1/* 2 * MPEG-4 Parametric Stereo decoding functions 3 * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com> 4 * 5 * This file is part of FFmpeg. 6 * 7 * FFmpeg is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2.1 of the License, or (at your option) any later version. 11 * 12 * FFmpeg is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with FFmpeg; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 20 * 21 * Note: Rounding-to-nearest used unless otherwise stated 22 * 23 */ 24 25#include <stdint.h> 26#include "libavutil/common.h" 27#include "libavutil/mathematics.h" 28#include "libavutil/mem_internal.h" 29#include "avcodec.h" 30#include "aacps.h" 31#if USE_FIXED 32#include "aacps_fixed_tablegen.h" 33#else 34#include "libavutil/internal.h" 35#include "aacps_tablegen.h" 36#endif /* USE_FIXED */ 37 38static const INTFLOAT g1_Q2[] = { 39 Q31(0.0f), Q31(0.01899487526049f), Q31(0.0f), Q31(-0.07293139167538f), 40 Q31(0.0f), Q31(0.30596630545168f), Q31(0.5f) 41}; 42 43static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist) 44{ 45 int i; 46 for (i = 0; i < PS_MAX_NR_IPDOPD; i++) { 47 opd_hist[i] = 0; 48 ipd_hist[i] = 0; 49 } 50} 51 52/** Split one subband into 2 subsubbands with a symmetric real filter. 53 * The filter must have its non-center even coefficients equal to zero. */ 54static void hybrid2_re(INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], 55 const INTFLOAT filter[7], int len, int reverse) 56{ 57 int i, j; 58 for (i = 0; i < len; i++, in++) { 59 INT64FLOAT re_in = AAC_MUL31(filter[6], in[6][0]); //real inphase 60 INT64FLOAT re_op = 0.0f; //real out of phase 61 INT64FLOAT im_in = AAC_MUL31(filter[6], in[6][1]); //imag inphase 62 INT64FLOAT im_op = 0.0f; //imag out of phase 63 for (j = 0; j < 6; j += 2) { 64 re_op += (INT64FLOAT)filter[j+1] * (in[j+1][0] + in[12-j-1][0]); 65 im_op += (INT64FLOAT)filter[j+1] * (in[j+1][1] + in[12-j-1][1]); 66 } 67 68#if USE_FIXED 69 re_op = (re_op + 0x40000000) >> 31; 70 im_op = (im_op + 0x40000000) >> 31; 71#endif /* USE_FIXED */ 72 73 out[ reverse][i][0] = (INTFLOAT)(re_in + re_op); 74 out[ reverse][i][1] = (INTFLOAT)(im_in + im_op); 75 out[!reverse][i][0] = (INTFLOAT)(re_in - re_op); 76 out[!reverse][i][1] = (INTFLOAT)(im_in - im_op); 77 } 78} 79 80/** Split one subband into 6 subsubbands with a complex filter */ 81static void hybrid6_cx(PSDSPContext *dsp, INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], 82 TABLE_CONST INTFLOAT (*filter)[8][2], int len) 83{ 84 int i; 85 int N = 8; 86 LOCAL_ALIGNED_16(INTFLOAT, temp, [8], [2]); 87 88 for (i = 0; i < len; i++, in++) { 89 dsp->hybrid_analysis(temp, in, (const INTFLOAT (*)[8][2]) filter, 1, N); 90 out[0][i][0] = temp[6][0]; 91 out[0][i][1] = temp[6][1]; 92 out[1][i][0] = temp[7][0]; 93 out[1][i][1] = temp[7][1]; 94 out[2][i][0] = temp[0][0]; 95 out[2][i][1] = temp[0][1]; 96 out[3][i][0] = temp[1][0]; 97 out[3][i][1] = temp[1][1]; 98 out[4][i][0] = temp[2][0] + temp[5][0]; 99 out[4][i][1] = temp[2][1] + temp[5][1]; 100 out[5][i][0] = temp[3][0] + temp[4][0]; 101 out[5][i][1] = temp[3][1] + temp[4][1]; 102 } 103} 104 105static void hybrid4_8_12_cx(PSDSPContext *dsp, 106 INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], 107 TABLE_CONST INTFLOAT (*filter)[8][2], int N, int