1cabdff1aSopenharmony_ci/*
2cabdff1aSopenharmony_ci * AAC Spectral Band Replication decoding functions
3cabdff1aSopenharmony_ci * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4cabdff1aSopenharmony_ci * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5cabdff1aSopenharmony_ci *
6cabdff1aSopenharmony_ci * This file is part of FFmpeg.
7cabdff1aSopenharmony_ci *
8cabdff1aSopenharmony_ci * FFmpeg is free software; you can redistribute it and/or
9cabdff1aSopenharmony_ci * modify it under the terms of the GNU Lesser General Public
10cabdff1aSopenharmony_ci * License as published by the Free Software Foundation; either
11cabdff1aSopenharmony_ci * version 2.1 of the License, or (at your option) any later version.
12cabdff1aSopenharmony_ci *
13cabdff1aSopenharmony_ci * FFmpeg is distributed in the hope that it will be useful,
14cabdff1aSopenharmony_ci * but WITHOUT ANY WARRANTY; without even the implied warranty of
15cabdff1aSopenharmony_ci * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16cabdff1aSopenharmony_ci * Lesser General Public License for more details.
17cabdff1aSopenharmony_ci *
18cabdff1aSopenharmony_ci * You should have received a copy of the GNU Lesser General Public
19cabdff1aSopenharmony_ci * License along with FFmpeg; if not, write to the Free Software
20cabdff1aSopenharmony_ci * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21cabdff1aSopenharmony_ci */
22cabdff1aSopenharmony_ci
23cabdff1aSopenharmony_ci/**
24cabdff1aSopenharmony_ci * @file
25cabdff1aSopenharmony_ci * AAC Spectral Band Replication decoding functions
26cabdff1aSopenharmony_ci * @author Robert Swain ( rob opendot cl )
27cabdff1aSopenharmony_ci */
28cabdff1aSopenharmony_ci#define USE_FIXED 0
29cabdff1aSopenharmony_ci
30cabdff1aSopenharmony_ci#include "aac.h"
31cabdff1aSopenharmony_ci#include "sbr.h"
32cabdff1aSopenharmony_ci#include "aacsbr.h"
33cabdff1aSopenharmony_ci#include "aacsbrdata.h"
34cabdff1aSopenharmony_ci#include "fft.h"
35cabdff1aSopenharmony_ci#include "internal.h"
36cabdff1aSopenharmony_ci#include "aacps.h"
37cabdff1aSopenharmony_ci#include "sbrdsp.h"
38cabdff1aSopenharmony_ci#include "libavutil/internal.h"
39cabdff1aSopenharmony_ci#include "libavutil/libm.h"
40cabdff1aSopenharmony_ci#include "libavutil/avassert.h"
41cabdff1aSopenharmony_ci#include "libavutil/mem_internal.h"
42cabdff1aSopenharmony_ci
43cabdff1aSopenharmony_ci#include <stdint.h>
44cabdff1aSopenharmony_ci#include <float.h>
45cabdff1aSopenharmony_ci#include <math.h>
46cabdff1aSopenharmony_ci
47cabdff1aSopenharmony_ci#if ARCH_MIPS
48cabdff1aSopenharmony_ci#include "mips/aacsbr_mips.h"
49cabdff1aSopenharmony_ci#endif /* ARCH_MIPS */
50cabdff1aSopenharmony_ci
51cabdff1aSopenharmony_cistatic VLC vlc_sbr[10];
52cabdff1aSopenharmony_cistatic void aacsbr_func_ptr_init(AACSBRContext *c);
53cabdff1aSopenharmony_ci
54cabdff1aSopenharmony_cistatic void make_bands(int16_t* bands, int start, int stop, int num_bands)
55cabdff1aSopenharmony_ci{
56cabdff1aSopenharmony_ci    int k, previous, present;
57cabdff1aSopenharmony_ci    float base, prod;
58cabdff1aSopenharmony_ci
59cabdff1aSopenharmony_ci    base = powf((float)stop / start, 1.0f / num_bands);
60cabdff1aSopenharmony_ci    prod = start;
61cabdff1aSopenharmony_ci    previous = start;
62cabdff1aSopenharmony_ci
63cabdff1aSopenharmony_ci    for (k = 0; k < num_bands-1; k++) {
64cabdff1aSopenharmony_ci        prod *= base;
65cabdff1aSopenharmony_ci        present  = lrintf(prod);
66cabdff1aSopenharmony_ci        bands[k] = present - previous;
67cabdff1aSopenharmony_ci        previous = present;
68cabdff1aSopenharmony_ci    }
69cabdff1aSopenharmony_ci    bands[num_bands-1] = stop - previous;
70cabdff1aSopenharmony_ci}
71cabdff1aSopenharmony_ci
72cabdff1aSopenharmony_ci/// Dequantization and stereo decoding (14496-3 sp04 p203)
73cabdff1aSopenharmony_cistatic void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
74cabdff1aSopenharmony_ci{
75cabdff1aSopenharmony_ci    int k, e;
