
286
287        shift = a00.exp;
288        if (shift >= 3)
289            alpha0[k][0] = 0x7fffffff;
290        else if (shift <= -30)
291            alpha0[k][0] = 0;
292        else {
293            shift = 1-shift;
294            if (shift <= 0)
295                alpha0[k][0] = a00.mant * (1<<-shift);
296            else {
297                round = 1 << (shift-1);
298                alpha0[k][0] = (a00.mant + round) >> shift;
299            }
300        }
301
302        shift = a01.exp;
303        if (shift >= 3)
304            alpha0[k][1] = 0x7fffffff;
305        else if (shift <= -30)
306            alpha0[k][1] = 0;
307        else {
308            shift = 1-shift;
309            if (shift <= 0)
310                alpha0[k][1] = a01.mant * (1<<-shift);
311            else {
312                round = 1 << (shift-1);
313                alpha0[k][1] = (a01.mant + round) >> shift;
314            }
315        }
316        shift = a10.exp;
317        if (shift >= 3)
318            alpha1[k][0] = 0x7fffffff;
319        else if (shift <= -30)
320            alpha1[k][0] = 0;
321        else {
322            shift = 1-shift;
323            if (shift <= 0)
324                alpha1[k][0] = a10.mant * (1<<-shift);
325            else {
326                round = 1 << (shift-1);
327                alpha1[k][0] = (a10.mant + round) >> shift;
328            }
329        }
330
331        shift = a11.exp;
332        if (shift >= 3)
333            alpha1[k][1] = 0x7fffffff;
334        else if (shift <= -30)
335            alpha1[k][1] = 0;
336        else {
337            shift = 1-shift;
338            if (shift <= 0)
339                alpha1[k][1] = a11.mant * (1<<-shift);
340            else {
341                round = 1 << (shift-1);
342                alpha1[k][1] = (a11.mant + round) >> shift;
343            }
344        }
345
346        shift = (int)(((int64_t)(alpha1[k][0]>>1) * (alpha1[k][0]>>1) + \
347                       (int64_t)(alpha1[k][1]>>1) * (alpha1[k][1]>>1) + \
348                       0x40000000) >> 31);
349        if (shift >= 0x20000000){
350            alpha1[k][0] = 0;
351            alpha1[k][1] = 0;
352            alpha0[k][0] = 0;
353            alpha0[k][1] = 0;
354        }
355
356        shift = (int)(((int64_t)(alpha0[k][0]>>1) * (alpha0[k][0]>>1) + \
357                       (int64_t)(alpha0[k][1]>>1) * (alpha0[k][1]>>1) + \
358                       0x40000000) >> 31);
359        if (shift >= 0x20000000){
360            alpha1[k][0] = 0;
361            alpha1[k][1] = 0;
362            alpha0[k][0] = 0;
363            alpha0[k][1] = 0;
364        }
365    }
366}
367
368/// Chirp Factors (14496-3 sp04 p214)
369static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
370{
371    int i;
372    int new_bw;
373    static const int bw_tab[] = { 0, 1610612736, 1932735283, 2104533975 };
374    int64_t accu;
375
376    for (i = 0; i < sbr->n_q; i++) {
377        if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1)
378            new_bw = 1288490189;
379        else
380            new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
381
382        if (new_bw < ch_data->bw_array[i]){
383            accu  = (int64_t)new_bw * 1610612736;
384            accu += (int64_t)ch_data->bw_array[i] * 0x20000000;
385            new_bw = (int)((accu + 0x40000000) >> 31);
386        } else {
387            accu  = (int64_t)new_bw * 1946157056;
388            accu += (int64_t)ch_data->bw_array[i] * 201326592;
389            new_bw = (int)((accu + 0x40000000) >> 31);
390        }
391        ch_data->bw_array[i] = new_bw < 0x2000000 ? 0 : new_bw;
392    }
393}
394
395/**
396 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
397 * and Calculation of gain (14496-3 sp04 p219)
398 */
399static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
400                          SBRData *ch_data, const int e_a[2])
401{
402    int e, k, m;
403    // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
404    static const SoftFloat limgain[4] = { { 760155524,  0 }, { 0x20000000,  1 },
405                                            { 758351638,  1 }, { 625000000, 34 } };
406
407    for (e = 0; e < ch_data->bs_num_env; e++) {
408        int delta = !((e == e_a[1]) || (e == e_a[0]));
409        for (k = 0; k < sbr->n_lim; k++) {
410            SoftFloat gain_boost, gain_max;
411            SoftFloat sum[2];
412            sum[0] = sum[1] = FLOAT_0;
413            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
414                const SoftFloat temp = av_div_sf(sbr->e_origmapped[e][m],
415                                            av_add_sf(FLOAT_1, sbr->q_mapped[e][m]));