len) 108{ 109 int i; 110 111 for (i = 0; i < len; i++, in++) { 112 dsp->hybrid_analysis(out[0] + i, in, (const INTFLOAT (*)[8][2]) filter, 32, N); 113 } 114} 115 116static void hybrid_analysis(PSDSPContext *dsp, INTFLOAT out[91][32][2], 117 INTFLOAT in[5][44][2], INTFLOAT L[2][38][64], 118 int is34, int len) 119{ 120 int i, j; 121 for (i = 0; i < 5; i++) { 122 for (j = 0; j < 38; j++) { 123 in[i][j+6][0] = L[0][j][i]; 124 in[i][j+6][1] = L[1][j][i]; 125 } 126 } 127 if (is34) { 128 hybrid4_8_12_cx(dsp, in[0], out, f34_0_12, 12, len); 129 hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8, 8, len); 130 hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4, 4, len); 131 hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4, 4, len); 132 hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4, 4, len); 133 dsp->hybrid_analysis_ileave(out + 27, L, 5, len); 134 } else { 135 hybrid6_cx(dsp, in[0], out, f20_0_8, len); 136 hybrid2_re(in[1], out+6, g1_Q2, len, 1); 137 hybrid2_re(in[2], out+8, g1_Q2, len, 0); 138 dsp->hybrid_analysis_ileave(out + 7, L, 3, len); 139 } 140 //update in_buf 141 for (i = 0; i < 5; i++) { 142 memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0])); 143 } 144} 145 146static void hybrid_synthesis(PSDSPContext *dsp, INTFLOAT out[2][38][64], 147 INTFLOAT in[91][32][2], int is34, int len) 148{ 149 int i, n; 150 if (is34) { 151 for (n = 0; n < len; n++) { 152 memset(out[0][n], 0, 5*sizeof(out[0][n][0])); 153 memset(out[1][n], 0, 5*sizeof(out[1][n][0])); 154 for (i = 0; i < 12; i++) { 155 out[0][n][0] += (UINTFLOAT)in[ i][n][0]; 156 out[1][n][0] += (UINTFLOAT)in[ i][n][1]; 157 } 158 for (i = 0; i < 8; i++) { 159 out[0][n][1] += (UINTFLOAT)in[12+i][n][0]; 160 out[1][n][1] += (UINTFLOAT)in[12+i][n][1]; 161 } 162 for (i = 0; i < 4; i++) { 163 out[0][n][2] += (UINTFLOAT)in[20+i][n][0]; 164 out[1][n][2] += (UINTFLOAT)in[20+i][n][1]; 165 out[0][n][3] += (UINTFLOAT)in[24+i][n][0]; 166 out[1][n][3] += (UINTFLOAT)in[24+i][n][1]; 167 out[0][n][4] += (UINTFLOAT)in[28+i][n][0]; 168 out[1][n][4] += (UINTFLOAT)in[28+i][n][1]; 169 } 170 } 171 dsp->hybrid_synthesis_deint(out, in + 27, 5, len); 172 } else { 173 for (n = 0; n < len; n++) { 174 out[0][n][0] = (UINTFLOAT)in[0][n][0] + in[1][n][0] + in[2][n][0] + 175 (UINTFLOAT)in[3][n][0] + in[4][n][0] + in[5][n][0]; 176 out[1][n][0] = (UINTFLOAT)in[0][n][1] + in[1][n][1] + in[2][n][1] + 177 (UINTFLOAT)in[3][n][1] + in[4][n][1] + in[5][n][1]; 178 out[0][n][1] = (UINTFLOAT)in[6][n][0] + in[7][n][0]; 179 out[1][n][1] = (UINTFLOAT)in[6][n][1] + in[7][n][1]; 180 out[0][n][2] = (UINTFLOAT)in[8][n][0] + in[9][n][0]; 181 out[1][n][2] = (UINTFLOAT)in[8][n][1] + in[9][n][1]; 182 } 183 dsp->hybrid_synthesis_deint(out, in + 7, 3, len); 184 } 185} 186 187/// All-pass filter decay slope 188#define DECAY_SLOPE Q30(0.05f) 189/// Number of frequency bands that can be addressed by the parameter index, b(k) 190static const int NR_PAR_BANDS[] = { 20, 34 }; 191static const int NR_IPDOPD_BANDS[] = { 11, 17 }; 192/// Number of frequency bands that can be addressed by the sub subband index, k 193static const int NR_BANDS[] = { 71, 91 }; 194/// Start frequency band for the all-pass filter decay slope 195static const int DECAY_CUTOFF[] = { 10, 32 }; 196/// Number of