76cabdff1aSopenharmony_ci    int ch;
77cabdff1aSopenharmony_ci    static const double exp2_tab[2] = {1, M_SQRT2};
78cabdff1aSopenharmony_ci    if (id_aac == TYPE_CPE && sbr->bs_coupling) {
79cabdff1aSopenharmony_ci        int pan_offset = sbr->data[0].bs_amp_res ? 12 : 24;
80cabdff1aSopenharmony_ci        for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
81cabdff1aSopenharmony_ci            for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
82cabdff1aSopenharmony_ci                float temp1, temp2, fac;
83cabdff1aSopenharmony_ci                if (sbr->data[0].bs_amp_res) {
84cabdff1aSopenharmony_ci                    temp1 = ff_exp2fi(sbr->data[0].env_facs_q[e][k] + 7);
85cabdff1aSopenharmony_ci                    temp2 = ff_exp2fi(pan_offset - sbr->data[1].env_facs_q[e][k]);
86cabdff1aSopenharmony_ci                }
87cabdff1aSopenharmony_ci                else {
88cabdff1aSopenharmony_ci                    temp1 = ff_exp2fi((sbr->data[0].env_facs_q[e][k]>>1) + 7) *
89cabdff1aSopenharmony_ci                            exp2_tab[sbr->data[0].env_facs_q[e][k] & 1];
90cabdff1aSopenharmony_ci                    temp2 = ff_exp2fi((pan_offset - sbr->data[1].env_facs_q[e][k])>>1) *
91cabdff1aSopenharmony_ci                            exp2_tab[(pan_offset - sbr->data[1].env_facs_q[e][k]) & 1];
92cabdff1aSopenharmony_ci                }
93cabdff1aSopenharmony_ci                if (temp1 > 1E20) {
94cabdff1aSopenharmony_ci                    av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
95cabdff1aSopenharmony_ci                    temp1 = 1;
96cabdff1aSopenharmony_ci                }
97cabdff1aSopenharmony_ci                fac   = temp1 / (1.0f + temp2);
98cabdff1aSopenharmony_ci                sbr->data[0].env_facs[e][k] = fac;
99cabdff1aSopenharmony_ci                sbr->data[1].env_facs[e][k] = fac * temp2;
100cabdff1aSopenharmony_ci            }
101cabdff1aSopenharmony_ci        }
102cabdff1aSopenharmony_ci        for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
103cabdff1aSopenharmony_ci            for (k = 0; k < sbr->n_q; k++) {
104cabdff1aSopenharmony_ci                float temp1 = ff_exp2fi(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs_q[e][k] + 1);
105cabdff1aSopenharmony_ci                float temp2 = ff_exp2fi(12 - sbr->data[1].noise_facs_q[e][k]);
106cabdff1aSopenharmony_ci                float fac;
107cabdff1aSopenharmony_ci                av_assert0(temp1 <= 1E20);
108cabdff1aSopenharmony_ci                fac = temp1 / (1.0f + temp2);
109cabdff1aSopenharmony_ci                sbr->data[0].noise_facs[e][k] = fac;
110cabdff1aSopenharmony_ci                sbr->data[1].noise_facs[e][k] = fac * temp2;
111cabdff1aSopenharmony_ci            }
112cabdff1aSopenharmony_ci        }
113cabdff1aSopenharmony_ci    } else { // SCE or one non-coupled CPE
114cabdff1aSopenharmony_ci        for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
115cabdff1aSopenharmony_ci            for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
116cabdff1aSopenharmony_ci                for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
117cabdff1aSopenharmony_ci                    if (sbr->data[ch].bs_amp_res)
118cabdff1aSopenharmony_ci                        sbr->data[ch].env_facs[e][k] = ff_exp2fi(sbr->data[ch].env_facs_q[e][k] + 6);
119cabdff1aSopenharmony_ci                    else
120cabdff1aSopenharmony_ci                        sbr->data[ch].env_facs[e][k] = ff_exp2fi((sbr->data[ch].env_facs_q[e][k]>>1) + 6)
121cabdff1aSopenharmony_ci                                                       * exp2_tab[sbr->data[ch].env_facs_q[e][k] & 1];
122cabdff1aSopenharmony_ci                    if (sbr->data[ch].env_facs[e][k] > 1E20) {
123cabdff1aSopenharmony_ci                        av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
124cabdff1aSopenharmony_ci                        sbr->data[ch].env_facs[e][k] = 1;
125cabdff1aSopenharmony_ci                    }
