1/*
2 * AAC encoder twoloop coder
3 * Copyright (C) 2008-2009 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * AAC encoder twoloop coder
25 * @author Konstantin Shishkov, Claudio Freire
26 */
27
28/**
29 * This file contains a template for the twoloop coder function.
30 * It needs to be provided, externally, as an already included declaration,
31 * the following functions from aacenc_quantization/util.h. They're not included
32 * explicitly here to make it possible to provide alternative implementations:
33 *  - quantize_band_cost
34 *  - abs_pow34_v
35 *  - find_max_val
36 *  - find_min_book
37 *  - find_form_factor
38 */
39
40#ifndef AVCODEC_AACCODER_TWOLOOP_H
41#define AVCODEC_AACCODER_TWOLOOP_H
42
43#include <float.h>
44#include "libavutil/mathematics.h"
45#include "mathops.h"
46#include "avcodec.h"
47#include "put_bits.h"
48#include "aac.h"
49#include "aacenc.h"
50#include "aactab.h"
51#include "aacenctab.h"
52
53/** Frequency in Hz for lower limit of noise substitution **/
54#define NOISE_LOW_LIMIT 4000
55
56#define sclip(x) av_clip(x,60,218)
57
58/* Reflects the cost to change codebooks */
59static inline int ff_pns_bits(SingleChannelElement *sce, int w, int g)
60{
61    return (!g || !sce->zeroes[w*16+g-1] || !sce->can_pns[w*16+g-1]) ? 9 : 5;
62}
63
64/**
65 * two-loop quantizers search taken from ISO 13818-7 Appendix C
66 */
67static void search_for_quantizers_twoloop(AVCodecContext *avctx,
68                                          AACEncContext *s,
69                                          SingleChannelElement *sce,
70                                          const float lambda)
71{
72    int start = 0, i, w, w2, g, recomprd;
73    int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
74        / ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->ch_layout.nb_channels)
75        * (lambda / 120.f);
76    int refbits = destbits;
77    int toomanybits, toofewbits;
78    char nzs[128];
79    uint8_t nextband[128];
80    int maxsf[128], minsf[128];
81    float dists[128] = { 0 }, qenergies[128] = { 0 }, uplims[128], euplims[128], energies[128];
82    float maxvals[128], spread_thr_r[128];
83    float min_spread_thr_r, max_spread_thr_r;
84
85    /**
86     * rdlambda controls the maximum tolerated distortion. Twoloop
87     * will keep iterating until it fails to lower it or it reaches
88     * ulimit * rdlambda. Keeping it low increases quality on difficult
89     * signals, but lower it too much, and bits will be taken from weak
90     * signals, creating "holes". A balance is necessary.
91     * rdmax and rdmin specify the relative deviation from rdlambda
92     * allowed for tonality compensation
93     */
94    float rdlambda = av_clipf(2.0f * 120.f / lambda, 0.0625f, 16.0f);
95    const float nzslope = 1.5f;
96    float rdmin = 0.03125f;
97    float rdmax = 1.0f;
98
99    /**
100     * sfoffs controls an offset of optmium allocation that will be
101     * applied based on lambda. Keep it real and modest, the loop
102     * will take care of the rest, this just accelerates convergence
103     */
104    float sfoffs = av_clipf(log2f(120.0f / lambda) * 4.0f, -5, 10);
105
106    int fflag, minscaler, maxscaler, nminscaler;
107    int its  = 0;
108    int maxits = 30;
109    int allz = 0;
110    int tbits;
111    int cutoff = 1024;
112    int pns_start_pos;
113    int prev;
114
115    /**
116     * zeroscale controls a multiplier of the threshold, if band energy
117     * is below this, a zero is forced. Keep it lower than 1, unless
118     * low lambda is used, because energy < threshold doesn't mean there's
119     * no audible signal outright, it's just energy. Also make it rise
120     * slower than rdlambda, as rdscale has due compensation with
121     * noisy band depriorization below, whereas zeroing logic is rather dumb
122     */
123    float zeroscale;
124    if (lambda > 120.f) {
125        zeroscale = av_clipf(powf(120.f / lambda, 0.25f), 0.0625f, 1.0f);
126    } else {
127        zeroscale = 1.f;
128    }
129
130    if (s->psy.bitres.alloc >= 0) {
131        /**
132         * Psy granted us extra bits to use, from the reservoire
133         * adjust for lambda except what psy already did
134         */
135        destbits = s->psy.bitres.alloc
136            * (lambda / (avctx->global_quality ? avctx->global_quality : 120));
137    }
138
139    if (avctx->flags & AV_CODEC_FLAG_QSCALE) {
140        /**
141         * Constant Q-scale doesn't compensate MS coding on its own
142         * No need to be overly precise, this only controls RD
143         * adjustment CB limits when going overboard
144         */
145        if (s->options.mid_side && s->cur_type == TYPE_CPE)
146            destbits *= 2;
147
148        /**
149         * When using a constant Q-scale, don't adjust bits, just use RD
150         * Don't let it go overboard, though... 8x psy target is enough
151         */
152        toomanybits = 5800;
153        toofewbits = destbits / 16;
