1cabdff1aSopenharmony_ci/*
2cabdff1aSopenharmony_ci * AAC encoder twoloop coder
3cabdff1aSopenharmony_ci * Copyright (C) 2008-2009 Konstantin Shishkov
4cabdff1aSopenharmony_ci *
5cabdff1aSopenharmony_ci * This file is part of FFmpeg.
6cabdff1aSopenharmony_ci *
7cabdff1aSopenharmony_ci * FFmpeg is free software; you can redistribute it and/or
8cabdff1aSopenharmony_ci * modify it under the terms of the GNU Lesser General Public
9cabdff1aSopenharmony_ci * License as published by the Free Software Foundation; either
10cabdff1aSopenharmony_ci * version 2.1 of the License, or (at your option) any later version.
11cabdff1aSopenharmony_ci *
12cabdff1aSopenharmony_ci * FFmpeg is distributed in the hope that it will be useful,
13cabdff1aSopenharmony_ci * but WITHOUT ANY WARRANTY; without even the implied warranty of
14cabdff1aSopenharmony_ci * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15cabdff1aSopenharmony_ci * Lesser General Public License for more details.
16cabdff1aSopenharmony_ci *
17cabdff1aSopenharmony_ci * You should have received a copy of the GNU Lesser General Public
18cabdff1aSopenharmony_ci * License along with FFmpeg; if not, write to the Free Software
19cabdff1aSopenharmony_ci * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20cabdff1aSopenharmony_ci */
21cabdff1aSopenharmony_ci
22cabdff1aSopenharmony_ci/**
23cabdff1aSopenharmony_ci * @file
24cabdff1aSopenharmony_ci * AAC encoder twoloop coder
25cabdff1aSopenharmony_ci * @author Konstantin Shishkov, Claudio Freire
26cabdff1aSopenharmony_ci */
27cabdff1aSopenharmony_ci
28cabdff1aSopenharmony_ci/**
29cabdff1aSopenharmony_ci * This file contains a template for the twoloop coder function.
30cabdff1aSopenharmony_ci * It needs to be provided, externally, as an already included declaration,
31cabdff1aSopenharmony_ci * the following functions from aacenc_quantization/util.h. They're not included
32cabdff1aSopenharmony_ci * explicitly here to make it possible to provide alternative implementations:
33cabdff1aSopenharmony_ci *  - quantize_band_cost
34cabdff1aSopenharmony_ci *  - abs_pow34_v
35cabdff1aSopenharmony_ci *  - find_max_val
36cabdff1aSopenharmony_ci *  - find_min_book
37cabdff1aSopenharmony_ci *  - find_form_factor
38cabdff1aSopenharmony_ci */
39cabdff1aSopenharmony_ci
40cabdff1aSopenharmony_ci#ifndef AVCODEC_AACCODER_TWOLOOP_H
41cabdff1aSopenharmony_ci#define AVCODEC_AACCODER_TWOLOOP_H
42cabdff1aSopenharmony_ci
43cabdff1aSopenharmony_ci#include <float.h>
44cabdff1aSopenharmony_ci#include "libavutil/mathematics.h"
45cabdff1aSopenharmony_ci#include "mathops.h"
46cabdff1aSopenharmony_ci#include "avcodec.h"
47cabdff1aSopenharmony_ci#include "put_bits.h"
48cabdff1aSopenharmony_ci#include "aac.h"
49cabdff1aSopenharmony_ci#include "aacenc.h"
50cabdff1aSopenharmony_ci#include "aactab.h"
51cabdff1aSopenharmony_ci#include "aacenctab.h"
52cabdff1aSopenharmony_ci
53cabdff1aSopenharmony_ci/** Frequency in Hz for lower limit of noise substitution **/
54cabdff1aSopenharmony_ci#define NOISE_LOW_LIMIT 4000
55cabdff1aSopenharmony_ci
56cabdff1aSopenharmony_ci#define sclip(x) av_clip(x,60,218)
57cabdff1aSopenharmony_ci
58cabdff1aSopenharmony_ci/* Reflects the cost to change codebooks */
59cabdff1aSopenharmony_cistatic inline int ff_pns_bits(SingleChannelElement *sce, int w, int g)
60cabdff1aSopenharmony_ci{
61cabdff1aSopenharmony_ci    return (!g || !sce->zeroes[w*16+g-1] || !sce->can_pns[w*16+g-1]) ? 9 : 5;
62cabdff1aSopenharmony_ci}
63cabdff1aSopenharmony_ci
64cabdff1aSopenharmony_ci/**
65cabdff1aSopenharmony_ci * two-loop quantizers search taken from ISO 13818-7 Appendix C
66cabdff1aSopenharmony_ci */
67cabdff1aSopenharmony_cistatic void search_for_quantizers_twoloop(AVCodecContext *avctx,
68cabdff1aSopenharmony_ci                                          AACEncContext *s,
69cabdff1aSopenharmony_ci                                          SingleChannelElement *sce,
70cabdff1aSopenharmony_ci                                          const float lambda)
71cabdff1aSopenharmony_ci{
72cabdff1aSopenharmony_ci    int start = 0, i, w, w2, g, recomprd;
73cabdff1aSopenharmony_ci    int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
74cabdff1aSopenharmony_ci        / ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->ch_layout.nb_channels)
75cabdff1aSopenharmony_ci        * (lambda / 120.f);
76cabdff1aSopenharmony_ci    int refbits = destbits;
77cabdff1aSopenharmony_ci    int toomanybits, toofewbits;
78cabdff1aSopenharmony_ci    char nzs[128];
79cabdff1aSopenharmony_ci    uint8_t nextband[128];
80cabdff1aSopenharmony_ci    int maxsf[128], minsf[128];
81cabdff1aSopenharmony_ci    float dists[128] = { 0 }, qenergies[128] = { 0 }, uplims[128], euplims[128], energies[128];
82cabdff1aSopenharmony_ci    float maxvals[128], spread_thr_r[128];
83cabdff1aSopenharmony_ci    float min_spread_thr_r, max_spread_thr_r;
84cabdff1aSopenharmony_ci
85cabdff1aSopenharmony_ci    /**
86cabdff1aSopenharmony_ci     * rdlambda controls the maximum tolerated distortion. Twoloop
87cabdff1aSopenharmony_ci     * will keep iterating until it fails to lower it or it reaches
88cabdff1aSopenharmony_ci     * ulimit * rdlambda. Keeping it low increases quality on difficult
89cabdff1aSopenharmony_ci     * signals, but lower it too much, and bits will be taken from weak
90cabdff1aSopenharmony_ci     * signals, creating "holes". A balance is necessary.