126cabdff1aSopenharmony_ci                }
127cabdff1aSopenharmony_ci
128cabdff1aSopenharmony_ci            for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
129cabdff1aSopenharmony_ci                for (k = 0; k < sbr->n_q; k++)
130cabdff1aSopenharmony_ci                    sbr->data[ch].noise_facs[e][k] =
131cabdff1aSopenharmony_ci                        ff_exp2fi(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs_q[e][k]);
132cabdff1aSopenharmony_ci        }
133cabdff1aSopenharmony_ci    }
134cabdff1aSopenharmony_ci}
135cabdff1aSopenharmony_ci
136cabdff1aSopenharmony_ci/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
137cabdff1aSopenharmony_ci * (14496-3 sp04 p214)
138cabdff1aSopenharmony_ci * Warning: This routine does not seem numerically stable.
139cabdff1aSopenharmony_ci */
140cabdff1aSopenharmony_cistatic void sbr_hf_inverse_filter(SBRDSPContext *dsp,
141cabdff1aSopenharmony_ci                                  float (*alpha0)[2], float (*alpha1)[2],
142cabdff1aSopenharmony_ci                                  const float X_low[32][40][2], int k0)
143cabdff1aSopenharmony_ci{
144cabdff1aSopenharmony_ci    int k;
145cabdff1aSopenharmony_ci    for (k = 0; k < k0; k++) {
146cabdff1aSopenharmony_ci        LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
147cabdff1aSopenharmony_ci        float dk;
148cabdff1aSopenharmony_ci
149cabdff1aSopenharmony_ci        dsp->autocorrelate(X_low[k], phi);
150cabdff1aSopenharmony_ci
151cabdff1aSopenharmony_ci        dk =  phi[2][1][0] * phi[1][0][0] -
152cabdff1aSopenharmony_ci             (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
153cabdff1aSopenharmony_ci
154cabdff1aSopenharmony_ci        if (!dk) {
155cabdff1aSopenharmony_ci            alpha1[k][0] = 0;
156cabdff1aSopenharmony_ci            alpha1[k][1] = 0;
157cabdff1aSopenharmony_ci        } else {
158cabdff1aSopenharmony_ci            float temp_real, temp_im;
159cabdff1aSopenharmony_ci            temp_real = phi[0][0][0] * phi[1][1][0] -
160cabdff1aSopenharmony_ci                        phi[0][0][1] * phi[1][1][1] -
161cabdff1aSopenharmony_ci                        phi[0][1][0] * phi[1][0][0];
162cabdff1aSopenharmony_ci            temp_im   = phi[0][0][0] * phi[1][1][1] +
163cabdff1aSopenharmony_ci                        phi[0][0][1] * phi[1][1][0] -
164cabdff1aSopenharmony_ci                        phi[0][1][1] * phi[1][0][0];
165cabdff1aSopenharmony_ci
166cabdff1aSopenharmony_ci            alpha1[k][0] = temp_real / dk;
167cabdff1aSopenharmony_ci            alpha1[k][1] = temp_im   / dk;
168cabdff1aSopenharmony_ci        }
169cabdff1aSopenharmony_ci
170cabdff1aSopenharmony_ci        if (!phi[1][0][0]) {
171cabdff1aSopenharmony_ci            alpha0[k][0] = 0;
172cabdff1aSopenharmony_ci            alpha0[k][1] = 0;
173cabdff1aSopenharmony_ci        } else {
174cabdff1aSopenharmony_ci            float temp_real, temp_im;
175cabdff1aSopenharmony_ci            temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
176cabdff1aSopenharmony_ci                                       alpha1[k][1] * phi[1][1][1];
177cabdff1aSopenharmony_ci            temp_im   = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
178cabdff1aSopenharmony_ci                                       alpha1[k][0] * phi[1][1][1];
179cabdff1aSopenharmony_ci
180cabdff1aSopenharmony_ci            alpha0[k][0] = -temp_real / phi[1][0][0];
181cabdff1aSopenharmony_ci            alpha0[k][1] = -temp_im   / phi[1][0][0];
182cabdff1aSopenharmony_ci        }
183cabdff1aSopenharmony_ci
184cabdff1aSopenharmony_ci        if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
185cabdff1aSopenharmony_ci           alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
186cabdff1aSopenharmony_ci            alpha1[k][0] = 0;
187cabdff1aSopenharmony_ci            alpha1[k][1] = 0;
188cabdff1aSopenharmony_ci            alpha0[k][0] = 0;
189cabdff1aSopenharmony_ci            alpha0[k][1] = 0;
190cabdff1aSopenharmony_ci        }
