1cabdff1aSopenharmony_ci/* 2cabdff1aSopenharmony_ci * AAC coefficients encoder 3cabdff1aSopenharmony_ci * Copyright (C) 2008-2009 Konstantin Shishkov 4cabdff1aSopenharmony_ci * 5cabdff1aSopenharmony_ci * This file is part of FFmpeg. 6cabdff1aSopenharmony_ci * 7cabdff1aSopenharmony_ci * FFmpeg is free software; you can redistribute it and/or 8cabdff1aSopenharmony_ci * modify it under the terms of the GNU Lesser General Public 9cabdff1aSopenharmony_ci * License as published by the Free Software Foundation; either 10cabdff1aSopenharmony_ci * version 2.1 of the License, or (at your option) any later version. 11cabdff1aSopenharmony_ci * 12cabdff1aSopenharmony_ci * FFmpeg is distributed in the hope that it will be useful, 13cabdff1aSopenharmony_ci * but WITHOUT ANY WARRANTY; without even the implied warranty of 14cabdff1aSopenharmony_ci * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15cabdff1aSopenharmony_ci * Lesser General Public License for more details. 16cabdff1aSopenharmony_ci * 17cabdff1aSopenharmony_ci * You should have received a copy of the GNU Lesser General Public 18cabdff1aSopenharmony_ci * License along with FFmpeg; if not, write to the Free Software 19cabdff1aSopenharmony_ci * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 20cabdff1aSopenharmony_ci */ 21cabdff1aSopenharmony_ci 22cabdff1aSopenharmony_ci/** 23cabdff1aSopenharmony_ci * @file 24cabdff1aSopenharmony_ci * AAC coefficients encoder 25cabdff1aSopenharmony_ci */ 26cabdff1aSopenharmony_ci 27cabdff1aSopenharmony_ci/*********************************** 28cabdff1aSopenharmony_ci * TODOs: 29cabdff1aSopenharmony_ci * speedup quantizer selection 30cabdff1aSopenharmony_ci * add sane pulse detection 31cabdff1aSopenharmony_ci ***********************************/ 32cabdff1aSopenharmony_ci 33cabdff1aSopenharmony_ci#include "libavutil/libm.h" // brought forward to work around cygwin header breakage 34cabdff1aSopenharmony_ci 35cabdff1aSopenharmony_ci#include <float.h> 36cabdff1aSopenharmony_ci 37cabdff1aSopenharmony_ci#include "libavutil/mathematics.h" 38cabdff1aSopenharmony_ci#include "mathops.h" 39cabdff1aSopenharmony_ci#include "avcodec.h" 40cabdff1aSopenharmony_ci#include "put_bits.h" 41cabdff1aSopenharmony_ci#include "aac.h" 42cabdff1aSopenharmony_ci#include "aacenc.h" 43cabdff1aSopenharmony_ci#include "aactab.h" 44cabdff1aSopenharmony_ci#include "aacenctab.h" 45cabdff1aSopenharmony_ci#include "aacenc_utils.h" 46cabdff1aSopenharmony_ci#include "aacenc_quantization.h" 47cabdff1aSopenharmony_ci 48cabdff1aSopenharmony_ci#include "aacenc_is.h" 49cabdff1aSopenharmony_ci#include "aacenc_tns.h" 50cabdff1aSopenharmony_ci#include "aacenc_ltp.h" 51cabdff1aSopenharmony_ci#include "aacenc_pred.h" 52cabdff1aSopenharmony_ci 53cabdff1aSopenharmony_ci#include "libavcodec/aaccoder_twoloop.h" 54cabdff1aSopenharmony_ci 55cabdff1aSopenharmony_ci/* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread 56cabdff1aSopenharmony_ci * beyond which no PNS is used (since the SFBs contain tone rather than noise) */ 57cabdff1aSopenharmony_ci#define NOISE_SPREAD_THRESHOLD 0.9f 58cabdff1aSopenharmony_ci 59cabdff1aSopenharmony_ci/* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to 60cabdff1aSopenharmony_ci * replace low energy non zero bands */ 61cabdff1aSopenharmony_ci#define NOISE_LAMBDA_REPLACE 1.948f 62cabdff1aSopenharmony_ci 63cabdff1aSopenharmony_ci#include "libavcodec/aaccoder_trellis.h" 64cabdff1aSopenharmony_ci 65cabdff1aSopenharmony_ci/** 66cabdff1aSopenharmony_ci * structure used in optimal codebook search 67cabdff1aSopenharmony_ci */ 68cabdff1aSopenharmony_citypedef struct BandCodingPath { 69cabdff1aSopenharmony_ci int prev_idx; ///< pointer to the previous path point 70cabdff1aSopenharmony_ci float cost; ///< path cost 71cabdff1aSopenharmony_ci int run; 72cabdff1aSopenharmony_ci} BandCodingPath; 73cabdff1aSopenharmony_ci 74cabdff1aSopenharmony_ci/** 75cabdff1aSopenharmony_ci * Encode band info for single window group bands. 