91cabdff1aSopenharmony_ci     * rdmax and rdmin specify the relative deviation from rdlambda
92cabdff1aSopenharmony_ci     * allowed for tonality compensation
93cabdff1aSopenharmony_ci     */
94cabdff1aSopenharmony_ci    float rdlambda = av_clipf(2.0f * 120.f / lambda, 0.0625f, 16.0f);
95cabdff1aSopenharmony_ci    const float nzslope = 1.5f;
96cabdff1aSopenharmony_ci    float rdmin = 0.03125f;
97cabdff1aSopenharmony_ci    float rdmax = 1.0f;
98cabdff1aSopenharmony_ci
99cabdff1aSopenharmony_ci    /**
100cabdff1aSopenharmony_ci     * sfoffs controls an offset of optmium allocation that will be
101cabdff1aSopenharmony_ci     * applied based on lambda. Keep it real and modest, the loop
102cabdff1aSopenharmony_ci     * will take care of the rest, this just accelerates convergence
103cabdff1aSopenharmony_ci     */
104cabdff1aSopenharmony_ci    float sfoffs = av_clipf(log2f(120.0f / lambda) * 4.0f, -5, 10);
105cabdff1aSopenharmony_ci
106cabdff1aSopenharmony_ci    int fflag, minscaler, maxscaler, nminscaler;
107cabdff1aSopenharmony_ci    int its  = 0;
108cabdff1aSopenharmony_ci    int maxits = 30;
109cabdff1aSopenharmony_ci    int allz = 0;
110cabdff1aSopenharmony_ci    int tbits;
111cabdff1aSopenharmony_ci    int cutoff = 1024;
112cabdff1aSopenharmony_ci    int pns_start_pos;
113cabdff1aSopenharmony_ci    int prev;
114cabdff1aSopenharmony_ci
115cabdff1aSopenharmony_ci    /**
116cabdff1aSopenharmony_ci     * zeroscale controls a multiplier of the threshold, if band energy
117cabdff1aSopenharmony_ci     * is below this, a zero is forced. Keep it lower than 1, unless
118cabdff1aSopenharmony_ci     * low lambda is used, because energy < threshold doesn't mean there's
119cabdff1aSopenharmony_ci     * no audible signal outright, it's just energy. Also make it rise
120cabdff1aSopenharmony_ci     * slower than rdlambda, as rdscale has due compensation with
121cabdff1aSopenharmony_ci     * noisy band depriorization below, whereas zeroing logic is rather dumb
122cabdff1aSopenharmony_ci     */
123cabdff1aSopenharmony_ci    float zeroscale;
124cabdff1aSopenharmony_ci    if (lambda > 120.f) {
125cabdff1aSopenharmony_ci        zeroscale = av_clipf(powf(120.f / lambda, 0.25f), 0.0625f, 1.0f);
126cabdff1aSopenharmony_ci    } else {
127cabdff1aSopenharmony_ci        zeroscale = 1.f;
128cabdff1aSopenharmony_ci    }
129cabdff1aSopenharmony_ci
130cabdff1aSopenharmony_ci    if (s->psy.bitres.alloc >= 0) {
131cabdff1aSopenharmony_ci        /**
132cabdff1aSopenharmony_ci         * Psy granted us extra bits to use, from the reservoire
133cabdff1aSopenharmony_ci         * adjust for lambda except what psy already did
134cabdff1aSopenharmony_ci         */
135cabdff1aSopenharmony_ci        destbits = s->psy.bitres.alloc
136cabdff1aSopenharmony_ci            * (lambda / (avctx->global_quality ? avctx->global_quality : 120));
137cabdff1aSopenharmony_ci    }
138cabdff1aSopenharmony_ci
139cabdff1aSopenharmony_ci    if (avctx->flags & AV_CODEC_FLAG_QSCALE) {
140cabdff1aSopenharmony_ci        /**
141cabdff1aSopenharmony_ci         * Constant Q-scale doesn't compensate MS coding on its own
142cabdff1aSopenharmony_ci         * No need to be overly precise, this only controls RD
143cabdff1aSopenharmony_ci         * adjustment CB limits when going overboard
144cabdff1aSopenharmony_ci         */
145cabdff1aSopenharmony_ci        if (s->options.mid_side && s->cur_type == TYPE_CPE)
146cabdff1aSopenharmony_ci            destbits *= 2;
147cabdff1aSopenharmony_ci
148cabdff1aSopenharmony_ci        /**
149cabdff1aSopenharmony_ci         * When using a constant Q-scale, don't adjust bits, just use RD
150cabdff1aSopenharmony_ci         * Don't let it go overboard, though... 8x psy target is enough
151cabdff1aSopenharmony_ci         */
152cabdff1aSopenharmony_ci        toomanybits = 5800;
153cabdff1aSopenharmony_ci        toofewbits = destbits / 16;
154cabdff1aSopenharmony_ci
155cabdff1aSopenharmony_ci        /** Don't offset scalers, just RD */
156cabdff1aSopenharmony_ci        sfoffs = sce->ics.num_windows - 1;
157cabdff1aSopenharmony_ci        rdlambda = sqrtf(rdlambda);
158cabdff1aSopenharmony_ci
159cabdff1aSopenharmony_ci        /** search further */
160cabdff1aSopenharmony_ci        maxits *= 2;
161cabdff1aSopenharmony_ci    } else {
162cabdff1aSopenharmony_ci        /* When using ABR, be strict, but a reasonable leeway is
163cabdff1aSopenharmony_ci         * critical to allow RC to smoothly track desired bitrate
164cabdff1aSopenharmony_ci         * without sudden quality drops that cause audible artifacts.
165cabdff1aSopenharmony_ci         * Symmetry is also desirable, to avoid systematic bias.
166cabdff1aSopenharmony_ci         */
167cabdff1aSopenharmony_ci        toomanybits = destbits + destbits/8;
168cabdff1aSopenharmony_ci        toofewbits = destbits - destbits/8;
169cabdff1aSopenharmony_ci
170cabdff1aSopenharmony_ci        sfoffs = 0;
171cabdff1aSopenharmony_ci        rdlambda = sqrtf(rdlambda);
172cabdff1aSopenharmony_ci    }
173cabdff1aSopenharmony_ci
174cabdff1aSopenharmony_ci    /** and zero out above cutoff frequency */
175cabdff1aSopenharmony_ci    {
176cabdff1aSopenharmony_ci        int wlen = 1024 / sce->ics.num_windows;
177cabdff1aSopenharmony_ci        int bandwidth;
178cabdff1aSopenharmony_ci
179cabdff1aSopenharmony_ci        /**
180cabdff1aSopenharmony_ci         * Scale, psy gives us constant quality, this LP only scales
181cabdff1aSopenharmony_ci         * bitrate by lambda, so we save bits on subjectively unimportant HF
182cabdff1aSopenharmony_ci         * rather than increase quantization noise. Adjust nominal bitrate
183cabdff1aSopenharmony_ci         * to effective bitrate according to encoding parameters,
184cabdff1aSopenharmony_ci         * AAC_CUTOFF_FROM_BITRATE is calibrated for effective bitrate.
185cabdff1aSopenharmony_ci         */
186cabdff1aSopenharmony_ci        float rate_bandwidth_multiplier = 1.5f;
187cabdff1aSopenharmony_ci        int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE)
188cabdff1aSopenharmony_ci            ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
189cabdff1aSopenharmony_ci            : (avctx->bit_rate / avctx->ch_layout.nb_channels);
190cabdff1aSopenharmony_ci
191cabdff1aSopenharmony_ci        /** Compensate for extensions that increase efficiency */
192cabdff1aSopenharmony_ci        if (s->options.pns || s->options.intensity_stereo)
193cabdff1aSopenharmony_ci            frame_bit_rate *= 1.15f;
194cabdff1aSopenharmony_ci
195cabdff1aSopenharmony_ci        if (avctx->cutoff > 0) {
196cabdff1aSopenharmony_ci            bandwidth = avctx->cutoff;
197cabdff1aSopenharmony_ci        } else {
198cabdff1aSopenharmony_ci            bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
199cabdff1aSopenharmony_ci            s->psy.cutoff = bandwidth;
200cabdff1aSopenharmony_ci        }
201cabdff1aSopenharmony_ci
202cabdff1aSopenharmony_ci        cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
203cabdff1aSopenharmony_ci        pns_start_pos = NOISE_LOW_LIMIT * 2 * wlen / avctx->sample_rate;
204cabdff1aSopenharmony_ci    }
205cabdff1aSopenharmony_ci
206cabdff1aSopenharmony_ci    /**
207cabdff1aSopenharmony_ci     * for values above this the decoder might end up in an endless loop
208cabdff1aSopenharmony_ci     * due to always having more bits than what can be encoded.