all-pass filer bands 197static const int NR_ALLPASS_BANDS[] = { 30, 50 }; 198/// First stereo band using the short one sample delay 199static const int SHORT_DELAY_BAND[] = { 42, 62 }; 200 201/** Table 8.46 */ 202static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full) 203{ 204 int b; 205 if (full) 206 b = 9; 207 else { 208 b = 4; 209 par_mapped[10] = 0; 210 } 211 for (; b >= 0; b--) { 212 par_mapped[2*b+1] = par_mapped[2*b] = par[b]; 213 } 214} 215 216static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full) 217{ 218 par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3; 219 par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3; 220 par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3; 221 par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3; 222 par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2; 223 par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2; 224 par_mapped[ 6] = par[10]; 225 par_mapped[ 7] = par[11]; 226 par_mapped[ 8] = ( par[12] + par[13]) / 2; 227 par_mapped[ 9] = ( par[14] + par[15]) / 2; 228 par_mapped[10] = par[16]; 229 if (full) { 230 par_mapped[11] = par[17]; 231 par_mapped[12] = par[18]; 232 par_mapped[13] = par[19]; 233 par_mapped[14] = ( par[20] + par[21]) / 2; 234 par_mapped[15] = ( par[22] + par[23]) / 2; 235 par_mapped[16] = ( par[24] + par[25]) / 2; 236 par_mapped[17] = ( par[26] + par[27]) / 2; 237 par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4; 238 par_mapped[19] = ( par[32] + par[33]) / 2; 239 } 240} 241 242static void map_val_34_to_20(INTFLOAT par[PS_MAX_NR_IIDICC]) 243{ 244#if USE_FIXED 245 par[ 0] = (int)(((int64_t)(par[ 0] + (unsigned)(par[ 1]>>1)) * 1431655765 + \ 246 0x40000000) >> 31); 247 par[ 1] = (int)(((int64_t)((par[ 1]>>1) + (unsigned)par[ 2]) * 1431655765 + \ 248 0x40000000) >> 31); 249 par[ 2] = (int)(((int64_t)(par[ 3] + (unsigned)(par[ 4]>>1)) * 1431655765 + \ 250 0x40000000) >> 31); 251 par[ 3] = (int)(((int64_t)((par[ 4]>>1) + (unsigned)par[ 5]) * 1431655765 + \ 252 0x40000000) >> 31); 253#else 254 par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f; 255 par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f; 256 par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f; 257 par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f; 258#endif /* USE_FIXED */ 259 par[ 4] = AAC_HALF_SUM(par[ 6], par[ 7]); 260 par[ 5] = AAC_HALF_SUM(par[ 8], par[ 9]); 261 par[ 6] = par[10]; 262 par[ 7] = par[11]; 263 par[ 8] = AAC_HALF_SUM(par[12], par[13]); 264 par[ 9] = AAC_HALF_SUM(par[14], par[15]); 265 par[10] = par[16]; 266 par[11] = par[17]; 267 par[12] = par[18]; 268 par[13] = par[19]; 269 par[14] = AAC_HALF_SUM(par[20], par[21]); 270 par[15] = AAC_HALF_SUM(par[22], par[23]); 271 par[16] = AAC_HALF_SUM(par[24], par[25]); 272 par[17] = AAC_HALF_SUM(par[26], par[27]); 273#if USE_FIXED 274 par[18] = (((par[28]+2)>>2) + ((par[29]+2)>>2) + ((par[30]+2)>>2) + ((par[31]+2)>>2)); 275#else 276 par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f; 277#endif /* USE_FIXED */ 278 par[19] = AAC_HALF_SUM(par[32], par[33]); 279} 280 281static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full) 282{ 283 if (full) { 284 par_mapped[33] = par[9]; 285 par_mapped[32] = par[9]; 286 par_mapped[31] = par[9]; 