76cabdff1aSopenharmony_ci */ 77cabdff1aSopenharmony_cistatic void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce, 78cabdff1aSopenharmony_ci int win, int group_len, const float lambda) 79cabdff1aSopenharmony_ci{ 80cabdff1aSopenharmony_ci BandCodingPath path[120][CB_TOT_ALL]; 81cabdff1aSopenharmony_ci int w, swb, cb, start, size; 82cabdff1aSopenharmony_ci int i, j; 83cabdff1aSopenharmony_ci const int max_sfb = sce->ics.max_sfb; 84cabdff1aSopenharmony_ci const int run_bits = sce->ics.num_windows == 1 ? 5 : 3; 85cabdff1aSopenharmony_ci const int run_esc = (1 << run_bits) - 1; 86cabdff1aSopenharmony_ci int idx, ppos, count; 87cabdff1aSopenharmony_ci int stackrun[120], stackcb[120], stack_len; 88cabdff1aSopenharmony_ci float next_minrd = INFINITY; 89cabdff1aSopenharmony_ci int next_mincb = 0; 90cabdff1aSopenharmony_ci 91cabdff1aSopenharmony_ci s->abs_pow34(s->scoefs, sce->coeffs, 1024); 92cabdff1aSopenharmony_ci start = win*128; 93cabdff1aSopenharmony_ci for (cb = 0; cb < CB_TOT_ALL; cb++) { 94cabdff1aSopenharmony_ci path[0][cb].cost = 0.0f; 95cabdff1aSopenharmony_ci path[0][cb].prev_idx = -1; 96cabdff1aSopenharmony_ci path[0][cb].run = 0; 97cabdff1aSopenharmony_ci } 98cabdff1aSopenharmony_ci for (swb = 0; swb < max_sfb; swb++) { 99cabdff1aSopenharmony_ci size = sce->ics.swb_sizes[swb]; 100cabdff1aSopenharmony_ci if (sce->zeroes[win*16 + swb]) { 101cabdff1aSopenharmony_ci for (cb = 0; cb < CB_TOT_ALL; cb++) { 102cabdff1aSopenharmony_ci path[swb+1][cb].prev_idx = cb; 103cabdff1aSopenharmony_ci path[swb+1][cb].cost = path[swb][cb].cost; 104cabdff1aSopenharmony_ci path[swb+1][cb].run = path[swb][cb].run + 1; 105cabdff1aSopenharmony_ci } 106cabdff1aSopenharmony_ci } else { 107cabdff1aSopenharmony_ci float minrd = next_minrd; 108cabdff1aSopenharmony_ci int mincb = next_mincb; 109cabdff1aSopenharmony_ci next_minrd = INFINITY; 110cabdff1aSopenharmony_ci next_mincb = 0; 111cabdff1aSopenharmony_ci for (cb = 0; cb < CB_TOT_ALL; cb++) { 112cabdff1aSopenharmony_ci float cost_stay_here, cost_get_here; 113cabdff1aSopenharmony_ci float rd = 0.0f; 114cabdff1aSopenharmony_ci if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] || 115cabdff1aSopenharmony_ci cb < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) { 116cabdff1aSopenharmony_ci path[swb+1][cb].prev_idx = -1; 117cabdff1aSopenharmony_ci path[swb+1][cb].cost = INFINITY; 118cabdff1aSopenharmony_ci path[swb+1][cb].run = path[swb][cb].run + 1; 119cabdff1aSopenharmony_ci continue; 120cabdff1aSopenharmony_ci } 121cabdff1aSopenharmony_ci for (w = 0; w < group_len; w++) { 122cabdff1aSopenharmony_ci FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb]; 123cabdff1aSopenharmony_ci rd += quantize_band_cost(s, &sce->coeffs[start + w*128], 124cabdff1aSopenharmony_ci &s->scoefs[start + w*128], size, 125cabdff1aSopenharmony_ci sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb], 126cabdff1aSopenharmony_ci lambda / band->threshold, INFINITY, NULL, NULL, 0); 127cabdff1aSopenharmony_ci } 128cabdff1aSopenharmony_ci cost_stay_here = path[swb][cb].cost + rd; 129cabdff1aSopenharmony_ci cost_get_here = minrd + rd + run_bits + 4; 130cabdff1aSopenharmony_ci if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run] 131cabdff1aSopenharmony_ci != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1]) 132cabdff1aSopenharmony_ci cost_stay_here += run_bits; 133cabdff1aSopenharmony_ci if (cost_get_here < cost_stay_here) { 134cabdff1aSopenharmony_ci path[swb+1][cb].prev_idx = mincb; 135cabdff1aSopenharmony_ci path[swb+1][cb].cost = cost_get_here; 136cabdff1aSopenharmony_ci path[swb+1][cb].run = 1; 137cabdff1aSopenharmony_ci } else { 138cabdff1aSopenharmony_ci path[swb+1][cb].prev_idx = cb; 139cabdff1aSopenharmony_ci path[swb+1][cb].cost = cost_stay_here; 140cabdff1aSopenharmony_ci path[swb+1][cb].run = path[swb][cb].run + 1; 141cabdff1aSopenharmony_ci } 142cabdff1aSopenharmony_ci if (path[swb+1][cb].cost < next_minrd) { 143cabdff1aSopenharmony_ci next_minrd = path[swb+1][cb].cost; 144cabdff1aSopenharmony_ci next_mincb = cb; 145cabdff1aSopenharmony_ci } 146cabdff1aSopenharmony_ci } 147cabdff1aSopenharmony_ci } 148cabdff1aSopenharmony_ci start += sce->ics.swb_sizes[swb]; 149cabdff1aSopenharmony_ci } 150cabdff1aSopenharmony_ci 151cabdff1aSopenharmony_ci //convert resulting path from backward-linked list 152cabdff1aSopenharmony_ci stack_len = 0; 153cabdff1aSopenharmony_ci idx = 0; 154cabdff1aSopenharmony_ci for (cb = 1; cb < CB_TOT_ALL; cb++) 155cabdff1aSopenharmony_ci if (path[max_sfb][cb].cost < path[max_sfb][idx].cost) 156cabdff1aSopenharmony_ci idx = cb; 157cabdff1aSopenharmony_ci ppos = max_sfb; 158cabdff1aSopenharmony_ci while (ppos > 0) { 159cabdff1aSopenharmony_ci av_assert1(idx >= 0); 160cabdff1aSopenharmony_ci cb = idx; 161cabdff1aSopenharmony_ci stackrun[stack_len] = path[ppos][cb].run; 162cabdff1aSopenharmony_ci stackcb [stack_len] = cb; 163cabdff1aSopenharmony_ci idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx; 164cabdff1aSopenharmony_ci ppos -= path[ppos][cb].run; 165cabdff1aSopenharmony_ci stack_len++; 166cabdff1aSopenharmony_ci } 167cabdff1aSopenharmony_ci //perform actual band info encoding 168cabdff1aSopenharmony_ci start = 0; 169cabdff1aSopenharmony_ci for (i = stack_len - 1; i >= 0; i--) { 170cabdff1aSopenharmony_ci cb = aac_cb_out_map[stackcb[i]]; 171cabdff1aSopenharmony_ci put_bits(&s->pb, 4, cb); 172cabdff1aSopenharmony_ci count = stackrun[i]; 173cabdff1aSopenharmony_ci memset(sce->zeroes + win*16 + start, !cb, count); 174cabdff1aSopenharmony_ci //XXX: memset when band_type is also uint8_t 175cabdff1aSopenharmony_ci for (j = 0; j < count; j++) { 176cabdff1aSopenharmony_ci sce->band_type[win*16 + start] = cb; 177cabdff1aSopenharmony_ci start++; 178cabdff1aSopenharmony_ci } 179cabdff1aSopenharmony_ci while (count >= run_esc) { 180cabdff1aSopenharmony_ci put_bits(&s->pb, run_bits, run_esc); 181cabdff1aSopenharmony_ci count -= run_esc; 182cabdff1aSopenharmony_ci } 183cabdff1aSopenharmony_ci put_bits(&s->pb, run_bits, count); 184cabdff1aSopenharmony_ci } 185cabdff1aSopenharmony_ci} 186cabdff1aSopenharmony_ci 187cabdff1aSopenharmony_ci 188cabdff1aSopenharmony_citypedef struct TrellisPath { 189cabdff1aSopenharmony_ci float cost; 190cabdff1aSopenharmony_ci int prev; 191cabdff1aSopenharmony_ci} TrellisPath; 192cabdff1aSopenharmony_ci 193cabdff1aSopenharmony_ci#define TRELLIS_STAGES 121 194cabdff1aSopenharmony_ci#define TRELLIS_STATES (SCALE_MAX_DIFF+1) 195cabdff1aSopenharmony_ci 196cabdff1aSopenharmony_cistatic void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce) 197cabdff1aSopenharmony_ci{ 198cabdff1aSopenharmony_ci int w, g; 199cabdff1aSopenharmony_ci int prevscaler_n = -255, prevscaler_i = 0; 200cabdff1aSopenharmony_ci int bands = 0; 201cabdff1aSopenharmony_ci 202cabdff1aSopenharmony_ci for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { 203cabdff1aSopenharmony_ci for (g = 0; g < sce->ics.num_swb; g++) { 204cabdff1aSopenharmony_ci if (sce->zeroes[w*16+g]) 205cabdff1aSopenharmony_ci continue; 206cabdff1aSopenharmony_ci if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) { 207cabdff1aSopenharmony_ci sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100); 208cabdff1aSopenharmony_ci bands++; 209cabdff1aSopenharmony_ci } else if (sce->band_type[w*16+g] == NOISE_BT) { 210cabdff1aSopenharmony_ci sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155); 211cabdff1aSopenharmony_ci if (prevscaler_n == -255) 212cabdff1aSopenharmony_ci prevscaler_n = sce->sf_idx[w*16+g]; 213cabdff1aSopenharmony_ci