209cabdff1aSopenharmony_ci     */
210cabdff1aSopenharmony_ci    destbits = FFMIN(destbits, 5800);
211cabdff1aSopenharmony_ci    toomanybits = FFMIN(toomanybits, 5800);
212cabdff1aSopenharmony_ci    toofewbits = FFMIN(toofewbits, 5800);
213cabdff1aSopenharmony_ci    /**
214cabdff1aSopenharmony_ci     * XXX: some heuristic to determine initial quantizers will reduce search time
215cabdff1aSopenharmony_ci     * determine zero bands and upper distortion limits
216cabdff1aSopenharmony_ci     */
217cabdff1aSopenharmony_ci    min_spread_thr_r = -1;
218cabdff1aSopenharmony_ci    max_spread_thr_r = -1;
219cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
220cabdff1aSopenharmony_ci        for (g = start = 0;  g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
221cabdff1aSopenharmony_ci            int nz = 0;
222cabdff1aSopenharmony_ci            float uplim = 0.0f, energy = 0.0f, spread = 0.0f;
223cabdff1aSopenharmony_ci            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
224cabdff1aSopenharmony_ci                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
225cabdff1aSopenharmony_ci                if (start >= cutoff || band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f) {
226cabdff1aSopenharmony_ci                    sce->zeroes[(w+w2)*16+g] = 1;
227cabdff1aSopenharmony_ci                    continue;
228cabdff1aSopenharmony_ci                }
229cabdff1aSopenharmony_ci                nz = 1;
230cabdff1aSopenharmony_ci            }
231cabdff1aSopenharmony_ci            if (!nz) {
232cabdff1aSopenharmony_ci                uplim = 0.0f;
233cabdff1aSopenharmony_ci            } else {
234cabdff1aSopenharmony_ci                nz = 0;
235cabdff1aSopenharmony_ci                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
236cabdff1aSopenharmony_ci                    FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
237cabdff1aSopenharmony_ci                    if (band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f)
238cabdff1aSopenharmony_ci                        continue;
239cabdff1aSopenharmony_ci                    uplim += band->threshold;
240cabdff1aSopenharmony_ci                    energy += band->energy;
241cabdff1aSopenharmony_ci                    spread += band->spread;
242cabdff1aSopenharmony_ci                    nz++;
243cabdff1aSopenharmony_ci                }
244cabdff1aSopenharmony_ci            }
245cabdff1aSopenharmony_ci            uplims[w*16+g] = uplim;
246cabdff1aSopenharmony_ci            energies[w*16+g] = energy;
247cabdff1aSopenharmony_ci            nzs[w*16+g] = nz;
248cabdff1aSopenharmony_ci            sce->zeroes[w*16+g] = !nz;
249cabdff1aSopenharmony_ci            allz |= nz;
250cabdff1aSopenharmony_ci            if (nz && sce->can_pns[w*16+g]) {
251cabdff1aSopenharmony_ci                spread_thr_r[w*16+g] = energy * nz / (uplim * spread);
252cabdff1aSopenharmony_ci                if (min_spread_thr_r < 0) {
253cabdff1aSopenharmony_ci                    min_spread_thr_r = max_spread_thr_r = spread_thr_r[w*16+g];
254cabdff1aSopenharmony_ci                } else {
255cabdff1aSopenharmony_ci                    min_spread_thr_r = FFMIN(min_spread_thr_r, spread_thr_r[w*16+g]);
256cabdff1aSopenharmony_ci                    max_spread_thr_r = FFMAX(max_spread_thr_r, spread_thr_r[w*16+g]);
257cabdff1aSopenharmony_ci                }
258cabdff1aSopenharmony_ci            }
259cabdff1aSopenharmony_ci        }
260cabdff1aSopenharmony_ci    }
261cabdff1aSopenharmony_ci
262cabdff1aSopenharmony_ci    /** Compute initial scalers */
263cabdff1aSopenharmony_ci    minscaler = 65535;
264cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
265cabdff1aSopenharmony_ci        for (g = 0;  g < sce->ics.num_swb; g++) {
266cabdff1aSopenharmony_ci            if (sce->zeroes[w*16+g]) {
267cabdff1aSopenharmony_ci                sce->sf_idx[w*16+g] = SCALE_ONE_POS;
268cabdff1aSopenharmony_ci                continue;
269cabdff1aSopenharmony_ci            }
270cabdff1aSopenharmony_ci            /**
271cabdff1aSopenharmony_ci             * log2f-to-distortion ratio is, technically, 2 (1.5db = 4, but it's power vs level so it's 2).
272cabdff1aSopenharmony_ci             * But, as offsets are applied, low-frequency signals are too sensitive to the induced distortion,
273cabdff1aSopenharmony_ci             * so we make scaling more conservative by choosing a lower log2f-to-distortion ratio, and thus
274cabdff1aSopenharmony_ci             * more robust.
275cabdff1aSopenharmony_ci             */
276cabdff1aSopenharmony_ci            sce->sf_idx[w*16+g] = av_clip(
277cabdff1aSopenharmony_ci                SCALE_ONE_POS
278cabdff1aSopenharmony_ci                    + 1.75*log2f(FFMAX(0.00125f,uplims[w*16+g]) / sce->ics.swb_sizes[g])
279cabdff1aSopenharmony_ci                    + sfoffs,
280cabdff1aSopenharmony_ci                60, SCALE_MAX_POS);
281cabdff1aSopenharmony_ci            minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
282cabdff1aSopenharmony_ci        }
283cabdff1aSopenharmony_ci    }
284cabdff1aSopenharmony_ci
285cabdff1aSopenharmony_ci    /** Clip */
286cabdff1aSopenharmony_ci    minscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
287cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
288cabdff1aSopenharmony_ci        for (g = 0;  g < sce->ics.num_swb; g++)
289cabdff1aSopenharmony_ci            if (!sce->zeroes[w*16+g])
290cabdff1aSopenharmony_ci                sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF - 1);
291cabdff1aSopenharmony_ci
292cabdff1aSopenharmony_ci    if (!allz)
293cabdff1aSopenharmony_ci        return;
294cabdff1aSopenharmony_ci    s->abs_pow34(s->scoefs, sce->coeffs, 1024);
295cabdff1aSopenharmony_ci    ff_quantize_band_cost_cache_init(s);
296cabdff1aSopenharmony_ci
297cabdff1aSopenharmony_ci    for (i = 0; i < sizeof(minsf) / sizeof(minsf[0]); ++i)
298cabdff1aSopenharmony_ci        minsf[i] = 0;
299cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
300cabdff1aSopenharmony_ci        start = w*128;
301cabdff1aSopenharmony_ci        for (g = 0;  g < sce->ics.num_swb; g++) {
302cabdff1aSopenharmony_ci            const float *scaled = s->scoefs + start;
303cabdff1aSopenharmony_ci            int minsfidx;
304cabdff1aSopenharmony_ci            maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
305cabdff1aSopenharmony_ci            if (maxvals[w*16+g] > 0) {
306cabdff1aSopenharmony_ci                minsfidx = coef2minsf(maxvals[w*16+g]);
307cabdff1aSopenharmony_ci                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
308cabdff1aSopenharmony_ci                    minsf[(w+w2)*16+g] = minsfidx;
309cabdff1aSopenharmony_ci            }
310cabdff1aSopenharmony_ci            start += sce->ics.swb_sizes[g];
311cabdff1aSopenharmony_ci        }
312cabdff1aSopenharmony_ci    }
313cabdff1aSopenharmony_ci
314cabdff1aSopenharmony_ci    /**
315cabdff1aSopenharmony_ci     * Scale uplims to match rate distortion to quality
316cabdff1aSopenharmony_ci     * bu applying noisy band depriorization and tonal band priorization.