191cabdff1aSopenharmony_ci    }
192cabdff1aSopenharmony_ci}
193cabdff1aSopenharmony_ci
194cabdff1aSopenharmony_ci/// Chirp Factors (14496-3 sp04 p214)
195cabdff1aSopenharmony_cistatic void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
196cabdff1aSopenharmony_ci{
197cabdff1aSopenharmony_ci    int i;
198cabdff1aSopenharmony_ci    float new_bw;
199cabdff1aSopenharmony_ci    static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
200cabdff1aSopenharmony_ci
201cabdff1aSopenharmony_ci    for (i = 0; i < sbr->n_q; i++) {
202cabdff1aSopenharmony_ci        if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
203cabdff1aSopenharmony_ci            new_bw = 0.6f;
204cabdff1aSopenharmony_ci        } else
205cabdff1aSopenharmony_ci            new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
206cabdff1aSopenharmony_ci
207cabdff1aSopenharmony_ci        if (new_bw < ch_data->bw_array[i]) {
208cabdff1aSopenharmony_ci            new_bw = 0.75f    * new_bw + 0.25f    * ch_data->bw_array[i];
209cabdff1aSopenharmony_ci        } else
210cabdff1aSopenharmony_ci            new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
211cabdff1aSopenharmony_ci        ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
212cabdff1aSopenharmony_ci    }
213cabdff1aSopenharmony_ci}
214cabdff1aSopenharmony_ci
215cabdff1aSopenharmony_ci/**
216cabdff1aSopenharmony_ci * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
217cabdff1aSopenharmony_ci * and Calculation of gain (14496-3 sp04 p219)
218cabdff1aSopenharmony_ci */
219cabdff1aSopenharmony_cistatic void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
220cabdff1aSopenharmony_ci                          SBRData *ch_data, const int e_a[2])
221cabdff1aSopenharmony_ci{
222cabdff1aSopenharmony_ci    int e, k, m;
223cabdff1aSopenharmony_ci    // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
224cabdff1aSopenharmony_ci    static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
225cabdff1aSopenharmony_ci
226cabdff1aSopenharmony_ci    for (e = 0; e < ch_data->bs_num_env; e++) {
227cabdff1aSopenharmony_ci        int delta = !((e == e_a[1]) || (e == e_a[0]));
228cabdff1aSopenharmony_ci        for (k = 0; k < sbr->n_lim; k++) {
229cabdff1aSopenharmony_ci            float gain_boost, gain_max;
230cabdff1aSopenharmony_ci            float sum[2] = { 0.0f, 0.0f };
231cabdff1aSopenharmony_ci            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
232cabdff1aSopenharmony_ci                const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
233cabdff1aSopenharmony_ci                sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
234cabdff1aSopenharmony_ci                sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
235cabdff1aSopenharmony_ci                if (!sbr->s_mapped[e][m]) {
236cabdff1aSopenharmony_ci                    sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
237cabdff1aSopenharmony_ci                                            ((1.0f + sbr->e_curr[e][m]) *
238cabdff1aSopenharmony_ci                                             (1.0f + sbr->q_mapped[e][m] * delta)));
239cabdff1aSopenharmony_ci                } else {
240cabdff1aSopenharmony_ci                    sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
241cabdff1aSopenharmony_ci                                            ((1.0f + sbr->e_curr[e][m]) *
242cabdff1aSopenharmony_ci                                             (1.0f + sbr->q_mapped[e][m])));
243cabdff1aSopenharmony_ci                }
244cabdff1aSopenharmony_ci                sbr->gain[e][m] += FLT_MIN;
245cabdff1aSopenharmony_ci            }
246cabdff1aSopenharmony_ci            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
247cabdff1aSopenharmony_ci                sum[0] += sbr->e_origmapped[e][m];
248cabdff1aSopenharmony_ci                sum[1] += sbr->e_curr[e][m];
249cabdff1aSopenharmony_ci            }
250cabdff1aSopenharmony_ci            gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