287 par_mapped[30] = par[9]; 288 par_mapped[29] = par[9]; 289 par_mapped[28] = par[9]; 290 par_mapped[27] = par[8]; 291 par_mapped[26] = par[8]; 292 par_mapped[25] = par[8]; 293 par_mapped[24] = par[8]; 294 par_mapped[23] = par[7]; 295 par_mapped[22] = par[7]; 296 par_mapped[21] = par[7]; 297 par_mapped[20] = par[7]; 298 par_mapped[19] = par[6]; 299 par_mapped[18] = par[6]; 300 par_mapped[17] = par[5]; 301 par_mapped[16] = par[5]; 302 } else { 303 par_mapped[16] = 0; 304 } 305 par_mapped[15] = par[4]; 306 par_mapped[14] = par[4]; 307 par_mapped[13] = par[4]; 308 par_mapped[12] = par[4]; 309 par_mapped[11] = par[3]; 310 par_mapped[10] = par[3]; 311 par_mapped[ 9] = par[2]; 312 par_mapped[ 8] = par[2]; 313 par_mapped[ 7] = par[2]; 314 par_mapped[ 6] = par[2]; 315 par_mapped[ 5] = par[1]; 316 par_mapped[ 4] = par[1]; 317 par_mapped[ 3] = par[1]; 318 par_mapped[ 2] = par[0]; 319 par_mapped[ 1] = par[0]; 320 par_mapped[ 0] = par[0]; 321} 322 323static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full) 324{ 325 if (full) { 326 par_mapped[33] = par[19]; 327 par_mapped[32] = par[19]; 328 par_mapped[31] = par[18]; 329 par_mapped[30] = par[18]; 330 par_mapped[29] = par[18]; 331 par_mapped[28] = par[18]; 332 par_mapped[27] = par[17]; 333 par_mapped[26] = par[17]; 334 par_mapped[25] = par[16]; 335 par_mapped[24] = par[16]; 336 par_mapped[23] = par[15]; 337 par_mapped[22] = par[15]; 338 par_mapped[21] = par[14]; 339 par_mapped[20] = par[14]; 340 par_mapped[19] = par[13]; 341 par_mapped[18] = par[12]; 342 par_mapped[17] = par[11]; 343 } 344 par_mapped[16] = par[10]; 345 par_mapped[15] = par[ 9]; 346 par_mapped[14] = par[ 9]; 347 par_mapped[13] = par[ 8]; 348 par_mapped[12] = par[ 8]; 349 par_mapped[11] = par[ 7]; 350 par_mapped[10] = par[ 6]; 351 par_mapped[ 9] = par[ 5]; 352 par_mapped[ 8] = par[ 5]; 353 par_mapped[ 7] = par[ 4]; 354 par_mapped[ 6] = par[ 4]; 355 par_mapped[ 5] = par[ 3]; 356 par_mapped[ 4] = (par[ 2] + par[ 3]) / 2; 357 par_mapped[ 3] = par[ 2]; 358 par_mapped[ 2] = par[ 1]; 359 par_mapped[ 1] = (par[ 0] + par[ 1]) / 2; 360 par_mapped[ 0] = par[ 0]; 361} 362 363static void map_val_20_to_34(INTFLOAT par[PS_MAX_NR_IIDICC]) 364{ 365 par[33] = par[19]; 366 par[32] = par[19]; 367 par[31] = par[18]; 368 par[30] = par[18]; 369 par[29] = par[18]; 370 par[28] = par[18]; 371 par[27] = par[17]; 372 par[26] = par[17]; 373 par[25] = par[16]; 374 par[24] = par[16]; 375 par[23] = par[15]; 376 par[22] = par[15]; 377 par[21] = par[14]; 378 par[20] = par[14]; 379 par[19] = par[13]; 380 par[18] = par[12]; 381 par[17] = par[11]; 382 par[16] = par[10]; 383 par[15] = par[ 9]; 384 par[14] = par[ 9]; 385 par[13] = par[ 8]; 386 par[12] = par[ 8]; 387 par[11] = par[ 7]; 388 par[10] = par[ 6]; 389 par[ 9] = par[ 5]; 390 par[ 8] = par[ 5]; 391 par[ 7] = par[ 4]; 392 par[ 6] = par[ 4]; 393 par[ 5] = par[ 3]; 394 par[ 4] = AAC_HALF_SUM(par[ 2], par[ 3]); 395 par[ 3] = par[ 2]; 396 par[ 2] = par[ 1]; 397 par[ 1] = AAC_HALF_SUM(par[ 0], par[ 1]); 398} 399 400static void decorrelation(PSContext *ps, INTFLOAT (*out)[32][2], const INTFLOAT (*s)[32][2], int is34) 401{ 402 LOCAL_ALIGNED_16(INTFLOAT, power, [34], [PS_QMF_TIME_SLOTS]); 403 LOCAL_ALIGNED_16(INTFLOAT, transient_gain, [34], [PS_QMF_TIME_SLOTS]); 404 INTFLOAT *peak_decay_nrg = ps->peak_decay_nrg; 405 INTFLOAT *power_smooth = ps->power_smooth; 406 INTFLOAT *peak_decay_diff_smooth = ps->peak_decay_diff_smooth; 407 INTFLOAT (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay; 408 INTFLOAT (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay; 409#if !USE_FIXED 410 const float transient_impact = 1.5f; 411 const float a_smooth = 0.25f; ///< Smoothing coefficient 412#endif /* USE_FIXED */ 413 const int8_t *const k_to_i = is34 ? ff_k_to_i_34 : ff_k_to_i_20; 414 int i, k, m, n; 415 int n0 = 0, nL = 32; 416 const INTFLOAT peak_decay_factor = Q31(0.76592833836465f); 417 418 memset(power, 0, 34 * sizeof(*power)); 419 420 if (is34 != ps->common.is34bands_old) { 421 memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg)); 422 memset(ps->power_smooth, 0, sizeof(ps->power_smooth)); 423 memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth)); 424 memset(ps->delay, 0, sizeof(ps->delay)); 425 memset(ps->ap_delay, 0, sizeof(ps->ap_delay)); 426 } 427 428 for (k = 0; k < NR_BANDS[is34]; k++) { 429 int i = k_to_i[k]; 430 ps->dsp.add_squares(power[i], s[k], nL - n0); 431 } 432 433 //Transient detection 434#if USE_FIXED 435 for (i = 0; i < NR_PAR_BANDS[is34]; i++) { 436 for (n = n0; n < nL; n++) { 437 int decayed_peak; 438 decayed_peak = (int)(((int64_t)peak_decay_factor * \ 439 peak_decay_nrg[i] + 0x40000000) >> 31); 440 peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]); 441 power_smooth[i] += (power[i][n] + 2LL - power_smooth[i]) >> 2; 442 peak_decay_diff_smooth[i] += (peak_decay_nrg[i] + 2LL - power[i][n] - \ 443 peak_decay_diff_smooth[i]) >> 2; 444 445 if (peak_decay_diff_smooth[i]) { 446 transient_gain[i][n] = FFMIN(power_smooth[i]*43691LL / peak_decay_diff_smooth[i], 1<<16); 447 } else 448 transient_gain[i][n] = 1 << 16; 449 } 450 } 451#else 452 for (i = 0; i < NR_PAR_BANDS[is34]; i++) { 453 for (n = n0; n < nL; n++) { 454 float decayed_peak = peak_decay_factor * peak_decay_nrg[i]; 455 float denom; 456 peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]); 457 power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]); 458 peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]); 459 denom = transient_impact * peak_decay_diff_smooth[i]; 460 transient_gain[i][n] = (denom > power_smooth[i]) ? 461 power_smooth[i] / denom : 1.0f; 462 } 463 } 464 465#endif /* USE_FIXED */ 466 //Decorrelation and transient reduction 467 // PS_AP_LINKS - 1 468 // ----- 469 // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k] 470 //H[k][z] = z^-2 * phi_fract[k] * | | ---------------------------------------------------------------- 471 // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m] 472 // m = 0 473 //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z] 474 for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) { 475 int b = k_to_i[k]; 476#if USE_FIXED 477 int g_decay_slope; 478 479 if (k - DECAY_CUTOFF[is34] <= 0) { 480 g_decay_slope = 1 << 30; 481 } 482 else if (k - DECAY_CUTOFF[is34] >= 20) { 483 g_decay_slope = 0; 484 } 485 else { 486 g_decay_slope = (1 << 30) - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]); 487 } 488#else 489 float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]); 490 g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f); 