154
155        /** Don't offset scalers, just RD */
156        sfoffs = sce->ics.num_windows - 1;
157        rdlambda = sqrtf(rdlambda);
158
159        /** search further */
160        maxits *= 2;
161    } else {
162        /* When using ABR, be strict, but a reasonable leeway is
163         * critical to allow RC to smoothly track desired bitrate
164         * without sudden quality drops that cause audible artifacts.
165         * Symmetry is also desirable, to avoid systematic bias.
166         */
167        toomanybits = destbits + destbits/8;
168        toofewbits = destbits - destbits/8;
169
170        sfoffs = 0;
171        rdlambda = sqrtf(rdlambda);
172    }
173
174    /** and zero out above cutoff frequency */
175    {
176        int wlen = 1024 / sce->ics.num_windows;
177        int bandwidth;
178
179        /**
180         * Scale, psy gives us constant quality, this LP only scales
181         * bitrate by lambda, so we save bits on subjectively unimportant HF
182         * rather than increase quantization noise. Adjust nominal bitrate
183         * to effective bitrate according to encoding parameters,
184         * AAC_CUTOFF_FROM_BITRATE is calibrated for effective bitrate.
185         */
186        float rate_bandwidth_multiplier = 1.5f;
187        int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE)
188            ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
189            : (avctx->bit_rate / avctx->ch_layout.nb_channels);
190
191        /** Compensate for extensions that increase efficiency */
192        if (s->options.pns || s->options.intensity_stereo)
193            frame_bit_rate *= 1.15f;
194
195        if (avctx->cutoff > 0) {
196            bandwidth = avctx->cutoff;
197        } else {
198            bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
199            s->psy.cutoff = bandwidth;
200        }
201
202        cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
203        pns_start_pos = NOISE_LOW_LIMIT * 2 * wlen / avctx->sample_rate;
204    }
205
206    /**
207     * for values above this the decoder might end up in an endless loop
208     * due to always having more bits than what can be encoded.
209     */
210    destbits = FFMIN(destbits, 5800);
211    toomanybits = FFMIN(toomanybits, 5800);
212    toofewbits = FFMIN(toofewbits, 5800);
213    /**
214     * XXX: some heuristic to determine initial quantizers will reduce search time
215     * determine zero bands and upper distortion limits
216     */
217    min_spread_thr_r = -1;
218    max_spread_thr_r = -1;
219    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
220        for (g = start = 0;  g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
221            int nz = 0;
222            float uplim = 0.0f, energy = 0.0f, spread = 0.0f;
223            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
224                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
225                if (start >= cutoff || band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f) {
226                    sce->zeroes[(w+w2)*16+g] = 1;
227                    continue;
228                }
229                nz = 1;
230            }
231            if (!nz) {
232                uplim = 0.0f;
233            } else {
234                nz = 0;
235                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
236                    FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
237                    if (band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f)
238                        continue;
239                    uplim += band->threshold;
240                    energy += band->energy;
241                    spread += band->spread;
242                    nz++;
243                }
244            }
245            uplims[w*16+g] = uplim;
246            energies[w*16+g] = energy;
247            nzs[w*16+g] = nz;
248            sce->zeroes[w*16+g] = !nz;
249            allz |= nz;
250            if (nz && sce->can_pns[w*16+g]) {
251                spread_thr_r[w*16+g] = energy * nz / (uplim * spread);
252                if (min_spread_thr_r < 0) {
253                    min_spread_thr_r = max_spread_thr_r = spread_thr_r[w*16+g];
254                } else {
255                    min_spread_thr_r = FFMIN(min_spread_thr_r, spread_thr_r[w*16+g]);
256                    max_spread_thr_r = FFMAX(max_spread_thr_r, spread_thr_r[w*16+g]);
257                }
258            }
259        }
260    }
261
262    /** Compute initial scalers */
263    minscaler = 65535;
264    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
265        for (g = 0;  g < sce->ics.num_swb; g++) {
266            if (sce->zeroes[w*16+g]) {
267                sce->sf_idx[w*16+g] = SCALE_ONE_POS;
268                continue;
269            }
270            /**
271             * log2f-to-distortion ratio is, technically, 2 (1.5db = 4, but it's power vs level so it's 2).