317cabdff1aSopenharmony_ci     * Maxval-energy ratio gives us an idea of how noisy/tonal the band is.
318cabdff1aSopenharmony_ci     * If maxval^2 ~ energy, then that band is mostly noise, and we can relax
319cabdff1aSopenharmony_ci     * rate distortion requirements.
320cabdff1aSopenharmony_ci     */
321cabdff1aSopenharmony_ci    memcpy(euplims, uplims, sizeof(euplims));
322cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
323cabdff1aSopenharmony_ci        /** psy already priorizes transients to some extent */
324cabdff1aSopenharmony_ci        float de_psy_factor = (sce->ics.num_windows > 1) ? 8.0f / sce->ics.group_len[w] : 1.0f;
325cabdff1aSopenharmony_ci        start = w*128;
326cabdff1aSopenharmony_ci        for (g = 0;  g < sce->ics.num_swb; g++) {
327cabdff1aSopenharmony_ci            if (nzs[g] > 0) {
328cabdff1aSopenharmony_ci                float cleanup_factor = ff_sqrf(av_clipf(start / (cutoff * 0.75f), 1.0f, 2.0f));
329cabdff1aSopenharmony_ci                float energy2uplim = find_form_factor(
330cabdff1aSopenharmony_ci                    sce->ics.group_len[w], sce->ics.swb_sizes[g],
331cabdff1aSopenharmony_ci                    uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]),
332cabdff1aSopenharmony_ci                    sce->coeffs + start,
333cabdff1aSopenharmony_ci                    nzslope * cleanup_factor);
334cabdff1aSopenharmony_ci                energy2uplim *= de_psy_factor;
335cabdff1aSopenharmony_ci                if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) {
336cabdff1aSopenharmony_ci                    /** In ABR, we need to priorize less and let rate control do its thing */
337cabdff1aSopenharmony_ci                    energy2uplim = sqrtf(energy2uplim);
338cabdff1aSopenharmony_ci                }
339cabdff1aSopenharmony_ci                energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
340cabdff1aSopenharmony_ci                uplims[w*16+g] *= av_clipf(rdlambda * energy2uplim, rdmin, rdmax)
341cabdff1aSopenharmony_ci                                  * sce->ics.group_len[w];
342cabdff1aSopenharmony_ci
343cabdff1aSopenharmony_ci                energy2uplim = find_form_factor(
344cabdff1aSopenharmony_ci                    sce->ics.group_len[w], sce->ics.swb_sizes[g],
345cabdff1aSopenharmony_ci                    uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]),
346cabdff1aSopenharmony_ci                    sce->coeffs + start,
347cabdff1aSopenharmony_ci                    2.0f);
348cabdff1aSopenharmony_ci                energy2uplim *= de_psy_factor;
349cabdff1aSopenharmony_ci                if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) {
350cabdff1aSopenharmony_ci                    /** In ABR, we need to priorize less and let rate control do its thing */
351cabdff1aSopenharmony_ci                    energy2uplim = sqrtf(energy2uplim);
352cabdff1aSopenharmony_ci                }
353cabdff1aSopenharmony_ci                energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
354cabdff1aSopenharmony_ci                euplims[w*16+g] *= av_clipf(rdlambda * energy2uplim * sce->ics.group_len[w],
355cabdff1aSopenharmony_ci                    0.5f, 1.0f);
356cabdff1aSopenharmony_ci            }
357cabdff1aSopenharmony_ci            start += sce->ics.swb_sizes[g];
358cabdff1aSopenharmony_ci        }
359cabdff1aSopenharmony_ci    }
360cabdff1aSopenharmony_ci
361cabdff1aSopenharmony_ci    for (i = 0; i < sizeof(maxsf) / sizeof(maxsf[0]); ++i)
362cabdff1aSopenharmony_ci        maxsf[i] = SCALE_MAX_POS;
363cabdff1aSopenharmony_ci
364cabdff1aSopenharmony_ci    //perform two-loop search
365cabdff1aSopenharmony_ci    //outer loop - improve quality
366cabdff1aSopenharmony_ci    do {
367cabdff1aSopenharmony_ci        //inner loop - quantize spectrum to fit into given number of bits
368cabdff1aSopenharmony_ci        int overdist;
369cabdff1aSopenharmony_ci        int qstep = its ? 1 : 32;
370cabdff1aSopenharmony_ci        do {
371cabdff1aSopenharmony_ci            int changed = 0;
372cabdff1aSopenharmony_ci            prev = -1;
373cabdff1aSopenharmony_ci            recomprd = 0;
374cabdff1aSopenharmony_ci            tbits = 0;
375cabdff1aSopenharmony_ci            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
376cabdff1aSopenharmony_ci                start = w*128;
377cabdff1aSopenharmony_ci                for (g = 0;  g < sce->ics.num_swb; g++) {
378cabdff1aSopenharmony_ci                    const float *coefs = &sce->coeffs[start];
379cabdff1aSopenharmony_ci                    const float *scaled = &s->scoefs[start];
380cabdff1aSopenharmony_ci                    int bits = 0;
381cabdff1aSopenharmony_ci                    int cb;
382cabdff1aSopenharmony_ci                    float dist = 0.0f;
383cabdff1aSopenharmony_ci                    float qenergy = 0.0f;
384cabdff1aSopenharmony_ci
385cabdff1aSopenharmony_ci                    if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
386cabdff1aSopenharmony_ci                        start += sce->ics.swb_sizes[g];
387cabdff1aSopenharmony_ci                        if (sce->can_pns[w*16+g]) {
388cabdff1aSopenharmony_ci                            /** PNS isn't free */
389cabdff1aSopenharmony_ci                            tbits += ff_pns_bits(sce, w, g);
390cabdff1aSopenharmony_ci                        }
391cabdff1aSopenharmony_ci                        continue;
392cabdff1aSopenharmony_ci                    }
393cabdff1aSopenharmony_ci                    cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
394cabdff1aSopenharmony_ci                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
395cabdff1aSopenharmony_ci                        int b;
396cabdff1aSopenharmony_ci                        float sqenergy;
397cabdff1aSopenharmony_ci                        dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
398cabdff1aSopenharmony_ci                                                   scaled + w2*128,
399cabdff1aSopenharmony_ci                                                   sce->ics.swb_sizes[g],
400cabdff1aSopenharmony_ci                                                   sce->sf_idx[w*16+g],
401cabdff1aSopenharmony_ci                                                   cb,
402cabdff1aSopenharmony_ci                                                   1.0f,
403cabdff1aSopenharmony_ci                                                   INFINITY,
404cabdff1aSopenharmony_ci                                                   &b, &sqenergy,
405cabdff1aSopenharmony_ci                                                   0);
406cabdff1aSopenharmony_ci                        bits += b;
407cabdff1aSopenharmony_ci                        qenergy += sqenergy;
408cabdff1aSopenharmony_ci                    }
409cabdff1aSopenharmony_ci                    dists[w*16+g] = dist - bits;
410cabdff1aSopenharmony_ci                    qenergies[w*16+g] = qenergy;
411cabdff1aSopenharmony_ci                    if (prev != -1) {