416                sbr->q_m[e][m] = av_sqrt_sf(av_mul_sf(temp, sbr->q_mapped[e][m]));
417                sbr->s_m[e][m] = av_sqrt_sf(av_mul_sf(temp, av_int2sf(ch_data->s_indexmapped[e + 1][m], 0)));
418                if (!sbr->s_mapped[e][m]) {
419                    if (delta) {
420                      sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m],
421                                            av_mul_sf(av_add_sf(FLOAT_1, sbr->e_curr[e][m]),
422                                            av_add_sf(FLOAT_1, sbr->q_mapped[e][m]))));
423                    } else {
424                      sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m],
425                                            av_add_sf(FLOAT_1, sbr->e_curr[e][m])));
426                    }
427                } else {
428                    sbr->gain[e][m] = av_sqrt_sf(
429                                        av_div_sf(
430                                            av_mul_sf(sbr->e_origmapped[e][m], sbr->q_mapped[e][m]),
431                                            av_mul_sf(
432                                                av_add_sf(FLOAT_1, sbr->e_curr[e][m]),
433                                                av_add_sf(FLOAT_1, sbr->q_mapped[e][m]))));
434                }
435                sbr->gain[e][m] = av_add_sf(sbr->gain[e][m], FLOAT_MIN);
436            }
437            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
438                sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]);
439                sum[1] = av_add_sf(sum[1], sbr->e_curr[e][m]);
440            }
441            gain_max = av_mul_sf(limgain[sbr->bs_limiter_gains],
442                            av_sqrt_sf(
443                                av_div_sf(
444                                    av_add_sf(FLOAT_EPSILON, sum[0]),
445                                    av_add_sf(FLOAT_EPSILON, sum[1]))));
446            if (av_gt_sf(gain_max, FLOAT_100000))
447              gain_max = FLOAT_100000;
448            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
449                SoftFloat q_m_max = av_div_sf(
450                                        av_mul_sf(sbr->q_m[e][m], gain_max),
451                                        sbr->gain[e][m]);
452                if (av_gt_sf(sbr->q_m[e][m], q_m_max))
453                  sbr->q_m[e][m] = q_m_max;
454                if (av_gt_sf(sbr->gain[e][m], gain_max))
455                  sbr->gain[e][m] = gain_max;
456            }
457            sum[0] = sum[1] = FLOAT_0;
458            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
459                sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]);
460                sum[1] = av_add_sf(sum[1],
461                            av_mul_sf(
462                                av_mul_sf(sbr->e_curr[e][m],
463                                          sbr->gain[e][m]),
464                                sbr->gain[e][m]));
465                sum[1] = av_add_sf(sum[1],
466                            av_mul_sf(sbr->s_m[e][m], sbr->s_m[e][m]));
467                if (delta && !sbr->s_m[e][m].mant)
468                  sum[1] = av_add_sf(sum[1],
469                                av_mul_sf(sbr->q_m[e][m], sbr->q_m[e][m]));
470            }
471            gain_boost = av_sqrt_sf(
472                            av_div_sf(
473                                av_add_sf(FLOAT_EPSILON, sum[0]),
474                                av_add_sf(FLOAT_EPSILON, sum[1])));
475            if (av_gt_sf(gain_boost, FLOAT_1584893192))
476              gain_boost = FLOAT_1584893192;
477
478            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
479                sbr->gain[e][m] = av_mul_sf(sbr->gain[e][m], gain_boost);
480                sbr->q_m[e][m]  = av_mul_sf(sbr->q_m[e][m], gain_boost);
481                sbr->s_m[e][m]  = av_mul_sf(sbr->s_m[e][m], gain_boost);
482            }
483        }
484    }
485}
486
487/// Assembling HF Signals (14496-3 sp04 p220)
488static void sbr_hf_assemble(int Y1[38][64][2],
489                            const int X_high[64][40][2],
490                            SpectralBandReplication *sbr, SBRData *ch_data,
491                            const int e_a[2])
492{
493    int e, i, j, m;
494    const int h_SL = 4 * !sbr->bs_smoothing_mode;
495    const int kx = sbr->kx[1];
496    const int m_max = sbr->m[1];
497    static const SoftFloat h_smooth[5] = {
498      { 715827883, -1 },
499      { 647472402, -1 },
500      { 937030863, -2 },
501      { 989249804, -3 },
502      { 546843842, -4 },
503    };
504    SoftFloat (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