bands++; 214cabdff1aSopenharmony_ci } 215cabdff1aSopenharmony_ci } 216cabdff1aSopenharmony_ci } 217cabdff1aSopenharmony_ci 218cabdff1aSopenharmony_ci if (!bands) 219cabdff1aSopenharmony_ci return; 220cabdff1aSopenharmony_ci 221cabdff1aSopenharmony_ci /* Clip the scalefactor indices */ 222cabdff1aSopenharmony_ci for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { 223cabdff1aSopenharmony_ci for (g = 0; g < sce->ics.num_swb; g++) { 224cabdff1aSopenharmony_ci if (sce->zeroes[w*16+g]) 225cabdff1aSopenharmony_ci continue; 226cabdff1aSopenharmony_ci if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) { 227cabdff1aSopenharmony_ci sce->sf_idx[w*16+g] = prevscaler_i = av_clip(sce->sf_idx[w*16+g], prevscaler_i - SCALE_MAX_DIFF, prevscaler_i + SCALE_MAX_DIFF); 228cabdff1aSopenharmony_ci } else if (sce->band_type[w*16+g] == NOISE_BT) { 229cabdff1aSopenharmony_ci sce->sf_idx[w*16+g] = prevscaler_n = av_clip(sce->sf_idx[w*16+g], prevscaler_n - SCALE_MAX_DIFF, prevscaler_n + SCALE_MAX_DIFF); 230cabdff1aSopenharmony_ci } 231cabdff1aSopenharmony_ci } 232cabdff1aSopenharmony_ci } 233cabdff1aSopenharmony_ci} 234cabdff1aSopenharmony_ci 235cabdff1aSopenharmony_cistatic void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, 236cabdff1aSopenharmony_ci SingleChannelElement *sce, 237cabdff1aSopenharmony_ci const float lambda) 238cabdff1aSopenharmony_ci{ 239cabdff1aSopenharmony_ci int q, w, w2, g, start = 0; 240cabdff1aSopenharmony_ci int i, j; 241cabdff1aSopenharmony_ci int idx; 242cabdff1aSopenharmony_ci TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES]; 243cabdff1aSopenharmony_ci int bandaddr[TRELLIS_STAGES]; 244cabdff1aSopenharmony_ci int minq; 245cabdff1aSopenharmony_ci float mincost; 246cabdff1aSopenharmony_ci float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f; 247cabdff1aSopenharmony_ci int q0, q1, qcnt = 0; 248cabdff1aSopenharmony_ci 249cabdff1aSopenharmony_ci for (i = 0; i < 1024; i++) { 250cabdff1aSopenharmony_ci float t = fabsf(sce->coeffs[i]); 251cabdff1aSopenharmony_ci if (t > 0.0f) { 252cabdff1aSopenharmony_ci q0f = FFMIN(q0f, t); 253cabdff1aSopenharmony_ci q1f = FFMAX(q1f, t); 254cabdff1aSopenharmony_ci qnrgf += t*t; 255cabdff1aSopenharmony_ci qcnt++; 256cabdff1aSopenharmony_ci } 257cabdff1aSopenharmony_ci } 258cabdff1aSopenharmony_ci 259cabdff1aSopenharmony_ci if (!qcnt) { 260cabdff1aSopenharmony_ci memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); 261cabdff1aSopenharmony_ci memset(sce->zeroes, 1, sizeof(sce->zeroes)); 262cabdff1aSopenharmony_ci return; 263cabdff1aSopenharmony_ci } 264cabdff1aSopenharmony_ci 265cabdff1aSopenharmony_ci //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped 266cabdff1aSopenharmony_ci q0 = av_clip(coef2minsf(q0f), 0, SCALE_MAX_POS-1); 267cabdff1aSopenharmony_ci //maximum scalefactor index is when maximum coefficient after quantizing is still not zero 268cabdff1aSopenharmony_ci q1 = av_clip(coef2maxsf(q1f), 1, SCALE_MAX_POS); 269cabdff1aSopenharmony_ci if (q1 - q0 > 60) { 270cabdff1aSopenharmony_ci int q0low = q0; 271cabdff1aSopenharmony_ci int q1high = q1; 272cabdff1aSopenharmony_ci //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped 273cabdff1aSopenharmony_ci int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512); 274cabdff1aSopenharmony_ci q1 = qnrg + 30; 275cabdff1aSopenharmony_ci q0 = qnrg - 30; 276cabdff1aSopenharmony_ci if (q0 < q0low) { 277cabdff1aSopenharmony_ci q1 += q0low - q0; 278cabdff1aSopenharmony_ci q0 = q0low; 279cabdff1aSopenharmony_ci } else if (q1 > q1high) { 280cabdff1aSopenharmony_ci q0 -= q1 - q1high; 281cabdff1aSopenharmony_ci q1 = q1high; 282cabdff1aSopenharmony_ci } 283cabdff1aSopenharmony_ci } 284cabdff1aSopenharmony_ci // q0 == q1 isn't really a legal situation 285cabdff1aSopenharmony_ci if (q0 == q1) { 286cabdff1aSopenharmony_ci // the following is