1/*
2 * AAC encoder main-type prediction
3 * Copyright (C) 2015 Rostislav Pehlivanov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * AAC encoder main-type prediction
25 * @author Rostislav Pehlivanov ( atomnuker gmail com )
26 */
27
28#include "aactab.h"
29#include "aacenc_pred.h"
30#include "aacenc_utils.h"
31#include "aacenc_is.h"            /* <- Needed for common window distortions */
32#include "aacenc_quantization.h"
33
34#define RESTORE_PRED(sce, sfb) \
35        if (sce->ics.prediction_used[sfb]) {\
36            sce->ics.prediction_used[sfb] = 0;\
37            sce->band_type[sfb] = sce->band_alt[sfb];\
38        }
39
40static inline float flt16_round(float pf)
41{
42    union av_intfloat32 tmp;
43    tmp.f = pf;
44    tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
45    return tmp.f;
46}
47
48static inline float flt16_even(float pf)
49{
50    union av_intfloat32 tmp;
51    tmp.f = pf;
52    tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
53    return tmp.f;
54}
55
56static inline float flt16_trunc(float pf)
57{
58    union av_intfloat32 pun;
59    pun.f = pf;
60    pun.i &= 0xFFFF0000U;
61    return pun.f;
62}
63
64static inline void predict(PredictorState *ps, float *coef, float *rcoef, int set)
65{
66    float k2;
67    const float a     = 0.953125; // 61.0 / 64
68    const float alpha = 0.90625;  // 29.0 / 32
69    const float   k1 = ps->k1;
70    const float   r0 = ps->r0,     r1 = ps->r1;
71    const float cor0 = ps->cor0, cor1 = ps->cor1;
72    const float var0 = ps->var0, var1 = ps->var1;
73    const float e0 = *coef - ps->x_est;
74    const float e1 = e0 - k1 * r0;
75
76    if (set)
77        *coef = e0;
78
79    ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
80    ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
81    ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
82    ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
83    ps->r1   = flt16_trunc(a * (r0 - k1 * e0));
84    ps->r0   = flt16_trunc(a * e0);
85
86    /* Prediction for next frame */
87    ps->k1   = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
88    k2       = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
89    *rcoef   = ps->x_est = flt16_round(ps->k1*ps->r0 + k2*ps->r1);
90}
91
92static inline void reset_predict_state(PredictorState *ps)
93{
94    ps->r0    = 0.0f;
95    ps->r1    = 0.0f;
96    ps->k1    = 0.0f;
97    ps->cor0  = 0.0f;
98    ps->cor1  = 0.0f;
99    ps->var0  = 1.0f;
100    ps->var1  = 1.0f;
101    ps->x_est = 0.0f;
102}
103
104static inline void reset_all_predictors(PredictorState *ps)
105{
106    int i;
107    for (i = 0; i < MAX_PREDICTORS; i++)
108        reset_predict_state(&ps[i]);
109}
110
111static inline void reset_predictor_group(SingleChannelElement *sce, int group_num)
112{
113    int i;
114    PredictorState *ps = sce->predictor_state;
115    for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
116        reset_predict_state(&ps[i]);
117}
118
119void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce)
120{
121    int sfb, k;
122    const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
123
124    if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
125        for (sfb = 0; sfb < pmax; sfb++) {
126            for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
127                predict(&sce->predictor_state[k], &sce->coeffs[k], &sce->prcoeffs[k],
128                        sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
129            }
130        }
131        if (sce->ics.predictor_reset_group) {
132            reset_predictor_group(sce, sce->ics.predictor_reset_group);
133        }
134    } else {
135        reset_all_predictors(sce->predictor_state);
136    }
137}
138
139/* If inc = 0 you can check if this returns 0 to see if you can reset freely */
140static inline int update_counters(IndividualChannelStream *ics, int inc)
141{
142    int i;
143    for (i = 1; i < 31; i++) {
144        ics->predictor_reset_count[i] += inc;
145        if (ics->predictor_reset_count[i] > PRED_RESET_FRAME_MIN)
146            return i; /* Reset this immediately */
147    }
148    return 0;
149}
150
151void ff_aac_adjust_common_pred(AACEncContext *s, ChannelElement *cpe)
152{
153    int start, w, w2, g, i, count = 0;
