xref: /third_party/ffmpeg/libavcodec/aacsbr.c (revision cabdff1a)
1/*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file
25 * AAC Spectral Band Replication decoding functions
26 * @author Robert Swain ( rob opendot cl )
27 */
28#define USE_FIXED 0
29
30#include "aac.h"
31#include "sbr.h"
32#include "aacsbr.h"
33#include "aacsbrdata.h"
34#include "fft.h"
35#include "internal.h"
36#include "aacps.h"
37#include "sbrdsp.h"
38#include "libavutil/internal.h"
39#include "libavutil/libm.h"
40#include "libavutil/avassert.h"
41#include "libavutil/mem_internal.h"
42
43#include <stdint.h>
44#include <float.h>
45#include <math.h>
46
47#if ARCH_MIPS
48#include "mips/aacsbr_mips.h"
49#endif /* ARCH_MIPS */
50
51static VLC vlc_sbr[10];
52static void aacsbr_func_ptr_init(AACSBRContext *c);
53
54static void make_bands(int16_t* bands, int start, int stop, int num_bands)
55{
56    int k, previous, present;
57    float base, prod;
58
59    base = powf((float)stop / start, 1.0f / num_bands);
60    prod = start;
61    previous = start;
62
63    for (k = 0; k < num_bands-1; k++) {
64        prod *= base;
65        present  = lrintf(prod);
66        bands[k] = present - previous;
67        previous = present;
68    }
69    bands[num_bands-1] = stop - previous;
70}
71
72/// Dequantization and stereo decoding (14496-3 sp04 p203)
73static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
74{
75    int k, e;
76    int ch;
77    static const double exp2_tab[2] = {1, M_SQRT2};
78    if (id_aac == TYPE_CPE && sbr->bs_coupling) {
79        int pan_offset = sbr->data[0].bs_amp_res ? 12 : 24;
80        for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
81            for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
82                float temp1, temp2, fac;
83                if (sbr->data[0].bs_amp_res) {
84                    temp1 = ff_exp2fi(sbr->data[0].env_facs_q[e][k] + 7);
85                    temp2 = ff_exp2fi(pan_offset - sbr->data[1].env_facs_q[e][k]);
86                }
87                else {
88                    temp1 = ff_exp2fi((sbr->data[0].env_facs_q[e][k]>>1) + 7) *
89                            exp2_tab[sbr->data[0].env_facs_q[e][k] & 1];
90                    temp2 = ff_exp2fi((pan_offset - sbr->data[1].env_facs_q[e][k])>>1) *
91                            exp2_tab[(pan_offset - sbr->data[1].env_facs_q[e][k]) & 1];
92                }
93                if (temp1 > 1E20) {
94                    av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
95                    temp1 = 1;
96                }
97                fac   = temp1 / (1.0f + temp2);
98                sbr->data[0].env_facs[e][k] = fac;
99                sbr->data[1].env_facs[e][k] = fac * temp2;
100            }
101        }
102        for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
103            for (k = 0; k < sbr->n_q; k++) {
104                float temp1 = ff_exp2fi(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs_q[e][k] + 1);
105                float temp2 = ff_exp2fi(12 - sbr->data[1].noise_facs_q[e][k]);
106                float fac;
107                av_assert0(temp1 <= 1E20);
108                fac = temp1 / (1.0f + temp2);
109                sbr->data[0].noise_facs[e][k] = fac;
110                sbr->data[1].noise_facs[e][k] = fac * temp2;
111            }
112        }
113    } else { // SCE or one non-coupled CPE
114        for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
115            for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
116                for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
117                    if (sbr->data[ch].bs_amp_res)
118                        sbr->data[ch].env_facs[e][k] = ff_exp2fi(sbr->data[ch].env_facs_q[e][k] + 6);
119                    else
120                        sbr->data[ch].env_facs[e][k] = ff_exp2fi((sbr->data[ch].env_facs_q[e][k]>>1) + 6)
121                                                       * exp2_tab[sbr->data[ch].env_facs_q[e][k] & 1];
122                    if (sbr->data[ch].env_facs[e][k] > 1E20) {
123                        av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
124                        sbr->data[ch].env_facs[e][k] = 1;
125                    }
126                }
127
128            for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
129                for (k = 0; k < sbr->n_q; k++)
130                    sbr->data[ch].noise_facs[e][k] =
131                        ff_exp2fi(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs_q[e][k]);
132        }
133    }
134}
135
136/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
137 * (14496-3 sp04 p214)
138 * Warning: This routine does not seem numerically stable.
