1cabdff1aSopenharmony_ci/*
2cabdff1aSopenharmony_ci * AAC encoder utilities
3cabdff1aSopenharmony_ci * Copyright (C) 2015 Rostislav Pehlivanov
4cabdff1aSopenharmony_ci *
5cabdff1aSopenharmony_ci * This file is part of FFmpeg.
6cabdff1aSopenharmony_ci *
7cabdff1aSopenharmony_ci * FFmpeg is free software; you can redistribute it and/or
8cabdff1aSopenharmony_ci * modify it under the terms of the GNU Lesser General Public
9cabdff1aSopenharmony_ci * License as published by the Free Software Foundation; either
10cabdff1aSopenharmony_ci * version 2.1 of the License, or (at your option) any later version.
11cabdff1aSopenharmony_ci *
12cabdff1aSopenharmony_ci * FFmpeg is distributed in the hope that it will be useful,
13cabdff1aSopenharmony_ci * but WITHOUT ANY WARRANTY; without even the implied warranty of
14cabdff1aSopenharmony_ci * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15cabdff1aSopenharmony_ci * Lesser General Public License for more details.
16cabdff1aSopenharmony_ci *
17cabdff1aSopenharmony_ci * You should have received a copy of the GNU Lesser General Public
18cabdff1aSopenharmony_ci * License along with FFmpeg; if not, write to the Free Software
19cabdff1aSopenharmony_ci * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20cabdff1aSopenharmony_ci */
21cabdff1aSopenharmony_ci
22cabdff1aSopenharmony_ci/**
23cabdff1aSopenharmony_ci * @file
24cabdff1aSopenharmony_ci * AAC encoder utilities
25cabdff1aSopenharmony_ci * @author Rostislav Pehlivanov ( atomnuker gmail com )
26cabdff1aSopenharmony_ci */
27cabdff1aSopenharmony_ci
28cabdff1aSopenharmony_ci#ifndef AVCODEC_AACENC_UTILS_H
29cabdff1aSopenharmony_ci#define AVCODEC_AACENC_UTILS_H
30cabdff1aSopenharmony_ci
31cabdff1aSopenharmony_ci#include "libavutil/ffmath.h"
32cabdff1aSopenharmony_ci#include "aac.h"
33cabdff1aSopenharmony_ci#include "aacenctab.h"
34cabdff1aSopenharmony_ci#include "aactab.h"
35cabdff1aSopenharmony_ci
36cabdff1aSopenharmony_ci#define ROUND_STANDARD 0.4054f
37cabdff1aSopenharmony_ci#define ROUND_TO_ZERO 0.1054f
38cabdff1aSopenharmony_ci#define C_QUANT 0.4054f
39cabdff1aSopenharmony_ci
40cabdff1aSopenharmony_cistatic inline void abs_pow34_v(float *out, const float *in, const int size)
41cabdff1aSopenharmony_ci{
42cabdff1aSopenharmony_ci    int i;
43cabdff1aSopenharmony_ci    for (i = 0; i < size; i++) {
44cabdff1aSopenharmony_ci        float a = fabsf(in[i]);
45cabdff1aSopenharmony_ci        out[i] = sqrtf(a * sqrtf(a));
46cabdff1aSopenharmony_ci    }
47cabdff1aSopenharmony_ci}
48cabdff1aSopenharmony_ci
49cabdff1aSopenharmony_cistatic inline float pos_pow34(float a)
50cabdff1aSopenharmony_ci{
51cabdff1aSopenharmony_ci    return sqrtf(a * sqrtf(a));
52cabdff1aSopenharmony_ci}
53cabdff1aSopenharmony_ci
54cabdff1aSopenharmony_ci/**
55cabdff1aSopenharmony_ci * Quantize one coefficient.