412cabdff1aSopenharmony_ci                        int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF);
413cabdff1aSopenharmony_ci                        bits += ff_aac_scalefactor_bits[sfdiff];
414cabdff1aSopenharmony_ci                    }
415cabdff1aSopenharmony_ci                    tbits += bits;
416cabdff1aSopenharmony_ci                    start += sce->ics.swb_sizes[g];
417cabdff1aSopenharmony_ci                    prev = sce->sf_idx[w*16+g];
418cabdff1aSopenharmony_ci                }
419cabdff1aSopenharmony_ci            }
420cabdff1aSopenharmony_ci            if (tbits > toomanybits) {
421cabdff1aSopenharmony_ci                recomprd = 1;
422cabdff1aSopenharmony_ci                for (i = 0; i < 128; i++) {
423cabdff1aSopenharmony_ci                    if (sce->sf_idx[i] < (SCALE_MAX_POS - SCALE_DIV_512)) {
424cabdff1aSopenharmony_ci                        int maxsf_i = (tbits > 5800) ? SCALE_MAX_POS : maxsf[i];
425cabdff1aSopenharmony_ci                        int new_sf = FFMIN(maxsf_i, sce->sf_idx[i] + qstep);
426cabdff1aSopenharmony_ci                        if (new_sf != sce->sf_idx[i]) {
427cabdff1aSopenharmony_ci                            sce->sf_idx[i] = new_sf;
428cabdff1aSopenharmony_ci                            changed = 1;
429cabdff1aSopenharmony_ci                        }
430cabdff1aSopenharmony_ci                    }
431cabdff1aSopenharmony_ci                }
432cabdff1aSopenharmony_ci            } else if (tbits < toofewbits) {
433cabdff1aSopenharmony_ci                recomprd = 1;
434cabdff1aSopenharmony_ci                for (i = 0; i < 128; i++) {
435cabdff1aSopenharmony_ci                    if (sce->sf_idx[i] > SCALE_ONE_POS) {
436cabdff1aSopenharmony_ci                        int new_sf = FFMAX3(minsf[i], SCALE_ONE_POS, sce->sf_idx[i] - qstep);
437cabdff1aSopenharmony_ci                        if (new_sf != sce->sf_idx[i]) {
438cabdff1aSopenharmony_ci                            sce->sf_idx[i] = new_sf;
439cabdff1aSopenharmony_ci                            changed = 1;
440cabdff1aSopenharmony_ci                        }
441cabdff1aSopenharmony_ci                    }
442cabdff1aSopenharmony_ci                }
443cabdff1aSopenharmony_ci            }
444cabdff1aSopenharmony_ci            qstep >>= 1;
445cabdff1aSopenharmony_ci            if (!qstep && tbits > toomanybits && sce->sf_idx[0] < 217 && changed)
446cabdff1aSopenharmony_ci                qstep = 1;
447cabdff1aSopenharmony_ci        } while (qstep);
448cabdff1aSopenharmony_ci
449cabdff1aSopenharmony_ci        overdist = 1;
450cabdff1aSopenharmony_ci        fflag = tbits < toofewbits;
451cabdff1aSopenharmony_ci        for (i = 0; i < 2 && (overdist || recomprd); ++i) {
452cabdff1aSopenharmony_ci            if (recomprd) {
453cabdff1aSopenharmony_ci                /** Must recompute distortion */
454cabdff1aSopenharmony_ci                prev = -1;
455cabdff1aSopenharmony_ci                tbits = 0;
456cabdff1aSopenharmony_ci                for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
457cabdff1aSopenharmony_ci                    start = w*128;
458cabdff1aSopenharmony_ci                    for (g = 0;  g < sce->ics.num_swb; g++) {
459cabdff1aSopenharmony_ci                        const float *coefs = sce->coeffs + start;
460cabdff1aSopenharmony_ci                        const float *scaled = s->scoefs + start;
461cabdff1aSopenharmony_ci                        int bits = 0;
462cabdff1aSopenharmony_ci                        int cb;
463cabdff1aSopenharmony_ci                        float dist = 0.0f;
464cabdff1aSopenharmony_ci                        float qenergy = 0.0f;
465cabdff1aSopenharmony_ci
466cabdff1aSopenharmony_ci                        if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
467cabdff1aSopenharmony_ci                            start += sce->ics.swb_sizes[g];
468cabdff1aSopenharmony_ci                            if (sce->can_pns[w*16+g]) {
469cabdff1aSopenharmony_ci                                /** PNS isn't free */
470cabdff1aSopenharmony_ci                                tbits += ff_pns_bits(sce, w, g);
471cabdff1aSopenharmony_ci                            }
472cabdff1aSopenharmony_ci                            continue;
473cabdff1aSopenharmony_ci                        }
474cabdff1aSopenharmony_ci                        cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
475cabdff1aSopenharmony_ci                        for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
476cabdff1aSopenharmony_ci                            int b;
477cabdff1aSopenharmony_ci                            float sqenergy;
478cabdff1aSopenharmony_ci                            dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
479cabdff1aSopenharmony_ci                                                    scaled + w2*128,
480cabdff1aSopenharmony_ci                                                    sce->ics.swb_sizes[g],
481cabdff1aSopenharmony_ci                                                    sce->sf_idx[w*16+g],
482cabdff1aSopenharmony_ci                                                    cb,
483cabdff1aSopenharmony_ci                                                    1.0f,
484cabdff1aSopenharmony_ci                                                    INFINITY,
485cabdff1aSopenharmony_ci                                                    &b, &sqenergy,
486cabdff1aSopenharmony_ci                                                    0);
487cabdff1aSopenharmony_ci                            bits += b;
488cabdff1aSopenharmony_ci                            qenergy += sqenergy;
489cabdff1aSopenharmony_ci                        }
490cabdff1aSopenharmony_ci                        dists[w*16+g] = dist - bits;
491cabdff1aSopenharmony_ci                        qenergies[w*16+g] = qenergy;
492cabdff1aSopenharmony_ci                        if (prev != -1) {
493cabdff1aSopenharmony_ci                            int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF);
494cabdff1aSopenharmony_ci                            bits += ff_aac_scalefactor_bits[sfdiff];
495cabdff1aSopenharmony_ci                        }
496cabdff1aSopenharmony_ci                        tbits += bits;
497cabdff1aSopenharmony_ci                        start += sce->ics.swb_sizes[g];
498cabdff1aSopenharmony_ci                        prev = sce->sf_idx[w*16+g];
499cabdff1aSopenharmony_ci                    }
500cabdff1aSopenharmony_ci                }
501cabdff1aSopenharmony_ci            }
502cabdff1aSopenharmony_ci            if (!i && s->options.pns && its > maxits/2 && tbits > toofewbits) {
503cabdff1aSopenharmony_ci                float maxoverdist = 0.0f;
504cabdff1aSopenharmony_ci                float ovrfactor = 1.f+(maxits-its)*16.f/maxits;
505cabdff1aSopenharmony_ci                overdist = recomprd = 0;
506cabdff1aSopenharmony_ci                for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
507cabdff1aSopenharmony_ci                    for (g = start = 0;  g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