251cabdff1aSopenharmony_ci            gain_max = FFMIN(100000.f, gain_max);
252cabdff1aSopenharmony_ci            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
253cabdff1aSopenharmony_ci                float q_m_max   = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
254cabdff1aSopenharmony_ci                sbr->q_m[e][m]  = FFMIN(sbr->q_m[e][m], q_m_max);
255cabdff1aSopenharmony_ci                sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
256cabdff1aSopenharmony_ci            }
257cabdff1aSopenharmony_ci            sum[0] = sum[1] = 0.0f;
258cabdff1aSopenharmony_ci            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
259cabdff1aSopenharmony_ci                sum[0] += sbr->e_origmapped[e][m];
260cabdff1aSopenharmony_ci                sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
261cabdff1aSopenharmony_ci                          + sbr->s_m[e][m] * sbr->s_m[e][m]
262cabdff1aSopenharmony_ci                          + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
263cabdff1aSopenharmony_ci            }
264cabdff1aSopenharmony_ci            gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
265cabdff1aSopenharmony_ci            gain_boost = FFMIN(1.584893192f, gain_boost);
266cabdff1aSopenharmony_ci            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
267cabdff1aSopenharmony_ci                sbr->gain[e][m] *= gain_boost;
268cabdff1aSopenharmony_ci                sbr->q_m[e][m]  *= gain_boost;
269cabdff1aSopenharmony_ci                sbr->s_m[e][m]  *= gain_boost;
270cabdff1aSopenharmony_ci            }
271cabdff1aSopenharmony_ci        }
272cabdff1aSopenharmony_ci    }
273cabdff1aSopenharmony_ci}
274cabdff1aSopenharmony_ci
275cabdff1aSopenharmony_ci/// Assembling HF Signals (14496-3 sp04 p220)
276cabdff1aSopenharmony_cistatic void sbr_hf_assemble(float Y1[38][64][2],
277cabdff1aSopenharmony_ci                            const float X_high[64][40][2],
278cabdff1aSopenharmony_ci                            SpectralBandReplication *sbr, SBRData *ch_data,
279cabdff1aSopenharmony_ci                            const int e_a[2])
280cabdff1aSopenharmony_ci{
281cabdff1aSopenharmony_ci    int e, i, j, m;
282cabdff1aSopenharmony_ci    const int h_SL = 4 * !sbr->bs_smoothing_mode;
283cabdff1aSopenharmony_ci    const int kx = sbr->kx[1];
284cabdff1aSopenharmony_ci    const int m_max = sbr->m[1];
285cabdff1aSopenharmony_ci    static const float h_smooth[5] = {
286cabdff1aSopenharmony_ci        0.33333333333333,
287cabdff1aSopenharmony_ci        0.30150283239582,
288cabdff1aSopenharmony_ci        0.21816949906249,
289cabdff1aSopenharmony_ci        0.11516383427084,
290cabdff1aSopenharmony_ci        0.03183050093751,
291cabdff1aSopenharmony_ci    };
292cabdff1aSopenharmony_ci    float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
293cabdff1aSopenharmony_ci    int indexnoise = ch_data->f_indexnoise;
294cabdff1aSopenharmony_ci    int indexsine  = ch_data->f_indexsine;
295cabdff1aSopenharmony_ci
296cabdff1aSopenharmony_ci    if (sbr->reset) {
297cabdff1aSopenharmony_ci        for (i = 0; i < h_SL; i++) {
298cabdff1aSopenharmony_ci            memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
299cabdff1aSopenharmony_ci            memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0],  m_max * sizeof(sbr->q_m[0][0]));
300cabdff1aSopenharmony_ci        }
301cabdff1aSopenharmony_ci    } else if (h_SL) {
302cabdff1aSopenharmony_ci        for (i = 0; i < 4; i++) {
303cabdff1aSopenharmony_ci            memcpy(g_temp[i + 2 * ch_data->t_env[0]],
304cabdff1aSopenharmony_ci                   g_temp[i + 2 * ch_data->t_env_num_env_old],
305cabdff1aSopenharmony_ci                   sizeof(g_temp[0]));
306cabdff1aSopenharmony_ci            memcpy(q_temp[i + 2 * ch_data->t_env[0]],
307cabdff1aSopenharmony_ci                   q_temp[i + 2 * ch_data->t_env_num_env_old],
308cabdff1aSopenharmony_ci                   sizeof(q_temp[0]));