505    int indexnoise = ch_data->f_indexnoise;
506    int indexsine  = ch_data->f_indexsine;
507
508    if (sbr->reset) {
509        for (i = 0; i < h_SL; i++) {
510            memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
511            memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0],  m_max * sizeof(sbr->q_m[0][0]));
512        }
513    } else if (h_SL) {
514        for (i = 0; i < 4; i++) {
515            memcpy(g_temp[i + 2 * ch_data->t_env[0]],
516                   g_temp[i + 2 * ch_data->t_env_num_env_old],
517                   sizeof(g_temp[0]));
518            memcpy(q_temp[i + 2 * ch_data->t_env[0]],
519                   q_temp[i + 2 * ch_data->t_env_num_env_old],
520                   sizeof(q_temp[0]));
521        }
522    }
523
524    for (e = 0; e < ch_data->bs_num_env; e++) {
525        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
526            memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
527            memcpy(q_temp[h_SL + i], sbr->q_m[e],  m_max * sizeof(sbr->q_m[0][0]));
528        }
529    }
530
531    for (e = 0; e < ch_data->bs_num_env; e++) {
532        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
533            SoftFloat g_filt_tab[48];
534            SoftFloat q_filt_tab[48];
535            SoftFloat *g_filt, *q_filt;
536
537            if (h_SL && e != e_a[0] && e != e_a[1]) {
538                g_filt = g_filt_tab;
539                q_filt = q_filt_tab;
540                for (m = 0; m < m_max; m++) {
541                    const int idx1 = i + h_SL;
542                    g_filt[m].mant = g_filt[m].exp = 0;
543                    q_filt[m].mant = q_filt[m].exp = 0;
544                    for (j = 0; j <= h_SL; j++) {
545                        g_filt[m] = av_add_sf(g_filt[m],
546                                        av_mul_sf(g_temp[idx1 - j][m],
547                                            h_smooth[j]));
548                        q_filt[m] = av_add_sf(q_filt[m],
549                                        av_mul_sf(q_temp[idx1 - j][m],
550                                            h_smooth[j]));
551                    }
552                }
553            } else {
554                g_filt = g_temp[i + h_SL];
555                q_filt = q_temp[i];
556            }
557
558            sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
559                               i + ENVELOPE_ADJUSTMENT_OFFSET);
560
561            if (e != e_a[0] && e != e_a[1]) {
562                sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
563                                                   q_filt, indexnoise,
564                                                   kx, m_max);
565            } else {
566                int idx = indexsine&1;
567                int A = (1-((indexsine+(kx & 1))&2));
568                int B = (A^(-idx)) + idx;
569                unsigned *out = &Y1[i][kx][idx];
570                int shift;
571                unsigned round;
572
573                SoftFloat *in  = sbr->s_m[e];
574                for (m = 0; m+1 < m_max; m+=2) {
575                    int shift2;
576                    shift = 22 - in[m  ].exp;
577                    shift2= 22 - in[m+1].exp;
578                    if (shift < 1 || shift2 < 1) {
579                        av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_assemble, shift=%d,%d\n", shift, shift2);
580                        return;
581                    }
582                    if (shift < 32) {
583                        round = 1 << (shift-1);
584                        out[2*m  ] += (int)(in[m  ].mant * A + round) >> shift;
585                    }
586
587                    if (shift2 < 32) {
588                        round = 1 << (shift2-1);
589                        out[2*m+2] += (int)(in[m+1].mant * B + round) >> shift2;
590                    }
591                }
592                if(m_max&1)
593                {
594                    shift = 22 - in[m  ].exp;
595                    if (shift < 1) {
596                        av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_assemble, shift=%d\n", shift);
597                        return;
598                    } else if (shift < 32) {
599                        round = 1 << (shift-1);
600                        out[2*m  ] += (int)(in[m  ].mant * A + round) >> shift;
601                    }
602                }
603            }
604            indexnoise = (indexnoise + m_max) & 0x1ff;
605            indexsine = (indexsine + 1) & 3;
606        }
607    }
608    ch_data->f_indexnoise = indexnoise;
609    ch_data->f_indexsine  = indexsine;
610}
611
612#include "aacsbr_template.c"
613