272             * But, as offsets are applied, low-frequency signals are too sensitive to the induced distortion,
273             * so we make scaling more conservative by choosing a lower log2f-to-distortion ratio, and thus
274             * more robust.
275             */
276            sce->sf_idx[w*16+g] = av_clip(
277                SCALE_ONE_POS
278                    + 1.75*log2f(FFMAX(0.00125f,uplims[w*16+g]) / sce->ics.swb_sizes[g])
279                    + sfoffs,
280                60, SCALE_MAX_POS);
281            minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
282        }
283    }
284
285    /** Clip */
286    minscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
287    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
288        for (g = 0;  g < sce->ics.num_swb; g++)
289            if (!sce->zeroes[w*16+g])
290                sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF - 1);
291
292    if (!allz)
293        return;
294    s->abs_pow34(s->scoefs, sce->coeffs, 1024);
295    ff_quantize_band_cost_cache_init(s);
296
297    for (i = 0; i < sizeof(minsf) / sizeof(minsf[0]); ++i)
298        minsf[i] = 0;
299    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
300        start = w*128;
301        for (g = 0;  g < sce->ics.num_swb; g++) {
302            const float *scaled = s->scoefs + start;
303            int minsfidx;
304            maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
305            if (maxvals[w*16+g] > 0) {
306                minsfidx = coef2minsf(maxvals[w*16+g]);
307                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
308                    minsf[(w+w2)*16+g] = minsfidx;
309            }
310            start += sce->ics.swb_sizes[g];
311        }
312    }
313
314    /**
315     * Scale uplims to match rate distortion to quality
316     * bu applying noisy band depriorization and tonal band priorization.
317     * Maxval-energy ratio gives us an idea of how noisy/tonal the band is.
318     * If maxval^2 ~ energy, then that band is mostly noise, and we can relax
319     * rate distortion requirements.
320     */
321    memcpy(euplims, uplims, sizeof(euplims));
322    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
323        /** psy already priorizes transients to some extent */
324        float de_psy_factor = (sce->ics.num_windows > 1) ? 8.0f / sce->ics.group_len[w] : 1.0f;
325        start = w*128;
326        for (g = 0;  g < sce->ics.num_swb; g++) {
327            if (nzs[g] > 0) {
328                float cleanup_factor = ff_sqrf(av_clipf(start / (cutoff * 0.75f), 1.0f, 2.0f));
329                float energy2uplim = find_form_factor(
330                    sce->ics.group_len[w], sce->ics.swb_sizes[g],
331                    uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]),
332                    sce->coeffs + start,
333                    nzslope * cleanup_factor);
334                energy2uplim *= de_psy_factor;
335                if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) {
336                    /** In ABR, we need to priorize less and let rate control do its thing */
337                    energy2uplim = sqrtf(energy2uplim);
338                }
339                energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
340                uplims[w*16+g] *= av_clipf(rdlambda * energy2uplim, rdmin, rdmax)
341                                  * sce->ics.group_len[w];
342
343                energy2uplim = find_form_factor(
344                    sce->ics.group_len[w], sce->ics.swb_sizes[g],
345                    uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]),
346                    sce->coeffs + start,
347                    2.0f);
348                energy2uplim *= de_psy_factor;
349                if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) {
350                    /** In ABR, we need to priorize less and let rate control do its thing */
351                    energy2uplim = sqrtf(energy2uplim);
352                }
353                energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
354                euplims[w*16+g] *= av_clipf(rdlambda * energy2uplim * sce->ics.group_len[w],
355                    0.5f, 1.0f);
356            }
357            start += sce->ics.swb_sizes[g];
358        }
359    }
360
361    for (i = 0; i < sizeof(maxsf) / sizeof(maxsf[0]); ++i)
362        maxsf[i] = SCALE_MAX_POS;
363
364    //perform two-loop search
365    //outer loop - improve quality
366    do {
367        //inner loop - quantize spectrum to fit into given number of bits
368        int overdist;
369        int qstep = its ? 1 : 32;
370        do {
371            int changed = 0;
372            prev = -1;
373            recomprd = 0;
374            tbits = 0;
375            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