56cabdff1aSopenharmony_ci * @return absolute value of the quantized coefficient
57cabdff1aSopenharmony_ci * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
58cabdff1aSopenharmony_ci */
59cabdff1aSopenharmony_cistatic inline int quant(float coef, const float Q, const float rounding)
60cabdff1aSopenharmony_ci{
61cabdff1aSopenharmony_ci    float a = coef * Q;
62cabdff1aSopenharmony_ci    return sqrtf(a * sqrtf(a)) + rounding;
63cabdff1aSopenharmony_ci}
64cabdff1aSopenharmony_ci
65cabdff1aSopenharmony_cistatic inline void quantize_bands(int *out, const float *in, const float *scaled,
66cabdff1aSopenharmony_ci                                  int size, int is_signed, int maxval, const float Q34,
67cabdff1aSopenharmony_ci                                  const float rounding)
68cabdff1aSopenharmony_ci{
69cabdff1aSopenharmony_ci    int i;
70cabdff1aSopenharmony_ci    for (i = 0; i < size; i++) {
71cabdff1aSopenharmony_ci        float qc = scaled[i] * Q34;
72cabdff1aSopenharmony_ci        int tmp = (int)FFMIN(qc + rounding, (float)maxval);
73cabdff1aSopenharmony_ci        if (is_signed && in[i] < 0.0f) {
74cabdff1aSopenharmony_ci            tmp = -tmp;
75cabdff1aSopenharmony_ci        }
76cabdff1aSopenharmony_ci        out[i] = tmp;
77cabdff1aSopenharmony_ci    }
78cabdff1aSopenharmony_ci}
79cabdff1aSopenharmony_ci
80cabdff1aSopenharmony_cistatic inline float find_max_val(int group_len, int swb_size, const float *scaled)
81cabdff1aSopenharmony_ci{
82cabdff1aSopenharmony_ci    float maxval = 0.0f;
83cabdff1aSopenharmony_ci    int w2, i;
84cabdff1aSopenharmony_ci    for (w2 = 0; w2 < group_len; w2++) {
85cabdff1aSopenharmony_ci        for (i = 0; i < swb_size; i++) {
86cabdff1aSopenharmony_ci            maxval = FFMAX(maxval, scaled[w2*128+i]);
87cabdff1aSopenharmony_ci        }
88cabdff1aSopenharmony_ci    }
89cabdff1aSopenharmony_ci    return maxval;
90cabdff1aSopenharmony_ci}
91cabdff1aSopenharmony_ci
92cabdff1aSopenharmony_cistatic inline int find_min_book(float maxval, int sf)
93cabdff1aSopenharmony_ci{
94cabdff1aSopenharmony_ci    float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
95cabdff1aSopenharmony_ci    int qmaxval, cb;
96cabdff1aSopenharmony_ci    qmaxval = maxval * Q34 + C_QUANT;
97cabdff1aSopenharmony_ci    if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb)))
98cabdff1aSopenharmony_ci        cb = 11;
99cabdff1aSopenharmony_ci    else
100cabdff1aSopenharmony_ci        cb = aac_maxval_cb[qmaxval];
101cabdff1aSopenharmony_ci    return cb;
102cabdff1aSopenharmony_ci}
103cabdff1aSopenharmony_ci
104cabdff1aSopenharmony_cistatic inline float find_form_factor(int group_len, int swb_size, float thresh,
105cabdff1aSopenharmony_ci                                     const float *scaled, float nzslope) {
106cabdff1aSopenharmony_ci    const float iswb_size = 1.0f / swb_size;
107cabdff1aSopenharmony_ci    const float iswb_sizem1 = 1.0f / (swb_size - 1);
108cabdff1aSopenharmony_ci    const float ethresh = thresh;
109cabdff1aSopenharmony_ci    float form = 0.0f, weight = 0.0f;
110cabdff1aSopenharmony_ci    int w2, i;
111cabdff1aSopenharmony_ci    for (w2 = 0; w2 < group_len; w2++) {
112cabdff1aSopenharmony_ci        float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f;
113cabdff1aSopenharmony_ci        float nzl = 0;
114cabdff1aSopenharmony_ci        for (i = 0; i < swb_size; i++) {
115cabdff1aSopenharmony_ci            float s = fabsf(scaled[w2*128+i]);
116cabdff1aSopenharmony_ci            maxval = FFMAX(maxval, s);
117cabdff1aSopenharmony_ci            e += s;
118cabdff1aSopenharmony_ci            e2 += s *= s;
119cabdff1aSopenharmony_ci            /* We really don't want a hard non-zero-line count, since
120cabdff1aSopenharmony_ci             * even below-threshold lines do add up towards band spectral power.