indirect but guarantees q1 != q0 && q1 near q0 287cabdff1aSopenharmony_ci q1 = av_clip(q0+1, 1, SCALE_MAX_POS); 288cabdff1aSopenharmony_ci q0 = av_clip(q1-1, 0, SCALE_MAX_POS - 1); 289cabdff1aSopenharmony_ci } 290cabdff1aSopenharmony_ci 291cabdff1aSopenharmony_ci for (i = 0; i < TRELLIS_STATES; i++) { 292cabdff1aSopenharmony_ci paths[0][i].cost = 0.0f; 293cabdff1aSopenharmony_ci paths[0][i].prev = -1; 294cabdff1aSopenharmony_ci } 295cabdff1aSopenharmony_ci for (j = 1; j < TRELLIS_STAGES; j++) { 296cabdff1aSopenharmony_ci for (i = 0; i < TRELLIS_STATES; i++) { 297cabdff1aSopenharmony_ci paths[j][i].cost = INFINITY; 298cabdff1aSopenharmony_ci paths[j][i].prev = -2; 299cabdff1aSopenharmony_ci } 300cabdff1aSopenharmony_ci } 301cabdff1aSopenharmony_ci idx = 1; 302cabdff1aSopenharmony_ci s->abs_pow34(s->scoefs, sce->coeffs, 1024); 303cabdff1aSopenharmony_ci for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { 304cabdff1aSopenharmony_ci start = w*128; 305cabdff1aSopenharmony_ci for (g = 0; g < sce->ics.num_swb; g++) { 306cabdff1aSopenharmony_ci const float *coefs = &sce->coeffs[start]; 307cabdff1aSopenharmony_ci float qmin, qmax; 308cabdff1aSopenharmony_ci int nz = 0; 309cabdff1aSopenharmony_ci 310cabdff1aSopenharmony_ci bandaddr[idx] = w * 16 + g; 311cabdff1aSopenharmony_ci qmin = INT_MAX; 312cabdff1aSopenharmony_ci qmax = 0.0f; 313cabdff1aSopenharmony_ci for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { 314cabdff1aSopenharmony_ci FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; 315cabdff1aSopenharmony_ci if (band->energy <= band->threshold || band->threshold == 0.0f) { 316cabdff1aSopenharmony_ci sce->zeroes[(w+w2)*16+g] = 1; 317cabdff1aSopenharmony_ci continue; 318cabdff1aSopenharmony_ci } 319cabdff1aSopenharmony_ci sce->zeroes[(w+w2)*16+g] = 0; 320cabdff1aSopenharmony_ci nz = 1; 321cabdff1aSopenharmony_ci for (i = 0; i < sce->ics.swb_sizes[g]; i++) { 322cabdff1aSopenharmony_ci float t = fabsf(coefs[w2*128+i]); 323cabdff1aSopenharmony_ci if (t > 0.0f) 324cabdff1aSopenharmony_ci qmin = FFMIN(qmin, t); 325cabdff1aSopenharmony_ci qmax = FFMAX(qmax, t); 326cabdff1aSopenharmony_ci } 327cabdff1aSopenharmony_ci } 328cabdff1aSopenharmony_ci if (nz) { 329cabdff1aSopenharmony_ci int minscale, maxscale; 330cabdff1aSopenharmony_ci float minrd = INFINITY; 331cabdff1aSopenharmony_ci float maxval; 332cabdff1aSopenharmony_ci //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped 333cabdff1aSopenharmony_ci minscale = coef2minsf(qmin); 334cabdff1aSopenharmony_ci //maximum scalefactor index is when maximum coefficient after quantizing is still not zero 335cabdff1aSopenharmony_ci maxscale = coef2maxsf(qmax); 336cabdff1aSopenharmony_ci minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1); 337cabdff1aSopenharmony_ci maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES); 338cabdff1aSopenharmony_ci if (minscale == maxscale) { 339cabdff1aSopenharmony_ci maxscale = av_clip(minscale+1, 1, TRELLIS_STATES); 340cabdff1aSopenharmony_ci minscale = av_clip(maxscale-1, 0, TRELLIS_STATES - 1); 341cabdff1aSopenharmony_ci } 342cabdff1aSopenharmony_ci maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start); 343cabdff1aSopenharmony_ci for (q = minscale; q < maxscale; q++) { 344cabdff1aSopenharmony_ci float dist = 0; 345cabdff1aSopenharmony_ci int cb = find_min_book(maxval, sce->sf_idx[w*16+g]); 346cabdff1aSopenharmony_ci for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { 347cabdff1aSopenharmony_ci FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; 348cabdff1aSopenharmony_ci dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g], 349cabdff1aSopenharmony_ci q + q0, cb, lambda / band->threshold, INFINITY, NULL, NULL, 0); 350cabdff1aSopenharmony_ci } 351cabdff1aSopenharmony_ci minrd = FFMIN(minrd, dist); 352cabdff1aSopenharmony_ci 