508cabdff1aSopenharmony_ci                        if (!sce->zeroes[w*16+g] && sce->sf_idx[w*16+g] > SCALE_ONE_POS && dists[w*16+g] > uplims[w*16+g]*ovrfactor) {
509cabdff1aSopenharmony_ci                            float ovrdist = dists[w*16+g] / FFMAX(uplims[w*16+g],euplims[w*16+g]);
510cabdff1aSopenharmony_ci                            maxoverdist = FFMAX(maxoverdist, ovrdist);
511cabdff1aSopenharmony_ci                            overdist++;
512cabdff1aSopenharmony_ci                        }
513cabdff1aSopenharmony_ci                    }
514cabdff1aSopenharmony_ci                }
515cabdff1aSopenharmony_ci                if (overdist) {
516cabdff1aSopenharmony_ci                    /* We have overdistorted bands, trade for zeroes (that can be noise)
517cabdff1aSopenharmony_ci                     * Zero the bands in the lowest 1.25% spread-energy-threshold ranking
518cabdff1aSopenharmony_ci                     */
519cabdff1aSopenharmony_ci                    float minspread = max_spread_thr_r;
520cabdff1aSopenharmony_ci                    float maxspread = min_spread_thr_r;
521cabdff1aSopenharmony_ci                    float zspread;
522cabdff1aSopenharmony_ci                    int zeroable = 0;
523cabdff1aSopenharmony_ci                    int zeroed = 0;
524cabdff1aSopenharmony_ci                    int maxzeroed, zloop;
525cabdff1aSopenharmony_ci                    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
526cabdff1aSopenharmony_ci                        for (g = start = 0;  g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
527cabdff1aSopenharmony_ci                            if (start >= pns_start_pos && !sce->zeroes[w*16+g] && sce->can_pns[w*16+g]) {
528cabdff1aSopenharmony_ci                                minspread = FFMIN(minspread, spread_thr_r[w*16+g]);
529cabdff1aSopenharmony_ci                                maxspread = FFMAX(maxspread, spread_thr_r[w*16+g]);
530cabdff1aSopenharmony_ci                                zeroable++;
531cabdff1aSopenharmony_ci                            }
532cabdff1aSopenharmony_ci                        }
533cabdff1aSopenharmony_ci                    }
534cabdff1aSopenharmony_ci                    zspread = (maxspread-minspread) * 0.0125f + minspread;
535cabdff1aSopenharmony_ci                    /* Don't PNS everything even if allowed. It suppresses bit starvation signals from RC,
536cabdff1aSopenharmony_ci                     * and forced the hand of the later search_for_pns step.
537cabdff1aSopenharmony_ci                     * Instead, PNS a fraction of the spread_thr_r range depending on how starved for bits we are,
538cabdff1aSopenharmony_ci                     * and leave further PNSing to search_for_pns if worthwhile.
539cabdff1aSopenharmony_ci                     */
540cabdff1aSopenharmony_ci                    zspread = FFMIN3(min_spread_thr_r * 8.f, zspread,
541cabdff1aSopenharmony_ci                        ((toomanybits - tbits) * min_spread_thr_r + (tbits - toofewbits) * max_spread_thr_r) / (toomanybits - toofewbits + 1));
542cabdff1aSopenharmony_ci                    maxzeroed = FFMIN(zeroable, FFMAX(1, (zeroable * its + maxits - 1) / (2 * maxits)));
543cabdff1aSopenharmony_ci                    for (zloop = 0; zloop < 2; zloop++) {
544cabdff1aSopenharmony_ci                        /* Two passes: first distorted stuff - two birds in one shot and all that,
545cabdff1aSopenharmony_ci                         * then anything viable. Viable means not zero, but either CB=zero-able
546cabdff1aSopenharmony_ci                         * (too high SF), not SF <= 1 (that means we'd be operating at very high
547cabdff1aSopenharmony_ci                         * quality, we don't want PNS when doing VHQ), PNS allowed, and within
548cabdff1aSopenharmony_ci                         * the lowest ranking percentile.
549cabdff1aSopenharmony_ci                         */
550cabdff1aSopenharmony_ci                        float loopovrfactor = (zloop) ? 1.0f : ovrfactor;
551cabdff1aSopenharmony_ci                        int loopminsf = (zloop) ? (SCALE_ONE_POS - SCALE_DIV_512) : SCALE_ONE_POS;
552cabdff1aSopenharmony_ci                        int mcb;
553cabdff1aSopenharmony_ci                        for (g = sce->ics.num_swb-1; g > 0 && zeroed < maxzeroed; g--) {
554cabdff1aSopenharmony_ci                            if (sce->ics.swb_offset[g] < pns_start_pos)
555cabdff1aSopenharmony_ci                                continue;
556cabdff1aSopenharmony_ci                            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
557cabdff1aSopenharmony_ci                                if (!sce->zeroes[w*16+g] && sce->can_pns[w*16+g] && spread_thr_r[w*16+g] <= zspread
558cabdff1aSopenharmony_ci                                    && sce->sf_idx[w*16+g] > loopminsf
559cabdff1aSopenharmony_ci                                    && (dists[w*16+g] > loopovrfactor*uplims[w*16+g] || !(mcb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]))
560cabdff1aSopenharmony_ci                                        || (mcb <= 1 && dists[w*16+g] > FFMIN(uplims[w*16+g], euplims[w*16+g]))) ) {
561cabdff1aSopenharmony_ci                                    sce->zeroes[w*16+g] = 1;
562cabdff1aSopenharmony_ci                                    sce->band_type[w*16+g] = 0;
563cabdff1aSopenharmony_ci                                    zeroed++;
564cabdff1aSopenharmony_ci                                }
565cabdff1aSopenharmony_ci                            }
566cabdff1aSopenharmony_ci                        }
567cabdff1aSopenharmony_ci                    }
568cabdff1aSopenharmony_ci                    if (zeroed)
569cabdff1aSopenharmony_ci                        recomprd = fflag = 1;
570cabdff1aSopenharmony_ci                } else {
571cabdff1aSopenharmony_ci                    overdist = 0;
572cabdff1aSopenharmony_ci                }
573cabdff1aSopenharmony_ci            }
574cabdff1aSopenharmony_ci        }
575cabdff1aSopenharmony_ci
576cabdff1aSopenharmony_ci        minscaler = SCALE_MAX_POS;
577cabdff1aSopenharmony_ci        maxscaler = 0;
578cabdff1aSopenharmony_ci        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
579cabdff1aSopenharmony_ci            for (g = 0;  g < sce->ics.num_swb; g++) {
580cabdff1aSopenharmony_ci                if (!sce->zeroes[w*16+g]) {
581cabdff1aSopenharmony_ci                    minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
582cabdff1aSopenharmony_ci                    maxscaler = FFMAX(maxscaler, sce->sf_idx[w*16+g]);
583cabdff1aSopenharmony_ci                }
584cabdff1aSopenharmony_ci            }
585cabdff1aSopenharmony_ci        }
586cabdff1aSopenharmony_ci
587cabdff1aSopenharmony_ci        minscaler = nminscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
588cabdff1aSopenharmony_ci        prev = -1;
589cabdff1aSopenharmony_ci        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