121cabdff1aSopenharmony_ci             * So, fall steeply towards zero, but smoothly
122cabdff1aSopenharmony_ci             */
123cabdff1aSopenharmony_ci            if (s >= ethresh) {
124cabdff1aSopenharmony_ci                nzl += 1.0f;
125cabdff1aSopenharmony_ci            } else {
126cabdff1aSopenharmony_ci                if (nzslope == 2.f)
127cabdff1aSopenharmony_ci                    nzl += (s / ethresh) * (s / ethresh);
128cabdff1aSopenharmony_ci                else
129cabdff1aSopenharmony_ci                    nzl += ff_fast_powf(s / ethresh, nzslope);
130cabdff1aSopenharmony_ci            }
131cabdff1aSopenharmony_ci        }
132cabdff1aSopenharmony_ci        if (e2 > thresh) {
133cabdff1aSopenharmony_ci            float frm;
134cabdff1aSopenharmony_ci            e *= iswb_size;
135cabdff1aSopenharmony_ci
136cabdff1aSopenharmony_ci            /** compute variance */
137cabdff1aSopenharmony_ci            for (i = 0; i < swb_size; i++) {
138cabdff1aSopenharmony_ci                float d = fabsf(scaled[w2*128+i]) - e;
139cabdff1aSopenharmony_ci                var += d*d;
140cabdff1aSopenharmony_ci            }
141cabdff1aSopenharmony_ci            var = sqrtf(var * iswb_sizem1);
142cabdff1aSopenharmony_ci
143cabdff1aSopenharmony_ci            e2 *= iswb_size;
144cabdff1aSopenharmony_ci            frm = e / FFMIN(e+4*var,maxval);
145cabdff1aSopenharmony_ci            form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl);
146cabdff1aSopenharmony_ci            weight += e2;
147cabdff1aSopenharmony_ci        }
148cabdff1aSopenharmony_ci    }
149cabdff1aSopenharmony_ci    if (weight > 0) {
150cabdff1aSopenharmony_ci        return form / weight;
151cabdff1aSopenharmony_ci    } else {
152cabdff1aSopenharmony_ci        return 1.0f;
153cabdff1aSopenharmony_ci    }
154cabdff1aSopenharmony_ci}
155cabdff1aSopenharmony_ci
156cabdff1aSopenharmony_ci/** Return the minimum scalefactor where the quantized coef does not clip. */
157cabdff1aSopenharmony_cistatic inline uint8_t coef2minsf(float coef)
158cabdff1aSopenharmony_ci{
159cabdff1aSopenharmony_ci    return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
160cabdff1aSopenharmony_ci}
161cabdff1aSopenharmony_ci
162cabdff1aSopenharmony_ci/** Return the maximum scalefactor where the quantized coef is not zero. */
163cabdff1aSopenharmony_cistatic inline uint8_t coef2maxsf(float coef)
164cabdff1aSopenharmony_ci{
165cabdff1aSopenharmony_ci    return av_clip_uint8(log2f(coef)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
166cabdff1aSopenharmony_ci}
167cabdff1aSopenharmony_ci
168cabdff1aSopenharmony_ci/*
169cabdff1aSopenharmony_ci * Returns the closest possible index to an array of float values, given a value.
170cabdff1aSopenharmony_ci */
171cabdff1aSopenharmony_cistatic inline int quant_array_idx(const float val, const float *arr, const int num)
172cabdff1aSopenharmony_ci{
173cabdff1aSopenharmony_ci    int i, index = 0;
174cabdff1aSopenharmony_ci    float quant_min_err = INFINITY;
175cabdff1aSopenharmony_ci    for (i = 0; i < num; i++) {
176cabdff1aSopenharmony_ci        float error = (val - arr[i])*(val - arr[i]);
177cabdff1aSopenharmony_ci        if (error < quant_min_err) {
178cabdff1aSopenharmony_ci            quant_min_err = error;
179cabdff1aSopenharmony_ci            index = i;
180cabdff1aSopenharmony_ci        }
181cabdff1aSopenharmony_ci    }
182cabdff1aSopenharmony_ci    return index;
183cabdff1aSopenharmony_ci}
184cabdff1aSopenharmony_ci
185cabdff1aSopenharmony_ci/**
186cabdff1aSopenharmony_ci * approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f)))
187cabdff1aSopenharmony_ci */
188cabdff1aSopenharmony_cistatic av_always_inline float bval2bmax(float b)
189cabdff1aSopenharmony_ci{
190cabdff1aSopenharmony_ci    return 0.001f + 0.0035f * (b*b*b) / (15.5f*15.5f*15.5f);
191cabdff1aSopenharmony_ci}
192cabdff1aSopenharmony_ci
193cabdff1aSopenharmony_ci/*
194cabdff1aSopenharmony_ci * Compute a nextband map to be used with SF delta constraint utilities.
195cabdff1aSopenharmony_ci * The nextband array should contain 128 elements, and positions that don't
196cabdff1aSopenharmony_ci * map to valid, nonzero bands of the form w*16+g (with w being the initial
197cabdff1aSopenharmony_ci * window of the window group, only) are left indetermined.