353cabdff1aSopenharmony_ci for (i = 0; i < q1 - q0; i++) { 354cabdff1aSopenharmony_ci float cost; 355cabdff1aSopenharmony_ci cost = paths[idx - 1][i].cost + dist 356cabdff1aSopenharmony_ci + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; 357cabdff1aSopenharmony_ci if (cost < paths[idx][q].cost) { 358cabdff1aSopenharmony_ci paths[idx][q].cost = cost; 359cabdff1aSopenharmony_ci paths[idx][q].prev = i; 360cabdff1aSopenharmony_ci } 361cabdff1aSopenharmony_ci } 362cabdff1aSopenharmony_ci } 363cabdff1aSopenharmony_ci } else { 364cabdff1aSopenharmony_ci for (q = 0; q < q1 - q0; q++) { 365cabdff1aSopenharmony_ci paths[idx][q].cost = paths[idx - 1][q].cost + 1; 366cabdff1aSopenharmony_ci paths[idx][q].prev = q; 367cabdff1aSopenharmony_ci } 368cabdff1aSopenharmony_ci } 369cabdff1aSopenharmony_ci sce->zeroes[w*16+g] = !nz; 370cabdff1aSopenharmony_ci start += sce->ics.swb_sizes[g]; 371cabdff1aSopenharmony_ci idx++; 372cabdff1aSopenharmony_ci } 373cabdff1aSopenharmony_ci } 374cabdff1aSopenharmony_ci idx--; 375cabdff1aSopenharmony_ci mincost = paths[idx][0].cost; 376cabdff1aSopenharmony_ci minq = 0; 377cabdff1aSopenharmony_ci for (i = 1; i < TRELLIS_STATES; i++) { 378cabdff1aSopenharmony_ci if (paths[idx][i].cost < mincost) { 379cabdff1aSopenharmony_ci mincost = paths[idx][i].cost; 380cabdff1aSopenharmony_ci minq = i; 381cabdff1aSopenharmony_ci } 382cabdff1aSopenharmony_ci } 383cabdff1aSopenharmony_ci while (idx) { 384cabdff1aSopenharmony_ci sce->sf_idx[bandaddr[idx]] = minq + q0; 385cabdff1aSopenharmony_ci minq = FFMAX(paths[idx][minq].prev, 0); 386cabdff1aSopenharmony_ci idx--; 387cabdff1aSopenharmony_ci } 388cabdff1aSopenharmony_ci //set the same quantizers inside window groups 389cabdff1aSopenharmony_ci for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) 390cabdff1aSopenharmony_ci for (g = 0; g < sce->ics.num_swb; g++) 391cabdff1aSopenharmony_ci for (w2 = 1; w2 < sce->ics.group_len[w]; w2++) 392cabdff1aSopenharmony_ci sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g]; 393cabdff1aSopenharmony_ci} 394cabdff1aSopenharmony_ci 395cabdff1aSopenharmony_cistatic void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, 396cabdff1aSopenharmony_ci SingleChannelElement *sce, 397cabdff1aSopenharmony_ci const float lambda) 398cabdff1aSopenharmony_ci{ 399cabdff1aSopenharmony_ci int start = 0, i, w, w2, g; 400cabdff1aSopenharmony_ci int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->ch_layout.nb_channels * (lambda / 120.f); 401cabdff1aSopenharmony_ci float dists[128] = { 0 }, uplims[128] = { 0 }; 402cabdff1aSopenharmony_ci float maxvals[128]; 403cabdff1aSopenharmony_ci int fflag, minscaler; 404cabdff1aSopenharmony_ci int its = 0; 405cabdff1aSopenharmony_ci int allz = 0; 406cabdff1aSopenharmony_ci float minthr = INFINITY; 407cabdff1aSopenharmony_ci 408cabdff1aSopenharmony_ci // for values above this the decoder might end up in an endless loop 409cabdff1aSopenharmony_ci // due to always having more bits than what can be encoded. 410cabdff1aSopenharmony_ci destbits = FFMIN(destbits, 5800); 411cabdff1aSopenharmony_ci //some heuristic to determine initial quantizers will reduce search time 412cabdff1aSopenharmony_ci //determine zero bands and upper limits 413cabdff1aSopenharmony_ci for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { 414cabdff1aSopenharmony_ci start = 0; 415cabdff1aSopenharmony_ci for (g = 0; g < sce->ics.num_swb; g++) { 416cabdff1aSopenharmony_ci int nz = 0; 417cabdff1aSopenharmony_ci float uplim = 0.0f; 418cabdff1aSopenharmony_ci for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { 419cabdff1aSopenharmony_ci FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; 420cabdff1aSopenharmony_ci uplim += band->threshold; 421cabdff1aSopenharmony_ci if (band->energy <= band->threshold || band->threshold == 0.0f) { 422cabdff1aSopenharmony_ci