309cabdff1aSopenharmony_ci        }
310cabdff1aSopenharmony_ci    }
311cabdff1aSopenharmony_ci
312cabdff1aSopenharmony_ci    for (e = 0; e < ch_data->bs_num_env; e++) {
313cabdff1aSopenharmony_ci        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
314cabdff1aSopenharmony_ci            memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
315cabdff1aSopenharmony_ci            memcpy(q_temp[h_SL + i], sbr->q_m[e],  m_max * sizeof(sbr->q_m[0][0]));
316cabdff1aSopenharmony_ci        }
317cabdff1aSopenharmony_ci    }
318cabdff1aSopenharmony_ci
319cabdff1aSopenharmony_ci    for (e = 0; e < ch_data->bs_num_env; e++) {
320cabdff1aSopenharmony_ci        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
321cabdff1aSopenharmony_ci            LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
322cabdff1aSopenharmony_ci            LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
323cabdff1aSopenharmony_ci            float *g_filt, *q_filt;
324cabdff1aSopenharmony_ci
325cabdff1aSopenharmony_ci            if (h_SL && e != e_a[0] && e != e_a[1]) {
326cabdff1aSopenharmony_ci                g_filt = g_filt_tab;
327cabdff1aSopenharmony_ci                q_filt = q_filt_tab;
328cabdff1aSopenharmony_ci                for (m = 0; m < m_max; m++) {
329cabdff1aSopenharmony_ci                    const int idx1 = i + h_SL;
330cabdff1aSopenharmony_ci                    g_filt[m] = 0.0f;
331cabdff1aSopenharmony_ci                    q_filt[m] = 0.0f;
332cabdff1aSopenharmony_ci                    for (j = 0; j <= h_SL; j++) {
333cabdff1aSopenharmony_ci                        g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
334cabdff1aSopenharmony_ci                        q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
335cabdff1aSopenharmony_ci                    }
336cabdff1aSopenharmony_ci                }
337cabdff1aSopenharmony_ci            } else {
338cabdff1aSopenharmony_ci                g_filt = g_temp[i + h_SL];
339cabdff1aSopenharmony_ci                q_filt = q_temp[i];
340cabdff1aSopenharmony_ci            }
341cabdff1aSopenharmony_ci
342cabdff1aSopenharmony_ci            sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
343cabdff1aSopenharmony_ci                               i + ENVELOPE_ADJUSTMENT_OFFSET);
344cabdff1aSopenharmony_ci
345cabdff1aSopenharmony_ci            if (e != e_a[0] && e != e_a[1]) {
346cabdff1aSopenharmony_ci                sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
347cabdff1aSopenharmony_ci                                                   q_filt, indexnoise,
348cabdff1aSopenharmony_ci                                                   kx, m_max);
349cabdff1aSopenharmony_ci            } else {
350cabdff1aSopenharmony_ci                int idx = indexsine&1;
351cabdff1aSopenharmony_ci                int A = (1-((indexsine+(kx & 1))&2));
352cabdff1aSopenharmony_ci                int B = (A^(-idx)) + idx;
353cabdff1aSopenharmony_ci                float *out = &Y1[i][kx][idx];
354cabdff1aSopenharmony_ci                float *in  = sbr->s_m[e];
355cabdff1aSopenharmony_ci                for (m = 0; m+1 < m_max; m+=2) {
356cabdff1aSopenharmony_ci                    out[2*m  ] += in[m  ] * A;
357cabdff1aSopenharmony_ci                    out[2*m+2] += in[m+1] * B;
358cabdff1aSopenharmony_ci                }
359cabdff1aSopenharmony_ci                if(m_max&1)
360cabdff1aSopenharmony_ci                    out[2*m  ] += in[m  ] * A;
361cabdff1aSopenharmony_ci            }
362cabdff1aSopenharmony_ci            indexnoise = (indexnoise + m_max) & 0x1ff;
363cabdff1aSopenharmony_ci            indexsine = (indexsine + 1) & 3;
364cabdff1aSopenharmony_ci        }
365cabdff1aSopenharmony_ci    }
366cabdff1aSopenharmony_ci    ch_data->f_indexnoise = indexnoise;
367cabdff1aSopenharmony_ci    ch_data->f_indexsine  = indexsine;
368cabdff1aSopenharmony_ci}
369cabdff1aSopenharmony_ci
370cabdff1aSopenharmony_ci#include "aacsbr_template.c"
371