376                start = w*128;
377                for (g = 0;  g < sce->ics.num_swb; g++) {
378                    const float *coefs = &sce->coeffs[start];
379                    const float *scaled = &s->scoefs[start];
380                    int bits = 0;
381                    int cb;
382                    float dist = 0.0f;
383                    float qenergy = 0.0f;
384
385                    if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
386                        start += sce->ics.swb_sizes[g];
387                        if (sce->can_pns[w*16+g]) {
388                            /** PNS isn't free */
389                            tbits += ff_pns_bits(sce, w, g);
390                        }
391                        continue;
392                    }
393                    cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
394                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
395                        int b;
396                        float sqenergy;
397                        dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
398                                                   scaled + w2*128,
399                                                   sce->ics.swb_sizes[g],
400                                                   sce->sf_idx[w*16+g],
401                                                   cb,
402                                                   1.0f,
403                                                   INFINITY,
404                                                   &b, &sqenergy,
405                                                   0);
406                        bits += b;
407                        qenergy += sqenergy;
408                    }
409                    dists[w*16+g] = dist - bits;
410                    qenergies[w*16+g] = qenergy;
411                    if (prev != -1) {
412                        int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF);
413                        bits += ff_aac_scalefactor_bits[sfdiff];
414                    }
415                    tbits += bits;
416                    start += sce->ics.swb_sizes[g];
417                    prev = sce->sf_idx[w*16+g];
418                }
419            }
420            if (tbits > toomanybits) {
421                recomprd = 1;
422                for (i = 0; i < 128; i++) {
423                    if (sce->sf_idx[i] < (SCALE_MAX_POS - SCALE_DIV_512)) {
424                        int maxsf_i = (tbits > 5800) ? SCALE_MAX_POS : maxsf[i];
425                        int new_sf = FFMIN(maxsf_i, sce->sf_idx[i] + qstep);
426                        if (new_sf != sce->sf_idx[i]) {
427                            sce->sf_idx[i] = new_sf;
428                            changed = 1;
429                        }
430                    }
431                }
432            } else if (tbits < toofewbits) {
433                recomprd = 1;
434                for (i = 0; i < 128; i++) {
435                    if (sce->sf_idx[i] > SCALE_ONE_POS) {
436                        int new_sf = FFMAX3(minsf[i], SCALE_ONE_POS, sce->sf_idx[i] - qstep);
437                        if (new_sf != sce->sf_idx[i]) {
438                            sce->sf_idx[i] = new_sf;
439                            changed = 1;
440                        }
441                    }
442                }
443            }
444            qstep >>= 1;
445            if (!qstep && tbits > toomanybits && sce->sf_idx[0] < 217 && changed)
446                qstep = 1;
447        } while (qstep);
448
449        overdist = 1;
450        fflag = tbits < toofewbits;
451        for (i = 0; i < 2 && (overdist || recomprd); ++i) {
452            if (recomprd) {
453                /** Must recompute distortion */
454                prev = -1;
455                tbits = 0;
456                for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
457                    start = w*128;
458                    for (g = 0;  g < sce->ics.num_swb; g++) {
459                        const float *coefs = sce->coeffs + start;
460                        const float *scaled = s->scoefs + start;
461                        int bits = 0;
462                        int cb;
463                        float dist = 0.0f;
464                        float qenergy = 0.0f;
465
466                        if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
467                            start += sce->ics.swb_sizes[g];
468                            if (sce->can_pns[w*16+g]) {
469                                /** PNS isn't free */
470                                tbits += ff_pns_bits(sce, w, g);
471                            }
472                            continue;
473                        }
474                        cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
