1/* 2 * AAC encoder long term prediction extension 3 * Copyright (C) 2015 Rostislav Pehlivanov 4 * 5 * This file is part of FFmpeg. 6 * 7 * FFmpeg is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2.1 of the License, or (at your option) any later version. 11 * 12 * FFmpeg is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with FFmpeg; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 20 */ 21 22/** 23 * @file 24 * AAC encoder long term prediction extension 25 * @author Rostislav Pehlivanov ( atomnuker gmail com ) 26 */ 27 28#include "aacenc_ltp.h" 29#include "aacenc_quantization.h" 30#include "aacenc_utils.h" 31 32/** 33 * Encode LTP data. 34 */ 35void ff_aac_encode_ltp_info(AACEncContext *s, SingleChannelElement *sce, 36 int common_window) 37{ 38 int i; 39 IndividualChannelStream *ics = &sce->ics; 40 if (s->profile != FF_PROFILE_AAC_LTP || !ics->predictor_present) 41 return; 42 if (common_window) 43 put_bits(&s->pb, 1, 0); 44 put_bits(&s->pb, 1, ics->ltp.present); 45 if (!ics->ltp.present) 46 return; 47 put_bits(&s->pb, 11, ics->ltp.lag); 48 put_bits(&s->pb, 3, ics->ltp.coef_idx); 49 for (i = 0; i < FFMIN(ics->max_sfb, MAX_LTP_LONG_SFB); i++) 50 put_bits(&s->pb, 1, ics->ltp.used[i]); 51} 52 53void ff_aac_ltp_insert_new_frame(AACEncContext *s) 54{ 55 int i, ch, tag, chans, cur_channel, start_ch = 0; 56 ChannelElement *cpe; 57 SingleChannelElement *sce; 58 for (i = 0; i < s->chan_map[0]; i++) { 59 cpe = &s->cpe[i]; 60 tag = s->chan_map[i+1]; 61 chans = tag == TYPE_CPE ? 2 : 1; 62 for (ch = 0; ch < chans; ch++) { 63 sce = &cpe->ch[ch]; 64 cur_channel = start_ch + ch; 65 /* New sample + overlap */ 66 memcpy(&sce->ltp_state[0], &sce->ltp_state[1024], 1024*sizeof(sce->ltp_state[0])); 67 memcpy(&sce->ltp_state[1024], &s->planar_samples[cur_channel][2048], 1024*sizeof(sce->ltp_state[0])); 68 memcpy(&sce->ltp_state[2048], &sce->ret_buf[0], 1024*sizeof(sce->ltp_state[0])); 69 sce->ics.ltp.lag = 0; 70 } 71 start_ch += chans; 72 } 73} 74 75static void get_lag(float *buf, const float *new, LongTermPrediction *ltp) 76{ 77 int i, j, lag = 0, max_corr = 0; 78 float max_ratio = 0.0f; 79 for (i = 0; i < 2048; i++) { 80 float corr, s0 = 0.0f, s1 = 0.0f; 81 const int start = FFMAX(0, i - 1024); 82 for (j = start; j < 2048; j++) { 83 const int idx = j - i + 1024; 84 s0 += new[j]*buf[idx]; 85 s1 += buf[idx]*buf[idx]; 86 } 87 corr = s1 > 0.0f ? s0/sqrt(s1) : 0.0f; 88 if (corr > max_corr) { 89 max_corr = corr; 90 lag = i; 91 max_ratio = corr/(2048-start); 92 } 93 } 94 ltp->lag = FFMAX(av_clip_uintp2(lag, 11), 0); 95 ltp->coef_idx = quant_array_idx(max_ratio, ltp_coef, 8); 96 ltp->coef = ltp_coef[ltp->coef_idx]; 97} 98 99static void generate_samples(float *buf, LongTermPrediction *ltp) 100{ 101 int i, samples_num = 2048; 102 if (!ltp->lag) { 103 ltp->present = 0; 104 return; 105 } else if (ltp->lag < 1024) { 106 samples_num = ltp->lag + 1024; 107 } 108 for (i = 0; i < samples_num; i++) 109 buf[i] = ltp->coef*buf[i + 2048 - ltp->lag]; 110 memset(&buf[i], 0, (2048 - i)*sizeof(float)); 111} 112 113/** 114 * Process LTP parameters 115 * @see Patent WO2006070265A1 116 */ 117void ff_aac_update_ltp(AACEncContext *s, SingleChannelElement *sce) 118{ 119 float *pred_signal = &sce->ltp_state[0]; 120 const float *samples = &s->planar_samples[s->cur_channel][1024]; 121 122 if (s->profile != FF_PROFILE_AAC_LTP) 123 return; 124 125 /* Calculate lag */ 126 get_lag(pred_signal, samples, &sce->ics.ltp); 127 generate_samples(pred_signal, &sce->ics.ltp); 128} 129 130void ff_aac_adjust_common_ltp(AACEncContext *s, ChannelElement *cpe) 131{ 132 int sfb, count = 0; 133 SingleChannelElement *sce0 = &cpe->ch[0]; 134 SingleChannelElement *sce1 = &cpe->ch[1]; 135 136 if (!cpe->common_window || 137 sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE || 138 sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) { 139 sce0->ics.ltp.present = 0; 140 return; 141 } 142 143 for (sfb = 0; sfb < FFMIN(sce0->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) { 144 int sum = sce0->ics.ltp.used[sfb] + sce1->ics.ltp.used[sfb]; 145 if (sum != 2) { 146 sce0->ics.ltp.used[sfb] = 0; 147 } else { 148 count++; 149 } 150 } 151 152 sce0->ics.ltp.present = !!count; 153 sce0->ics.predictor_present = !!count; 154} 155 156/** 157 * Mark LTP sfb's 158 */ 159void ff_aac_search_for_ltp(AACEncContext *s, SingleChannelElement *sce, 160 int common_window) 161{ 162 int w, g, w2, i, start = 0, count = 0; 163 int saved_bits = -(15 + FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB)); 164 float *C34 = &s->scoefs[128*0], *PCD = &s->scoefs[128*1]; 165 float *PCD34 = &s->scoefs[128*2]; 166 const int max_ltp = FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); 167 168 if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) { 169 if (sce->ics.ltp.lag) { 170 memset(&sce->ltp_state[0], 0, 3072*sizeof(sce->ltp_state[0])); 171 memset(&sce->ics.ltp, 0, sizeof(LongTermPrediction)); 172 } 173 return; 174 } 175 176 if (!sce->ics.ltp.lag || s->lambda > 120.0f) 177 return; 178 179 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { 180 start = 0; 181 for (g = 0; g < sce->ics.num_swb; g++) { 182 int bits1 = 0, bits2 = 0; 183 float dist1 = 0.0f, dist2 = 0.0f; 184 if (w*16+g > max_ltp) { 185 start += sce->ics.swb_sizes[g]; 186 continue; 187 } 188 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { 189 int bits_tmp1, bits_tmp2; 190 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; 191 for (i = 0; i < sce->ics.swb_sizes[g]; i++) 192 PCD[i] = sce->coeffs[start+(w+w2)*128+i] - sce->lcoeffs[start+(w+w2)*128+i]; 193 s->abs_pow34(C34, &sce->coeffs[start+(w+w2)*128], sce->ics.swb_sizes[g]); 194 s->abs_pow34(PCD34, PCD, sce->ics.swb_sizes[g]); 195 dist1 += quantize_band_cost(s, &sce->coeffs[start+(w+w2)*128], C34, sce->ics.swb_sizes[g], 196 sce->sf_idx[(w+w2)*16+g], sce->band_type[(w+w2)*16+g], 197 s->lambda/band->threshold, INFINITY, &bits_tmp1, NULL, 0); 198 dist2 += quantize_band_cost(s, PCD, PCD34, sce->ics.swb_sizes[g], 199 sce->sf_idx[(w+w2)*16+g], 200 sce->band_type[(w+w2)*16+g], 201 s->lambda/band->threshold, INFINITY, &bits_tmp2, NULL, 0); 202 bits1 += bits_tmp1; 203 bits2 += bits_tmp2; 204 } 205 if (dist2 < dist1 && bits2 < bits1) { 206 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) 207 for (i = 0; i < sce->ics.swb_sizes[g]; i++) 208 sce->coeffs[start+(w+w2)*128+i] -= sce->lcoeffs[start+(w+w2)*128+i]; 209 sce->ics.ltp.used[w*16+g] = 1; 210 saved_bits += bits1 - bits2; 211 count++; 212 } 213 start += sce->ics.swb_sizes[g]; 214 } 215 } 216 217 sce->ics.ltp.present = !!count && (saved_bits >= 0); 218 sce->ics.predictor_present = !!sce->ics.ltp.present; 219 220 /* Reset any marked sfbs */ 221 if (!sce->ics.ltp.present && !!count) { 222 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { 223 start = 0; 224 for (g = 0; g < sce->ics.num_swb; g++) { 225 if (sce->ics.ltp.used[w*16+g]) { 226 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { 227 for (i = 0; i < sce->ics.swb_sizes[g]; i++) { 228 sce->coeffs[start+(w+w2)*128+i] += sce->lcoeffs[start+(w+w2)*128+i]; 229 } 230 } 231 } 232 start += sce->ics.swb_sizes[g]; 233 } 234 } 235 } 236} 237