491#endif /* USE_FIXED */ 492 memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); 493 memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); 494 for (m = 0; m < PS_AP_LINKS; m++) { 495 memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0])); 496 } 497 ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k], 498 phi_fract[is34][k], 499 (const INTFLOAT (*)[2]) Q_fract_allpass[is34][k], 500 transient_gain[b], g_decay_slope, nL - n0); 501 } 502 for (; k < SHORT_DELAY_BAND[is34]; k++) { 503 int i = k_to_i[k]; 504 memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); 505 memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); 506 //H = delay 14 507 ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14, 508 transient_gain[i], nL - n0); 509 } 510 for (; k < NR_BANDS[is34]; k++) { 511 int i = k_to_i[k]; 512 memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0])); 513 memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0])); 514 //H = delay 1 515 ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1, 516 transient_gain[i], nL - n0); 517 } 518} 519 520static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC], 521 int8_t (*par)[PS_MAX_NR_IIDICC], 522 int num_par, int num_env, int full) 523{ 524 int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped; 525 int e; 526 if (num_par == 20 || num_par == 11) { 527 for (e = 0; e < num_env; e++) { 528 map_idx_20_to_34(par_mapped[e], par[e], full); 529 } 530 } else if (num_par == 10 || num_par == 5) { 531 for (e = 0; e < num_env; e++) { 532 map_idx_10_to_34(par_mapped[e], par[e], full); 533 } 534 } else { 535 *p_par_mapped = par; 536 } 537} 538 539static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC], 540 int8_t (*par)[PS_MAX_NR_IIDICC], 541 int num_par, int num_env, int full) 542{ 543 int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped; 544 int e; 545 if (num_par == 34 || num_par == 17) { 546 for (e = 0; e < num_env; e++) { 547 map_idx_34_to_20(par_mapped[e], par[e], full); 548 } 549 } else if (num_par == 10 || num_par == 5) { 550 for (e = 0; e < num_env; e++) { 551 map_idx_10_to_20(par_mapped[e], par[e], full); 552 } 553 } else { 554 *p_par_mapped = par; 555 } 556} 557 558static void stereo_processing(PSContext *ps, INTFLOAT (*l)[32][2], INTFLOAT (*r)[32][2], int is34) 559{ 560 int e, b, k; 561 562 PSCommonContext *const ps2 = &ps->common; 563 INTFLOAT (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11; 564 INTFLOAT (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12; 565 INTFLOAT (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21; 566 INTFLOAT (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22; 567 int8_t *opd_hist = ps->opd_hist; 568 int8_t *ipd_hist = ps->ipd_hist; 569 int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; 570 int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; 571 int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; 572 int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC]; 573 int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf; 574 int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf; 575 int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf; 576 int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf; 577 const