475                        for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
476                            int b;
477                            float sqenergy;
478                            dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
479                                                    scaled + w2*128,
480                                                    sce->ics.swb_sizes[g],
481                                                    sce->sf_idx[w*16+g],
482                                                    cb,
483                                                    1.0f,
484                                                    INFINITY,
485                                                    &b, &sqenergy,
486                                                    0);
487                            bits += b;
488                            qenergy += sqenergy;
489                        }
490                        dists[w*16+g] = dist - bits;
491                        qenergies[w*16+g] = qenergy;
492                        if (prev != -1) {
493                            int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF);
494                            bits += ff_aac_scalefactor_bits[sfdiff];
495                        }
496                        tbits += bits;
497                        start += sce->ics.swb_sizes[g];
498                        prev = sce->sf_idx[w*16+g];
499                    }
500                }
501            }
502            if (!i && s->options.pns && its > maxits/2 && tbits > toofewbits) {
503                float maxoverdist = 0.0f;
504                float ovrfactor = 1.f+(maxits-its)*16.f/maxits;
505                overdist = recomprd = 0;
506                for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
507                    for (g = start = 0;  g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
508                        if (!sce->zeroes[w*16+g] && sce->sf_idx[w*16+g] > SCALE_ONE_POS && dists[w*16+g] > uplims[w*16+g]*ovrfactor) {
509                            float ovrdist = dists[w*16+g] / FFMAX(uplims[w*16+g],euplims[w*16+g]);
510                            maxoverdist = FFMAX(maxoverdist, ovrdist);
511                            overdist++;
512                        }
513                    }
514                }
515                if (overdist) {
516                    /* We have overdistorted bands, trade for zeroes (that can be noise)
517                     * Zero the bands in the lowest 1.25% spread-energy-threshold ranking
518                     */
519                    float minspread = max_spread_thr_r;
520                    float maxspread = min_spread_thr_r;
521                    float zspread;
522                    int zeroable = 0;
523                    int zeroed = 0;
524                    int maxzeroed, zloop;
525                    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
526                        for (g = start = 0;  g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
527                            if (start >= pns_start_pos && !sce->zeroes[w*16+g] && sce->can_pns[w*16+g]) {
528                                minspread = FFMIN(minspread, spread_thr_r[w*16+g]);
529                                maxspread = FFMAX(maxspread, spread_thr_r[w*16+g]);
530                                zeroable++;
531                            }
532                        }
533                    }
534                    zspread = (maxspread-minspread) * 0.0125f + minspread;
535                    /* Don't PNS everything even if allowed. It suppresses bit starvation signals from RC,
536                     * and forced the hand of the later search_for_pns step.
537                     * Instead, PNS a fraction of the spread_thr_r range depending on how starved for bits we are,
538                     * and leave further PNSing to search_for_pns if worthwhile.
539                     */
540                    zspread = FFMIN3(min_spread_thr_r * 8.f, zspread,
541                        ((toomanybits - tbits) * min_spread_thr_r + (tbits - toofewbits) * max_spread_thr_r) / (toomanybits - toofewbits + 1));
542                    maxzeroed = FFMIN(zeroable, FFMAX(1, (zeroable * its + maxits - 1) / (2 * maxits)));
543                    for (zloop = 0; zloop < 2; zloop++) {
544                        /* Two passes: first distorted stuff - two birds in one shot and all that,
545                         * then anything viable. Viable means not zero, but either CB=zero-able
546                         * (too high SF), not SF <= 1 (that means we'd be operating at very high
547                         * quality, we don't want PNS when doing VHQ), PNS allowed, and within
548                         * the lowest ranking percentile.