590cabdff1aSopenharmony_ci            /** Start with big steps, end up fine-tunning */
591cabdff1aSopenharmony_ci            int depth = (its > maxits/2) ? ((its > maxits*2/3) ? 1 : 3) : 10;
592cabdff1aSopenharmony_ci            int edepth = depth+2;
593cabdff1aSopenharmony_ci            float uplmax = its / (maxits*0.25f) + 1.0f;
594cabdff1aSopenharmony_ci            uplmax *= (tbits > destbits) ? FFMIN(2.0f, tbits / (float)FFMAX(1,destbits)) : 1.0f;
595cabdff1aSopenharmony_ci            start = w * 128;
596cabdff1aSopenharmony_ci            for (g = 0; g < sce->ics.num_swb; g++) {
597cabdff1aSopenharmony_ci                int prevsc = sce->sf_idx[w*16+g];
598cabdff1aSopenharmony_ci                if (prev < 0 && !sce->zeroes[w*16+g])
599cabdff1aSopenharmony_ci                    prev = sce->sf_idx[0];
600cabdff1aSopenharmony_ci                if (!sce->zeroes[w*16+g]) {
601cabdff1aSopenharmony_ci                    const float *coefs = sce->coeffs + start;
602cabdff1aSopenharmony_ci                    const float *scaled = s->scoefs + start;
603cabdff1aSopenharmony_ci                    int cmb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
604cabdff1aSopenharmony_ci                    int mindeltasf = FFMAX(0, prev - SCALE_MAX_DIFF);
605cabdff1aSopenharmony_ci                    int maxdeltasf = FFMIN(SCALE_MAX_POS - SCALE_DIV_512, prev + SCALE_MAX_DIFF);
606cabdff1aSopenharmony_ci                    if ((!cmb || dists[w*16+g] > uplims[w*16+g]) && sce->sf_idx[w*16+g] > FFMAX(mindeltasf, minsf[w*16+g])) {
607cabdff1aSopenharmony_ci                        /* Try to make sure there is some energy in every nonzero band
608cabdff1aSopenharmony_ci                         * NOTE: This algorithm must be forcibly imbalanced, pushing harder
609cabdff1aSopenharmony_ci                         *  on holes or more distorted bands at first, otherwise there's
610cabdff1aSopenharmony_ci                         *  no net gain (since the next iteration will offset all bands
611cabdff1aSopenharmony_ci                         *  on the opposite direction to compensate for extra bits)
612cabdff1aSopenharmony_ci                         */
613cabdff1aSopenharmony_ci                        for (i = 0; i < edepth && sce->sf_idx[w*16+g] > mindeltasf; ++i) {
614cabdff1aSopenharmony_ci                            int cb, bits;
615cabdff1aSopenharmony_ci                            float dist, qenergy;
616cabdff1aSopenharmony_ci                            int mb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1);
617cabdff1aSopenharmony_ci                            cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
618cabdff1aSopenharmony_ci                            dist = qenergy = 0.f;
619cabdff1aSopenharmony_ci                            bits = 0;
620cabdff1aSopenharmony_ci                            if (!cb) {
621cabdff1aSopenharmony_ci                                maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g]-1, maxsf[w*16+g]);
622cabdff1aSopenharmony_ci                            } else if (i >= depth && dists[w*16+g] < euplims[w*16+g]) {
623cabdff1aSopenharmony_ci                                break;
624cabdff1aSopenharmony_ci                            }
625cabdff1aSopenharmony_ci                            /* !g is the DC band, it's important, since quantization error here
626cabdff1aSopenharmony_ci                             * applies to less than a cycle, it creates horrible intermodulation
627cabdff1aSopenharmony_ci                             * distortion if it doesn't stick to what psy requests
628cabdff1aSopenharmony_ci                             */
629cabdff1aSopenharmony_ci                            if (!g && sce->ics.num_windows > 1 && dists[w*16+g] >= euplims[w*16+g])
630cabdff1aSopenharmony_ci                                maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]);
631cabdff1aSopenharmony_ci                            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
632cabdff1aSopenharmony_ci                                int b;
633cabdff1aSopenharmony_ci                                float sqenergy;
634cabdff1aSopenharmony_ci                                dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
635cabdff1aSopenharmony_ci                                                        scaled + w2*128,
636cabdff1aSopenharmony_ci                                                        sce->ics.swb_sizes[g],
637cabdff1aSopenharmony_ci                                                        sce->sf_idx[w*16+g]-1,
638cabdff1aSopenharmony_ci                                                        cb,
639cabdff1aSopenharmony_ci                                                        1.0f,
640cabdff1aSopenharmony_ci                                                        INFINITY,
641cabdff1aSopenharmony_ci                                                        &b, &sqenergy,
642cabdff1aSopenharmony_ci                                                        0);
643cabdff1aSopenharmony_ci                                bits += b;
644cabdff1aSopenharmony_ci                                qenergy += sqenergy;
645cabdff1aSopenharmony_ci                            }
646cabdff1aSopenharmony_ci                            sce->sf_idx[w*16+g]--;
647cabdff1aSopenharmony_ci                            dists[w*16+g] = dist - bits;
648cabdff1aSopenharmony_ci                            qenergies[w*16+g] = qenergy;
649cabdff1aSopenharmony_ci                            if (mb && (sce->sf_idx[w*16+g] < mindeltasf || (
650cabdff1aSopenharmony_ci                                    (dists[w*16+g] < FFMIN(uplmax*uplims[w*16+g], euplims[w*16+g]))
651cabdff1aSopenharmony_ci                                    && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
652cabdff1aSopenharmony_ci                                ) )) {
653cabdff1aSopenharmony_ci                                break;
654cabdff1aSopenharmony_ci                            }
655cabdff1aSopenharmony_ci                        }
656cabdff1aSopenharmony_ci                    } else if (tbits > toofewbits && sce->sf_idx[w*16+g] < FFMIN(maxdeltasf, maxsf[w*16+g])
657cabdff1aSopenharmony_ci                            && (dists[w*16+g] < FFMIN(euplims[w*16+g], uplims[w*16+g]))
658cabdff1aSopenharmony_ci                            && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
659cabdff1aSopenharmony_ci                        ) {
660cabdff1aSopenharmony_ci                        /** Um... over target. Save bits for more important stuff. */
661cabdff1aSopenharmony_ci                        for (i = 0; i < depth && sce->sf_idx[w*16+g] < maxdeltasf; ++i) {
662cabdff1aSopenharmony_ci                            int cb, bits;
663cabdff1aSopenharmony_ci                            float dist, qenergy;
664cabdff1aSopenharmony_ci                            cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]+1);
665cabdff1aSopenharmony_ci                            if (cb > 0) {