int8_t *const k_to_i = is34 ? ff_k_to_i_34 : ff_k_to_i_20; 578 TABLE_CONST INTFLOAT (*H_LUT)[8][4] = (PS_BASELINE || ps2->icc_mode < 3) ? HA : HB; 579 580 //Remapping 581 if (ps2->num_env_old) { 582 memcpy(H11[0][0], H11[0][ps2->num_env_old], sizeof(H11[0][0])); 583 memcpy(H11[1][0], H11[1][ps2->num_env_old], sizeof(H11[1][0])); 584 memcpy(H12[0][0], H12[0][ps2->num_env_old], sizeof(H12[0][0])); 585 memcpy(H12[1][0], H12[1][ps2->num_env_old], sizeof(H12[1][0])); 586 memcpy(H21[0][0], H21[0][ps2->num_env_old], sizeof(H21[0][0])); 587 memcpy(H21[1][0], H21[1][ps2->num_env_old], sizeof(H21[1][0])); 588 memcpy(H22[0][0], H22[0][ps2->num_env_old], sizeof(H22[0][0])); 589 memcpy(H22[1][0], H22[1][ps2->num_env_old], sizeof(H22[1][0])); 590 } 591 592 if (is34) { 593 remap34(&iid_mapped, ps2->iid_par, ps2->nr_iid_par, ps2->num_env, 1); 594 remap34(&icc_mapped, ps2->icc_par, ps2->nr_icc_par, ps2->num_env, 1); 595 if (ps2->enable_ipdopd) { 596 remap34(&ipd_mapped, ps2->ipd_par, ps2->nr_ipdopd_par, ps2->num_env, 0); 597 remap34(&opd_mapped, ps2->opd_par, ps2->nr_ipdopd_par, ps2->num_env, 0); 598 } 599 if (!ps2->is34bands_old) { 600 map_val_20_to_34(H11[0][0]); 601 map_val_20_to_34(H11[1][0]); 602 map_val_20_to_34(H12[0][0]); 603 map_val_20_to_34(H12[1][0]); 604 map_val_20_to_34(H21[0][0]); 605 map_val_20_to_34(H21[1][0]); 606 map_val_20_to_34(H22[0][0]); 607 map_val_20_to_34(H22[1][0]); 608 ipdopd_reset(ipd_hist, opd_hist); 609 } 610 } else { 611 remap20(&iid_mapped, ps2->iid_par, ps2->nr_iid_par, ps2->num_env, 1); 612 remap20(&icc_mapped, ps2->icc_par, ps2->nr_icc_par, ps2->num_env, 1); 613 if (ps2->enable_ipdopd) { 614 remap20(&ipd_mapped, ps2->ipd_par, ps2->nr_ipdopd_par, ps2->num_env, 0); 615 remap20(&opd_mapped, ps2->opd_par, ps2->nr_ipdopd_par, ps2->num_env, 0); 616 } 617 if (ps2->is34bands_old) { 618 map_val_34_to_20(H11[0][0]); 619 map_val_34_to_20(H11[1][0]); 620 map_val_34_to_20(H12[0][0]); 621 map_val_34_to_20(H12[1][0]); 622 map_val_34_to_20(H21[0][0]); 623 map_val_34_to_20(H21[1][0]); 624 map_val_34_to_20(H22[0][0]); 625 map_val_34_to_20(H22[1][0]); 626 ipdopd_reset(ipd_hist, opd_hist); 627 } 628 } 629 630 //Mixing 631 for (e = 0; e < ps2->num_env; e++) { 632 for (b = 0; b < NR_PAR_BANDS[is34]; b++) { 633 INTFLOAT h11, h12, h21, h22; 634 h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][0]; 635 h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][1]; 636 h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][2]; 637 h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][3]; 638 639 if (!PS_BASELINE && ps2->enable_ipdopd && b < NR_IPDOPD_BANDS[is34]) { 640 //The spec say says to only run this smoother when enable_ipdopd 641 //is set but the reference decoder appears to run it constantly 642 INTFLOAT h11i, h12i, h21i, h22i; 643 INTFLOAT ipd_adj_re, ipd_adj_im; 644 int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b]; 645 int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b]; 646 INTFLOAT opd_re = pd_re_smooth[opd_idx]; 647 INTFLOAT opd_im = pd_im_smooth[opd_idx]; 648 INTFLOAT ipd_re = pd_re_smooth[ipd_idx]; 649 INTFLOAT ipd_im = pd_im_smooth[ipd_idx]; 650 opd_hist[b] = opd_idx & 0x3F; 651 ipd_hist[b] = ipd_idx & 0x3F; 652 653 ipd_adj_re = AAC_MADD30(opd_re, ipd_re, opd_im, ipd_im); 