549                         */
550                        float loopovrfactor = (zloop) ? 1.0f : ovrfactor;
551                        int loopminsf = (zloop) ? (SCALE_ONE_POS - SCALE_DIV_512) : SCALE_ONE_POS;
552                        int mcb;
553                        for (g = sce->ics.num_swb-1; g > 0 && zeroed < maxzeroed; g--) {
554                            if (sce->ics.swb_offset[g] < pns_start_pos)
555                                continue;
556                            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
557                                if (!sce->zeroes[w*16+g] && sce->can_pns[w*16+g] && spread_thr_r[w*16+g] <= zspread
558                                    && sce->sf_idx[w*16+g] > loopminsf
559                                    && (dists[w*16+g] > loopovrfactor*uplims[w*16+g] || !(mcb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]))
560                                        || (mcb <= 1 && dists[w*16+g] > FFMIN(uplims[w*16+g], euplims[w*16+g]))) ) {
561                                    sce->zeroes[w*16+g] = 1;
562                                    sce->band_type[w*16+g] = 0;
563                                    zeroed++;
564                                }
565                            }
566                        }
567                    }
568                    if (zeroed)
569                        recomprd = fflag = 1;
570                } else {
571                    overdist = 0;
572                }
573            }
574        }
575
576        minscaler = SCALE_MAX_POS;
577        maxscaler = 0;
578        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
579            for (g = 0;  g < sce->ics.num_swb; g++) {
580                if (!sce->zeroes[w*16+g]) {
581                    minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
582                    maxscaler = FFMAX(maxscaler, sce->sf_idx[w*16+g]);
583                }
584            }
585        }
586
587        minscaler = nminscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
588        prev = -1;
589        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
590            /** Start with big steps, end up fine-tunning */
591            int depth = (its > maxits/2) ? ((its > maxits*2/3) ? 1 : 3) : 10;
592            int edepth = depth+2;
593            float uplmax = its / (maxits*0.25f) + 1.0f;
594            uplmax *= (tbits > destbits) ? FFMIN(2.0f, tbits / (float)FFMAX(1,destbits)) : 1.0f;
595            start = w * 128;
596            for (g = 0; g < sce->ics.num_swb; g++) {
597                int prevsc = sce->sf_idx[w*16+g];
598                if (prev < 0 && !sce->zeroes[w*16+g])
599                    prev = sce->sf_idx[0];
600                if (!sce->zeroes[w*16+g]) {
601                    const float *coefs = sce->coeffs + start;
602                    const float *scaled = s->scoefs + start;
603                    int cmb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
604                    int mindeltasf = FFMAX(0, prev - SCALE_MAX_DIFF);
605                    int maxdeltasf = FFMIN(SCALE_MAX_POS - SCALE_DIV_512, prev + SCALE_MAX_DIFF);
606                    if ((!cmb || dists[w*16+g] > uplims[w*16+g]) && sce->sf_idx[w*16+g] > FFMAX(mindeltasf, minsf[w*16+g])) {
607                        /* Try to make sure there is some energy in every nonzero band
608                         * NOTE: This algorithm must be forcibly imbalanced, pushing harder
609                         *  on holes or more distorted bands at first, otherwise there's
610                         *  no net gain (since the next iteration will offset all bands
611                         *  on the opposite direction to compensate for extra bits)
612                         */
613                        for (i = 0; i < edepth && sce->sf_idx[w*16+g] > mindeltasf; ++i) {
614                            int cb, bits;
615                            float dist, qenergy;
616                            int mb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1);
617                            cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
618                            dist = qenergy = 0.f;
619                            bits = 0;
620                            if (!cb) {
621                                maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g]-1, maxsf[w*16+g]);
622                            } else if (i >= depth && dists[w*16+g] < euplims[w*16+g]) {
623                                break;
624                            }
625                            /* !g is the DC band, it's important, since quantization error here
626                             * applies to less than a cycle, it creates horrible intermodulation
627                             * distortion if it doesn't stick to what psy requests
628                             */
629                            if (!g && sce->ics.num_windows > 1 && dists[w*16+g] >= euplims[w*16+g])
630                                maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]);
631                            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
632                                int b;
633                                float sqenergy;
634                                dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
635                                                        scaled + w2*128,
636                                                        sce->ics.swb_sizes[g],
637                                                        sce->sf_idx[w*16+g]-1,
638                                                        cb,
639                                                        1.0f,
640                                                        INFINITY,
641                                                        &b, &sqenergy,
642                                                        0);
643                                bits += b;
644                                qenergy += sqenergy;
645                            }
646                            sce->sf_idx[w*16+g]--;