154    SingleChannelElement *sce0 = &cpe->ch[0];
155    SingleChannelElement *sce1 = &cpe->ch[1];
156    const int pmax0 = FFMIN(sce0->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
157    const int pmax1 = FFMIN(sce1->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
158    const int pmax  = FFMIN(pmax0, pmax1);
159
160    if (!cpe->common_window ||
161        sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE ||
162        sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
163        return;
164
165    for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
166        start = 0;
167        for (g = 0; g < sce0->ics.num_swb; g++) {
168            int sfb = w*16+g;
169            int sum = sce0->ics.prediction_used[sfb] + sce1->ics.prediction_used[sfb];
170            float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f;
171            struct AACISError ph_err1, ph_err2, *erf;
172            if (sfb < PRED_SFB_START || sfb > pmax || sum != 2) {
173                RESTORE_PRED(sce0, sfb);
174                RESTORE_PRED(sce1, sfb);
175                start += sce0->ics.swb_sizes[g];
176                continue;
177            }
178            for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
179                for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
180                    float coef0 = sce0->pcoeffs[start+(w+w2)*128+i];
181                    float coef1 = sce1->pcoeffs[start+(w+w2)*128+i];
182                    ener0  += coef0*coef0;
183                    ener1  += coef1*coef1;
184                    ener01 += (coef0 + coef1)*(coef0 + coef1);
185                }
186            }
187            ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g,
188                                             ener0, ener1, ener01, 1, -1);
189            ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g,
190                                             ener0, ener1, ener01, 1, +1);
191            erf = ph_err1.error < ph_err2.error ? &ph_err1 : &ph_err2;
192            if (erf->pass) {
193                sce0->ics.prediction_used[sfb] = 1;
194                sce1->ics.prediction_used[sfb] = 1;
195                count++;
196            } else {
197                RESTORE_PRED(sce0, sfb);
198                RESTORE_PRED(sce1, sfb);
199            }
200            start += sce0->ics.swb_sizes[g];
201        }
202    }
203
204    sce1->ics.predictor_present = sce0->ics.predictor_present = !!count;
205}
206
207static void update_pred_resets(SingleChannelElement *sce)
208{
209    int i, max_group_id_c, max_frame = 0;
210    float avg_frame = 0.0f;
211    IndividualChannelStream *ics = &sce->ics;
212
213    /* Update the counters and immediately update any frame behind schedule */
214    if ((ics->predictor_reset_group = update_counters(&sce->ics, 1)))
215        return;
216
217    for (i = 1; i < 31; i++) {
218        /* Count-based */
219        if (ics->predictor_reset_count[i] > max_frame) {
220            max_group_id_c = i;
221            max_frame = ics->predictor_reset_count[i];
222        }
223        avg_frame = (ics->predictor_reset_count[i] + avg_frame)/2;
224    }
225
226    if (max_frame > PRED_RESET_MIN) {
227        ics->predictor_reset_group = max_group_id_c;
228    } else {
229        ics->predictor_reset_group = 0;
230    }
231}
232
233void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce)
234{
235    int sfb, i, count = 0, cost_coeffs = 0, cost_pred = 0;
236    const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
237    float *O34  = &s->scoefs[128*0], *P34 = &s->scoefs[128*1];
238    float *SENT = &s->scoefs[128*2], *S34 = &s->scoefs[128*3];
239    float *QERR = &s->scoefs[128*4];
240
241    if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
242        sce->ics.predictor_present = 0;
243        return;
244    }
245
246    if (!sce->ics.predictor_initialized) {
247        reset_all_predictors(sce->predictor_state);
248        sce->ics.predictor_initialized = 1;
249        memcpy(sce->prcoeffs, sce->coeffs, 1024*sizeof(float));
250        for (i = 1; i < 31; i++)
251            sce->ics.predictor_reset_count[i] = i;
252    }
253
254    update_pred_resets(sce);