139 */
140static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
141                                  float (*alpha0)[2], float (*alpha1)[2],
142                                  const float X_low[32][40][2], int k0)
143{
144    int k;
145    for (k = 0; k < k0; k++) {
146        LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
147        float dk;
148
149        dsp->autocorrelate(X_low[k], phi);
150
151        dk =  phi[2][1][0] * phi[1][0][0] -
152             (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
153
154        if (!dk) {
155            alpha1[k][0] = 0;
156            alpha1[k][1] = 0;
157        } else {
158            float temp_real, temp_im;
159            temp_real = phi[0][0][0] * phi[1][1][0] -
160                        phi[0][0][1] * phi[1][1][1] -
161                        phi[0][1][0] * phi[1][0][0];
162            temp_im   = phi[0][0][0] * phi[1][1][1] +
163                        phi[0][0][1] * phi[1][1][0] -
164                        phi[0][1][1] * phi[1][0][0];
165
166            alpha1[k][0] = temp_real / dk;
167            alpha1[k][1] = temp_im   / dk;
168        }
169
170        if (!phi[1][0][0]) {
171            alpha0[k][0] = 0;
172            alpha0[k][1] = 0;
173        } else {
174            float temp_real, temp_im;
175            temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
176                                       alpha1[k][1] * phi[1][1][1];
177            temp_im   = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
178                                       alpha1[k][0] * phi[1][1][1];
179
180            alpha0[k][0] = -temp_real / phi[1][0][0];
181            alpha0[k][1] = -temp_im   / phi[1][0][0];
182        }
183
184        if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
185           alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
186            alpha1[k][0] = 0;
187            alpha1[k][1] = 0;
188            alpha0[k][0] = 0;
189            alpha0[k][1] = 0;
190        }
191    }
192}
193
194/// Chirp Factors (14496-3 sp04 p214)
195static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
196{
197    int i;
198    float new_bw;
199    static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
200
201    for (i = 0; i < sbr->n_q; i++) {
202        if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
203            new_bw = 0.6f;
204        } else
205            new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
206
207        if (new_bw < ch_data->bw_array[i]) {
208            new_bw = 0.75f    * new_bw + 0.25f    * ch_data->bw_array[i];
209        } else
210            new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
211        ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
212    }
213}
214
215/**
216 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
217 * and Calculation of gain (14496-3 sp04 p219)
218 */
219static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
220                          SBRData *ch_data, const int e_a[2])
221{
222    int e, k, m;
223    // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
224    static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
225
226    for (e = 0; e < ch_data->bs_num_env; e++) {
227        int delta = !((e == e_a[1]) || (e == e_a[0]));
228        for (k = 0; k < sbr->n_lim; k++) {
229            float gain_boost, gain_max;
230            float sum[2] = { 0.0f, 0.0f };
231            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
232                const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
233                sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
234                sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
235                if (!sbr->s_mapped[e][m]) {
236                    sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
237                                            ((1.0f + sbr->e_curr[e][m]) *
238                                             (1.0f + sbr->q_mapped[e][m] * delta)));
239                } else {
240                    sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
241                                            ((1.0f + sbr->e_curr[e][m]) *
242                                             (1.0f + sbr->q_mapped[e][m])));
243                }
244                sbr->gain[e][m] += FLT_MIN;
245            }
246            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
247                sum[0] += sbr->e_origmapped[e][m];
248                sum[1] += sbr->e_curr[e][m];
249            }
250            gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
251            gain_max = FFMIN(100000.f, gain_max);
252            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
253                float q_m_max   = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
254                sbr->q_m[e][m]  = FFMIN(sbr->q_m[e][m], q_m_max);