647                            dists[w*16+g] = dist - bits;
648                            qenergies[w*16+g] = qenergy;
649                            if (mb && (sce->sf_idx[w*16+g] < mindeltasf || (
650                                    (dists[w*16+g] < FFMIN(uplmax*uplims[w*16+g], euplims[w*16+g]))
651                                    && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
652                                ) )) {
653                                break;
654                            }
655                        }
656                    } else if (tbits > toofewbits && sce->sf_idx[w*16+g] < FFMIN(maxdeltasf, maxsf[w*16+g])
657                            && (dists[w*16+g] < FFMIN(euplims[w*16+g], uplims[w*16+g]))
658                            && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
659                        ) {
660                        /** Um... over target. Save bits for more important stuff. */
661                        for (i = 0; i < depth && sce->sf_idx[w*16+g] < maxdeltasf; ++i) {
662                            int cb, bits;
663                            float dist, qenergy;
664                            cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]+1);
665                            if (cb > 0) {
666                                dist = qenergy = 0.f;
667                                bits = 0;
668                                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
669                                    int b;
670                                    float sqenergy;
671                                    dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
672                                                            scaled + w2*128,
673                                                            sce->ics.swb_sizes[g],
674                                                            sce->sf_idx[w*16+g]+1,
675                                                            cb,
676                                                            1.0f,
677                                                            INFINITY,
678                                                            &b, &sqenergy,
679                                                            0);
680                                    bits += b;
681                                    qenergy += sqenergy;
682                                }
683                                dist -= bits;
684                                if (dist < FFMIN(euplims[w*16+g], uplims[w*16+g])) {
685                                    sce->sf_idx[w*16+g]++;
686                                    dists[w*16+g] = dist;
687                                    qenergies[w*16+g] = qenergy;
688                                } else {
689                                    break;
690                                }
691                            } else {
692                                maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]);
693                                break;
694                            }
695                        }
696                    }
697                    prev = sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], mindeltasf, maxdeltasf);
698                    if (sce->sf_idx[w*16+g] != prevsc)
699                        fflag = 1;
700                    nminscaler = FFMIN(nminscaler, sce->sf_idx[w*16+g]);
701                    sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
702                }
703                start += sce->ics.swb_sizes[g];
704            }
705        }
706
707        /** SF difference limit violation risk. Must re-clamp. */
708        prev = -1;
709        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
710            for (g = 0; g < sce->ics.num_swb; g++) {
711                if (!sce->zeroes[w*16+g]) {
712                    int prevsf = sce->sf_idx[w*16+g];
713                    if (prev < 0)
714                        prev = prevsf;
715                    sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], prev - SCALE_MAX_DIFF, prev + SCALE_MAX_DIFF);
716                    sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
717                    prev = sce->sf_idx[w*16+g];
718                    if (!fflag && prevsf != sce->sf_idx[w*16+g])
719                        fflag = 1;
720                }
721            }
722        }
723
724        its++;
725    } while (fflag && its < maxits);
726
727    /** Scout out next nonzero bands */
728    ff_init_nextband_map(sce, nextband);
729
730    prev = -1;
731    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
732        /** Make sure proper codebooks are set */
733        for (g = 0; g < sce->ics.num_swb; g++) {
734            if (!sce->zeroes[w*16+g]) {
735                sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
736                if (sce->band_type[w*16+g] <= 0) {
737                    if (!ff_sfdelta_can_remove_band(sce, nextband, prev, w*16+g)) {
738                        /** Cannot zero out, make sure it's not attempted */
739                        sce->band_type[w*16+g] = 1;
740                    } else {
741                        sce->zeroes[w*16+g] = 1;
742                        sce->band_type[w*16+g] = 0;
743                    }
744                }
745            } else {
746                sce->band_type[w*16+g] = 0;
747            }
748            /** Check that there's no SF delta range violations */
749            if (!sce->zeroes[w*16+g]) {
750                if (prev != -1) {
751                    av_unused int sfdiff = sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO;
752                    av_assert1(sfdiff >= 0 && sfdiff <= 2*SCALE_MAX_DIFF);
753                } else if (sce->zeroes[0]) {
754                    /** Set global gain to something useful */
755                    sce->sf_idx[0] = sce->sf_idx[w*16+g];
756                }
757                prev = sce->sf_idx[w*16+g];
758            }
759        }
760    }
761}
762
763#endif /* AVCODEC_AACCODER_TWOLOOP_H */
764