255    memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
256
257    for (sfb = PRED_SFB_START; sfb < pmax; sfb++) {
258        int cost1, cost2, cb_p;
259        float dist1, dist2, dist_spec_err = 0.0f;
260        const int cb_n = sce->zeroes[sfb] ? 0 : sce->band_type[sfb];
261        const int cb_min = sce->zeroes[sfb] ? 0 : 1;
262        const int cb_max = sce->zeroes[sfb] ? 0 : RESERVED_BT;
263        const int start_coef = sce->ics.swb_offset[sfb];
264        const int num_coeffs = sce->ics.swb_offset[sfb + 1] - start_coef;
265        const FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[sfb];
266
267        if (start_coef + num_coeffs > MAX_PREDICTORS ||
268            (s->cur_channel && sce->band_type[sfb] >= INTENSITY_BT2) ||
269            sce->band_type[sfb] == NOISE_BT)
270            continue;
271
272        /* Normal coefficients */
273        s->abs_pow34(O34, &sce->coeffs[start_coef], num_coeffs);
274        dist1 = quantize_and_encode_band_cost(s, NULL, &sce->coeffs[start_coef], NULL,
275                                              O34, num_coeffs, sce->sf_idx[sfb],
276                                              cb_n, s->lambda / band->threshold, INFINITY, &cost1, NULL, 0);
277        cost_coeffs += cost1;
278
279        /* Encoded coefficients - needed for #bits, band type and quant. error */
280        for (i = 0; i < num_coeffs; i++)
281            SENT[i] = sce->coeffs[start_coef + i] - sce->prcoeffs[start_coef + i];
282        s->abs_pow34(S34, SENT, num_coeffs);
283        if (cb_n < RESERVED_BT)
284            cb_p = av_clip(find_min_book(find_max_val(1, num_coeffs, S34), sce->sf_idx[sfb]), cb_min, cb_max);
285        else
286            cb_p = cb_n;
287        quantize_and_encode_band_cost(s, NULL, SENT, QERR, S34, num_coeffs,
288                                      sce->sf_idx[sfb], cb_p, s->lambda / band->threshold, INFINITY,
289                                      &cost2, NULL, 0);
290
291        /* Reconstructed coefficients - needed for distortion measurements */
292        for (i = 0; i < num_coeffs; i++)
293            sce->prcoeffs[start_coef + i] += QERR[i] != 0.0f ? (sce->prcoeffs[start_coef + i] - QERR[i]) : 0.0f;
294        s->abs_pow34(P34, &sce->prcoeffs[start_coef], num_coeffs);
295        if (cb_n < RESERVED_BT)
296            cb_p = av_clip(find_min_book(find_max_val(1, num_coeffs, P34), sce->sf_idx[sfb]), cb_min, cb_max);
297        else
298            cb_p = cb_n;
299        dist2 = quantize_and_encode_band_cost(s, NULL, &sce->prcoeffs[start_coef], NULL,
300                                              P34, num_coeffs, sce->sf_idx[sfb],
301                                              cb_p, s->lambda / band->threshold, INFINITY, NULL, NULL, 0);
302        for (i = 0; i < num_coeffs; i++)
303            dist_spec_err += (O34[i] - P34[i])*(O34[i] - P34[i]);
304        dist_spec_err *= s->lambda / band->threshold;
305        dist2 += dist_spec_err;
306
307        if (dist2 <= dist1 && cb_p <= cb_n) {
308            cost_pred += cost2;
309            sce->ics.prediction_used[sfb] = 1;
310            sce->band_alt[sfb]  = cb_n;
311            sce->band_type[sfb] = cb_p;
312            count++;
313        } else {
314            cost_pred += cost1;
315            sce->band_alt[sfb] = cb_p;
316        }
317    }
318
319    if (count && cost_coeffs < cost_pred) {
320        count = 0;
321        for (sfb = PRED_SFB_START; sfb < pmax; sfb++)
322            RESTORE_PRED(sce, sfb);
323        memset(&sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
324    }
325
326    sce->ics.predictor_present = !!count;
327}
328
329/**
330 * Encoder predictors data.
331 */
332void ff_aac_encode_main_pred(AACEncContext *s, SingleChannelElement *sce)
333{
334    int sfb;
335    IndividualChannelStream *ics = &sce->ics;
336    const int pmax = FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
337
338    if (s->profile != FF_PROFILE_AAC_MAIN ||
339        !ics->predictor_present)
340        return;
341
342    put_bits(&s->pb, 1, !!ics->predictor_reset_group);
343    if (ics->predictor_reset_group)
344        put_bits(&s->pb, 5, ics->predictor_reset_group);
345    for (sfb = 0; sfb < pmax; sfb++)
346        put_bits(&s->pb, 1, ics->prediction_used[sfb]);
347}
348