654 ipd_adj_im = AAC_MSUB30(opd_im, ipd_re, opd_re, ipd_im); 655 h11i = AAC_MUL30(h11, opd_im); 656 h11 = AAC_MUL30(h11, opd_re); 657 h12i = AAC_MUL30(h12, ipd_adj_im); 658 h12 = AAC_MUL30(h12, ipd_adj_re); 659 h21i = AAC_MUL30(h21, opd_im); 660 h21 = AAC_MUL30(h21, opd_re); 661 h22i = AAC_MUL30(h22, ipd_adj_im); 662 h22 = AAC_MUL30(h22, ipd_adj_re); 663 H11[1][e+1][b] = h11i; 664 H12[1][e+1][b] = h12i; 665 H21[1][e+1][b] = h21i; 666 H22[1][e+1][b] = h22i; 667 } 668 H11[0][e+1][b] = h11; 669 H12[0][e+1][b] = h12; 670 H21[0][e+1][b] = h21; 671 H22[0][e+1][b] = h22; 672 } 673 for (k = 0; k < NR_BANDS[is34]; k++) { 674 LOCAL_ALIGNED_16(INTFLOAT, h, [2], [4]); 675 LOCAL_ALIGNED_16(INTFLOAT, h_step, [2], [4]); 676 int start = ps2->border_position[e]; 677 int stop = ps2->border_position[e+1]; 678 INTFLOAT width = Q30(1.f) / ((stop - start) ? (stop - start) : 1); 679#if USE_FIXED 680 width = FFMIN(2U*width, INT_MAX); 681#endif 682 b = k_to_i[k]; 683 h[0][0] = H11[0][e][b]; 684 h[0][1] = H12[0][e][b]; 685 h[0][2] = H21[0][e][b]; 686 h[0][3] = H22[0][e][b]; 687 if (!PS_BASELINE && ps2->enable_ipdopd) { 688 //Is this necessary? ps_04_new seems unchanged 689 if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) { 690 h[1][0] = -H11[1][e][b]; 691 h[1][1] = -H12[1][e][b]; 692 h[1][2] = -H21[1][e][b]; 693 h[1][3] = -H22[1][e][b]; 694 } else { 695 h[1][0] = H11[1][e][b]; 696 h[1][1] = H12[1][e][b]; 697 h[1][2] = H21[1][e][b]; 698 h[1][3] = H22[1][e][b]; 699 } 700 } 701 //Interpolation 702 h_step[0][0] = AAC_MSUB31_V3(H11[0][e+1][b], h[0][0], width); 703 h_step[0][1] = AAC_MSUB31_V3(H12[0][e+1][b], h[0][1], width); 704 h_step[0][2] = AAC_MSUB31_V3(H21[0][e+1][b], h[0][2], width); 705 h_step[0][3] = AAC_MSUB31_V3(H22[0][e+1][b], h[0][3], width); 706 if (!PS_BASELINE && ps2->enable_ipdopd) { 707 h_step[1][0] = AAC_MSUB31_V3(H11[1][e+1][b], h[1][0], width); 708 h_step[1][1] = AAC_MSUB31_V3(H12[1][e+1][b], h[1][1], width); 709 h_step[1][2] = AAC_MSUB31_V3(H21[1][e+1][b], h[1][2], width); 710 h_step[1][3] = AAC_MSUB31_V3(H22[1][e+1][b], h[1][3], width); 711 } 712 if (stop - start) 713 ps->dsp.stereo_interpolate[!PS_BASELINE && ps2->enable_ipdopd]( 714 l[k] + 1 + start, r[k] + 1 + start, 715 h, h_step, stop - start); 716 } 717 } 718} 719 720int AAC_RENAME(ff_ps_apply)(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top) 721{ 722 INTFLOAT (*Lbuf)[32][2] = ps->Lbuf; 723 INTFLOAT (*Rbuf)[32][2] = ps->Rbuf; 724 const int len = 32; 725 int is34 = ps->common.is34bands; 726 727 top += NR_BANDS[is34] - 64; 728 memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0])); 729 if (top < NR_ALLPASS_BANDS[is34]) 730 memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0])); 731 732 hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len); 733 decorrelation(ps, Rbuf, (const INTFLOAT (*)[32][2]) Lbuf, is34); 734 stereo_processing(ps, Lbuf, Rbuf, is34); 735 hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len); 736 hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len); 737 738 return 0; 739} 740 741av_cold void AAC_RENAME(ff_ps_init)(void) { 742 ps_tableinit(); 743 ff_ps_init_common(); 744} 745 746av_cold void AAC_RENAME(ff_ps_ctx_init)(PSContext *ps) 747{ 748 AAC_RENAME(ff_psdsp_init)(&ps->dsp); 749} 750