666cabdff1aSopenharmony_ci                                dist = qenergy = 0.f;
667cabdff1aSopenharmony_ci                                bits = 0;
668cabdff1aSopenharmony_ci                                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
669cabdff1aSopenharmony_ci                                    int b;
670cabdff1aSopenharmony_ci                                    float sqenergy;
671cabdff1aSopenharmony_ci                                    dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
672cabdff1aSopenharmony_ci                                                            scaled + w2*128,
673cabdff1aSopenharmony_ci                                                            sce->ics.swb_sizes[g],
674cabdff1aSopenharmony_ci                                                            sce->sf_idx[w*16+g]+1,
675cabdff1aSopenharmony_ci                                                            cb,
676cabdff1aSopenharmony_ci                                                            1.0f,
677cabdff1aSopenharmony_ci                                                            INFINITY,
678cabdff1aSopenharmony_ci                                                            &b, &sqenergy,
679cabdff1aSopenharmony_ci                                                            0);
680cabdff1aSopenharmony_ci                                    bits += b;
681cabdff1aSopenharmony_ci                                    qenergy += sqenergy;
682cabdff1aSopenharmony_ci                                }
683cabdff1aSopenharmony_ci                                dist -= bits;
684cabdff1aSopenharmony_ci                                if (dist < FFMIN(euplims[w*16+g], uplims[w*16+g])) {
685cabdff1aSopenharmony_ci                                    sce->sf_idx[w*16+g]++;
686cabdff1aSopenharmony_ci                                    dists[w*16+g] = dist;
687cabdff1aSopenharmony_ci                                    qenergies[w*16+g] = qenergy;
688cabdff1aSopenharmony_ci                                } else {
689cabdff1aSopenharmony_ci                                    break;
690cabdff1aSopenharmony_ci                                }
691cabdff1aSopenharmony_ci                            } else {
692cabdff1aSopenharmony_ci                                maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]);
693cabdff1aSopenharmony_ci                                break;
694cabdff1aSopenharmony_ci                            }
695cabdff1aSopenharmony_ci                        }
696cabdff1aSopenharmony_ci                    }
697cabdff1aSopenharmony_ci                    prev = sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], mindeltasf, maxdeltasf);
698cabdff1aSopenharmony_ci                    if (sce->sf_idx[w*16+g] != prevsc)
699cabdff1aSopenharmony_ci                        fflag = 1;
700cabdff1aSopenharmony_ci                    nminscaler = FFMIN(nminscaler, sce->sf_idx[w*16+g]);
701cabdff1aSopenharmony_ci                    sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
702cabdff1aSopenharmony_ci                }
703cabdff1aSopenharmony_ci                start += sce->ics.swb_sizes[g];
704cabdff1aSopenharmony_ci            }
705cabdff1aSopenharmony_ci        }
706cabdff1aSopenharmony_ci
707cabdff1aSopenharmony_ci        /** SF difference limit violation risk. Must re-clamp. */
708cabdff1aSopenharmony_ci        prev = -1;
709cabdff1aSopenharmony_ci        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
710cabdff1aSopenharmony_ci            for (g = 0; g < sce->ics.num_swb; g++) {
711cabdff1aSopenharmony_ci                if (!sce->zeroes[w*16+g]) {
712cabdff1aSopenharmony_ci                    int prevsf = sce->sf_idx[w*16+g];
713cabdff1aSopenharmony_ci                    if (prev < 0)
714cabdff1aSopenharmony_ci                        prev = prevsf;
715cabdff1aSopenharmony_ci                    sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], prev - SCALE_MAX_DIFF, prev + SCALE_MAX_DIFF);
716cabdff1aSopenharmony_ci                    sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
717cabdff1aSopenharmony_ci                    prev = sce->sf_idx[w*16+g];
718cabdff1aSopenharmony_ci                    if (!fflag && prevsf != sce->sf_idx[w*16+g])
719cabdff1aSopenharmony_ci                        fflag = 1;
720cabdff1aSopenharmony_ci                }
721cabdff1aSopenharmony_ci            }
722cabdff1aSopenharmony_ci        }
723cabdff1aSopenharmony_ci
724cabdff1aSopenharmony_ci        its++;
725cabdff1aSopenharmony_ci    } while (fflag && its < maxits);
726cabdff1aSopenharmony_ci
727cabdff1aSopenharmony_ci    /** Scout out next nonzero bands */
728cabdff1aSopenharmony_ci    ff_init_nextband_map(sce, nextband);
729cabdff1aSopenharmony_ci
730cabdff1aSopenharmony_ci    prev = -1;
731cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
732cabdff1aSopenharmony_ci        /** Make sure proper codebooks are set */
733cabdff1aSopenharmony_ci        for (g = 0; g < sce->ics.num_swb; g++) {
734cabdff1aSopenharmony_ci            if (!sce->zeroes[w*16+g]) {
735cabdff1aSopenharmony_ci                sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
736cabdff1aSopenharmony_ci                if (sce->band_type[w*16+g] <= 0) {
737cabdff1aSopenharmony_ci                    if (!ff_sfdelta_can_remove_band(sce, nextband, prev, w*16+g)) {
738cabdff1aSopenharmony_ci                        /** Cannot zero out, make sure it's not attempted */
739cabdff1aSopenharmony_ci                        sce->band_type[w*16+g] = 1;
740cabdff1aSopenharmony_ci                    } else {
741cabdff1aSopenharmony_ci                        sce->zeroes[w*16+g] = 1;
742cabdff1aSopenharmony_ci                        sce->band_type[w*16+g] = 0;
743cabdff1aSopenharmony_ci                    }
744cabdff1aSopenharmony_ci                }
745cabdff1aSopenharmony_ci            } else {
746cabdff1aSopenharmony_ci                sce->band_type[w*16+g] = 0;
747cabdff1aSopenharmony_ci            }
748cabdff1aSopenharmony_ci            /** Check that there's no SF delta range violations */
749cabdff1aSopenharmony_ci            if (!sce->zeroes[w*16+g]) {
750cabdff1aSopenharmony_ci                if (prev != -1) {
751cabdff1aSopenharmony_ci                    av_unused int sfdiff = sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO;
752cabdff1aSopenharmony_ci                    av_assert1(sfdiff >= 0 && sfdiff <= 2*SCALE_MAX_DIFF);
753cabdff1aSopenharmony_ci                } else if (sce->zeroes[0]) {
754cabdff1aSopenharmony_ci                    /** Set global gain to something useful */
755cabdff1aSopenharmony_ci                    sce->sf_idx[0] = sce->sf_idx[w*16+g];
756cabdff1aSopenharmony_ci                }
757cabdff1aSopenharmony_ci                prev = sce->sf_idx[w*16+g];
758cabdff1aSopenharmony_ci            }
759cabdff1aSopenharmony_ci        }
760cabdff1aSopenharmony_ci    }
761cabdff1aSopenharmony_ci}
762cabdff1aSopenharmony_ci
763cabdff1aSopenharmony_ci#endif /* AVCODEC_AACCODER_TWOLOOP_H */
764