198cabdff1aSopenharmony_ci */
199cabdff1aSopenharmony_cistatic inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
200cabdff1aSopenharmony_ci{
201cabdff1aSopenharmony_ci    unsigned char prevband = 0;
202cabdff1aSopenharmony_ci    int w, g;
203cabdff1aSopenharmony_ci    /** Just a safe default */
204cabdff1aSopenharmony_ci    for (g = 0; g < 128; g++)
205cabdff1aSopenharmony_ci        nextband[g] = g;
206cabdff1aSopenharmony_ci
207cabdff1aSopenharmony_ci    /** Now really navigate the nonzero band chain */
208cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
209cabdff1aSopenharmony_ci        for (g = 0; g < sce->ics.num_swb; g++) {
210cabdff1aSopenharmony_ci            if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT)
211cabdff1aSopenharmony_ci                prevband = nextband[prevband] = w*16+g;
212cabdff1aSopenharmony_ci        }
213cabdff1aSopenharmony_ci    }
214cabdff1aSopenharmony_ci    nextband[prevband] = prevband; /* terminate */
215cabdff1aSopenharmony_ci}
216cabdff1aSopenharmony_ci
217cabdff1aSopenharmony_ci/*
218cabdff1aSopenharmony_ci * Updates nextband to reflect a removed band (equivalent to
219cabdff1aSopenharmony_ci * calling ff_init_nextband_map after marking a band as zero)
220cabdff1aSopenharmony_ci */
221cabdff1aSopenharmony_cistatic inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band)
222cabdff1aSopenharmony_ci{
223cabdff1aSopenharmony_ci    nextband[prevband] = nextband[band];
224cabdff1aSopenharmony_ci}
225cabdff1aSopenharmony_ci
226cabdff1aSopenharmony_ci/*
227cabdff1aSopenharmony_ci * Checks whether the specified band could be removed without inducing
228cabdff1aSopenharmony_ci * scalefactor delta that violates SF delta encoding constraints.
229cabdff1aSopenharmony_ci * prev_sf has to be the scalefactor of the previous nonzero, nonspecial
230cabdff1aSopenharmony_ci * band, in encoding order, or negative if there was no such band.
231cabdff1aSopenharmony_ci */
232cabdff1aSopenharmony_cistatic inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce,
233cabdff1aSopenharmony_ci    const uint8_t *nextband, int prev_sf, int band)
234cabdff1aSopenharmony_ci{
235cabdff1aSopenharmony_ci    return prev_sf >= 0
236cabdff1aSopenharmony_ci        && sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF)
237cabdff1aSopenharmony_ci        && sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF);
238cabdff1aSopenharmony_ci}
239cabdff1aSopenharmony_ci
240cabdff1aSopenharmony_ci/*
241cabdff1aSopenharmony_ci * Checks whether the specified band's scalefactor could be replaced
242cabdff1aSopenharmony_ci * with another one without violating SF delta encoding constraints.
243cabdff1aSopenharmony_ci * prev_sf has to be the scalefactor of the previous nonzero, nonsepcial
244cabdff1aSopenharmony_ci * band, in encoding order, or negative if there was no such band.
245cabdff1aSopenharmony_ci */
246cabdff1aSopenharmony_cistatic inline int ff_sfdelta_can_replace(const SingleChannelElement *sce,
247cabdff1aSopenharmony_ci    const uint8_t *nextband, int prev_sf, int new_sf, int band)
248cabdff1aSopenharmony_ci{
249cabdff1aSopenharmony_ci    return new_sf >= (prev_sf - SCALE_MAX_DIFF)
250cabdff1aSopenharmony_ci        && new_sf <= (prev_sf + SCALE_MAX_DIFF)
251cabdff1aSopenharmony_ci        && sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF)
252cabdff1aSopenharmony_ci        && sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF);
253cabdff1aSopenharmony_ci}
254cabdff1aSopenharmony_ci
255cabdff1aSopenharmony_ci/**
256cabdff1aSopenharmony_ci * linear congruential pseudorandom number generator
257cabdff1aSopenharmony_ci *
258cabdff1aSopenharmony_ci * @param   previous_val    pointer to the current state of the generator
259cabdff1aSopenharmony_ci *
260cabdff1aSopenharmony_ci * @return  Returns a 32-bit pseudorandom integer
261cabdff1aSopenharmony_ci */
262cabdff1aSopenharmony_cistatic av_always_inline int lcg_random(unsigned previous_val)
263cabdff1aSopenharmony_ci{
264cabdff1aSopenharmony_ci    union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 };
265cabdff1aSopenharmony_ci    return v.s;
266cabdff1aSopenharmony_ci}
267cabdff1aSopenharmony_ci
268cabdff1aSopenharmony_ci#define ERROR_IF(cond, ...) \
269cabdff1aSopenharmony_ci    if (cond) { \
270cabdff1aSopenharmony_ci        av_log(avctx, AV_LOG_ERROR, __VA_ARGS__); \
271cabdff1aSopenharmony_ci        return AVERROR(EINVAL); \
272cabdff1aSopenharmony_ci    }
273cabdff1aSopenharmony_ci
274cabdff1aSopenharmony_ci#define WARN_IF(cond, ...) \
275cabdff1aSopenharmony_ci    if (cond) { \
276cabdff1aSopenharmony_ci        av_log(avctx, AV_LOG_WARNING, __VA_ARGS__); \
277cabdff1aSopenharmony_ci    }
278cabdff1aSopenharmony_ci
279cabdff1aSopenharmony_ci#endif /* AVCODEC_AACENC_UTILS_H */
280