255                sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
256            }
257            sum[0] = sum[1] = 0.0f;
258            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
259                sum[0] += sbr->e_origmapped[e][m];
260                sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
261                          + sbr->s_m[e][m] * sbr->s_m[e][m]
262                          + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
263            }
264            gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
265            gain_boost = FFMIN(1.584893192f, gain_boost);
266            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
267                sbr->gain[e][m] *= gain_boost;
268                sbr->q_m[e][m]  *= gain_boost;
269                sbr->s_m[e][m]  *= gain_boost;
270            }
271        }
272    }
273}
274
275/// Assembling HF Signals (14496-3 sp04 p220)
276static void sbr_hf_assemble(float Y1[38][64][2],
277                            const float X_high[64][40][2],
278                            SpectralBandReplication *sbr, SBRData *ch_data,
279                            const int e_a[2])
280{
281    int e, i, j, m;
282    const int h_SL = 4 * !sbr->bs_smoothing_mode;
283    const int kx = sbr->kx[1];
284    const int m_max = sbr->m[1];
285    static const float h_smooth[5] = {
286        0.33333333333333,
287        0.30150283239582,
288        0.21816949906249,
289        0.11516383427084,
290        0.03183050093751,
291    };
292    float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
293    int indexnoise = ch_data->f_indexnoise;
294    int indexsine  = ch_data->f_indexsine;
295
296    if (sbr->reset) {
297        for (i = 0; i < h_SL; i++) {
298            memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
299            memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0],  m_max * sizeof(sbr->q_m[0][0]));
300        }
301    } else if (h_SL) {
302        for (i = 0; i < 4; i++) {
303            memcpy(g_temp[i + 2 * ch_data->t_env[0]],
304                   g_temp[i + 2 * ch_data->t_env_num_env_old],
305                   sizeof(g_temp[0]));
306            memcpy(q_temp[i + 2 * ch_data->t_env[0]],
307                   q_temp[i + 2 * ch_data->t_env_num_env_old],
308                   sizeof(q_temp[0]));
309        }
310    }
311
312    for (e = 0; e < ch_data->bs_num_env; e++) {
313        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
314            memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
315            memcpy(q_temp[h_SL + i], sbr->q_m[e],  m_max * sizeof(sbr->q_m[0][0]));
316        }
317    }
318
319    for (e = 0; e < ch_data->bs_num_env; e++) {
320        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
321            LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
322            LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
323            float *g_filt, *q_filt;
324
325            if (h_SL && e != e_a[0] && e != e_a[1]) {
326                g_filt = g_filt_tab;
327                q_filt = q_filt_tab;
328                for (m = 0; m < m_max; m++) {
329                    const int idx1 = i + h_SL;
330                    g_filt[m] = 0.0f;
331                    q_filt[m] = 0.0f;
332                    for (j = 0; j <= h_SL; j++) {
333                        g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
334                        q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
335                    }
336                }
337            } else {
338                g_filt = g_temp[i + h_SL];
339                q_filt = q_temp[i];
340            }
341
342            sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
343                               i + ENVELOPE_ADJUSTMENT_OFFSET);
344
345            if (e != e_a[0] && e != e_a[1]) {
346                sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
347                                                   q_filt, indexnoise,
348                                                   kx, m_max);
349            } else {
350                int idx = indexsine&1;
351                int A = (1-((indexsine+(kx & 1))&2));
352                int B = (A^(-idx)) + idx;
353                float *out = &Y1[i][kx][idx];
354                float *in  = sbr->s_m[e];
355                for (m = 0; m+1 < m_max; m+=2) {
356                    out[2*m  ] += in[m  ] * A;
357                    out[2*m+2] += in[m+1] * B;
358                }
359                if(m_max&1)
360                    out[2*m  ] += in[m  ] * A;
361            }
362            indexnoise = (indexnoise + m_max) & 0x1ff;
363            indexsine = (indexsine + 1) & 3;
364        }
365    }
366    ch_data->f_indexnoise = indexnoise;
367    ch_data->f_indexsine  = indexsine;
368}
369
370#include "aacsbr_template.c"
371