sce->zeroes[(w+w2)*16+g] = 1; 423cabdff1aSopenharmony_ci continue; 424cabdff1aSopenharmony_ci } 425cabdff1aSopenharmony_ci nz = 1; 426cabdff1aSopenharmony_ci } 427cabdff1aSopenharmony_ci uplims[w*16+g] = uplim *512; 428cabdff1aSopenharmony_ci sce->band_type[w*16+g] = 0; 429cabdff1aSopenharmony_ci sce->zeroes[w*16+g] = !nz; 430cabdff1aSopenharmony_ci if (nz) 431cabdff1aSopenharmony_ci minthr = FFMIN(minthr, uplim); 432cabdff1aSopenharmony_ci allz |= nz; 433cabdff1aSopenharmony_ci start += sce->ics.swb_sizes[g]; 434cabdff1aSopenharmony_ci } 435cabdff1aSopenharmony_ci } 436cabdff1aSopenharmony_ci for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { 437cabdff1aSopenharmony_ci for (g = 0; g < sce->ics.num_swb; g++) { 438cabdff1aSopenharmony_ci if (sce->zeroes[w*16+g]) { 439cabdff1aSopenharmony_ci sce->sf_idx[w*16+g] = SCALE_ONE_POS; 440cabdff1aSopenharmony_ci continue; 441cabdff1aSopenharmony_ci } 442cabdff1aSopenharmony_ci sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59); 443cabdff1aSopenharmony_ci } 444cabdff1aSopenharmony_ci } 445cabdff1aSopenharmony_ci 446cabdff1aSopenharmony_ci if (!allz) 447cabdff1aSopenharmony_ci return; 448cabdff1aSopenharmony_ci s->abs_pow34(s->scoefs, sce->coeffs, 1024); 449cabdff1aSopenharmony_ci ff_quantize_band_cost_cache_init(s); 450cabdff1aSopenharmony_ci 451cabdff1aSopenharmony_ci for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { 452cabdff1aSopenharmony_ci start = w*128; 453cabdff1aSopenharmony_ci for (g = 0; g < sce->ics.num_swb; g++) { 454cabdff1aSopenharmony_ci const float *scaled = s->scoefs + start; 455cabdff1aSopenharmony_ci maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled); 456cabdff1aSopenharmony_ci start += sce->ics.swb_sizes[g]; 457cabdff1aSopenharmony_ci } 458cabdff1aSopenharmony_ci } 459cabdff1aSopenharmony_ci 460cabdff1aSopenharmony_ci //perform two-loop search 461cabdff1aSopenharmony_ci //outer loop - improve quality 462cabdff1aSopenharmony_ci do { 463cabdff1aSopenharmony_ci int tbits, qstep; 464cabdff1aSopenharmony_ci minscaler = sce->sf_idx[0]; 465cabdff1aSopenharmony_ci //inner loop - quantize spectrum to fit into given number of bits 466cabdff1aSopenharmony_ci qstep = its ? 1 : 32; 467cabdff1aSopenharmony_ci do { 468cabdff1aSopenharmony_ci int prev = -1; 469cabdff1aSopenharmony_ci tbits = 0; 470cabdff1aSopenharmony_ci for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { 471cabdff1aSopenharmony_ci start = w*128; 472cabdff1aSopenharmony_ci for (g = 0; g < sce->ics.num_swb; g++) { 473cabdff1aSopenharmony_ci const float *coefs = sce->coeffs + start; 474cabdff1aSopenharmony_ci const float *scaled = s->scoefs + start; 475cabdff1aSopenharmony_ci int bits = 0; 476cabdff1aSopenharmony_ci int cb; 477cabdff1aSopenharmony_ci float dist = 0.0f; 478cabdff1aSopenharmony_ci 479cabdff1aSopenharmony_ci if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) { 480cabdff1aSopenharmony_ci start += sce->ics.swb_sizes[g]; 481cabdff1aSopenharmony_ci continue; 482cabdff1aSopenharmony_ci } 483cabdff1aSopenharmony_ci minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); 484cabdff1aSopenharmony_ci cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); 485cabdff1aSopenharmony_ci for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { 486cabdff1aSopenharmony_ci int b; 487cabdff1aSopenharmony_ci dist += quantize_band_cost_cached(s, w + w2, g, 488cabdff1aSopenharmony_ci coefs + w2*128, 489cabdff1aSopenharmony_ci scaled + w2*128, 490cabdff1aSopenharmony_ci sce->ics.swb_sizes[g], 491cabdff1aSopenharmony_ci sce->sf_idx[w*16+g], 492cabdff1aSopenharmony_ci cb, 1.0f, INFINITY, 493cabdff1aSopenharmony_ci &b, NULL, 0); 494cabdff1aSopenharmony_ci bits += b; 495cabdff1aSopenharmony_ci } 496cabdff1aSopenharmony_ci dists[w*16+g] = dist - bits; 497cabdff1aSopenharmony_ci if (prev != -1) { 498cabdff1aSopenharmony_ci bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO]; 499cabdff1aSopenharmony_ci } 500cabdff1aSopenharmony_ci tbits += bits; 501cabdff1aSopenharmony_ci start += sce->ics.swb_sizes[g]; 502cabdff1aSopenharmony_ci prev = sce->sf_idx[w*16+g]; 503cabdff1aSopenharmony_ci } 504cabdff1aSopenharmony_ci } 505cabdff1aSopenharmony_ci if (tbits > destbits) { 506cabdff1aSopenharmony_ci for (i = 0; i < 128; i++) 507cabdff1aSopenharmony_ci if (sce->sf_idx[i] < 218 - qstep) 508cabdff1aSopenharmony_ci sce->sf_idx[i] += qstep; 509cabdff1aSopenharmony_ci } else { 510cabdff1aSopenharmony_ci for (i = 0; i < 128; i++) 511cabdff1aSopenharmony_ci if (sce->sf_idx[i] > 60 - qstep) 512cabdff1aSopenharmony_ci sce->sf_idx[i] -= qstep; 513cabdff1aSopenharmony_ci } 514cabdff1aSopenharmony_ci qstep >>= 1; 515cabdff1aSopenharmony_ci if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217) 516cabdff1aSopenharmony_ci qstep = 1; 517cabdff1aSopenharmony_ci } while (qstep); 518cabdff1aSopenharmony_ci 519cabdff1aSopenharmony_ci fflag = 0; 520cabdff1aSopenharmony_ci minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF); 521cabdff1aSopenharmony_ci 522cabdff1aSopenharmony_ci for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { 523cabdff1aSopenharmony_ci for (g = 0; g < sce->ics.num_swb; g++) { 524cabdff1aSopenharmony_ci int prevsc = sce->sf_idx[w*16+g]; 525cabdff1aSopenharmony_ci if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) { 526cabdff1aSopenharmony_ci if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1)) 527cabdff1aSopenharmony_ci sce->sf_idx[w*16+g]--; 528cabdff1aSopenharmony_ci else //Try to make sure there is some energy in every band 529cabdff1aSopenharmony_ci sce->sf_idx[w*16+g]-=2; 530cabdff1aSopenharmony_ci } 531cabdff1aSopenharmony_ci sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF); 532cabdff1aSopenharmony_ci sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219); 533cabdff1aSopenharmony_ci if (sce->sf_idx[w*16+g] != prevsc) 534cabdff1aSopenharmony_ci fflag = 1; 535cabdff1aSopenharmony_ci sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); 536cabdff1aSopenharmony_ci } 537cabdff1aSopenharmony_ci } 538cabdff1aSopenharmony_ci its++; 539cabdff1aSopenharmony_ci } while (fflag && its < 10); 540cabdff1aSopenharmony_ci} 541cabdff1aSopenharmony_ci 542cabdff1aSopenharmony_cistatic void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce) 543cabdff1aSopenharmony_ci{ 544cabdff1aSopenharmony_ci FFPsyBand *band; 545cabdff1aSopenharmony_ci int w, g, w2, i; 546cabdff1aSopenharmony_ci int wlen = 1024 / sce->ics.num_windows; 547cabdff1aSopenharmony_ci int bandwidth, cutoff; 548cabdff1aSopenharmony_ci float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128]; 549cabdff1aSopenharmony_ci float *NOR34 = &s->scoefs[3*128]; 550cabdff1aSopenharmony_ci uint8_t nextband[128]; 551cabdff1aSopenharmony_ci const float lambda = s->lambda; 552cabdff1aSopenharmony_ci const float freq_mult = avctx->sample_rate*0.5f/wlen; 553cabdff1aSopenharmony_ci const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda); 554cabdff1aSopenharmony_ci const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f)); 555cabdff1aSopenharmony_ci const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f); 556cabdff1aSopenharmony_ci const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f); 557cabdff1aSopenharmony_ci 558cabdff1aSopenharmony_ci int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate 559cabdff1aSopenharmony_ci / ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->ch_layout.nb_channels) 560cabdff1aSopenharmony_ci * (lambda / 120.f); 561cabdff1aSopenharmony_ci 562cabdff1aSopenharmony_ci /** Keep this in sync with twoloop's cutoff selection */ 563cabdff1aSopenharmony_ci float rate_bandwidth_multiplier = 1.5f; 564cabdff1aSopenharmony_ci int prev = -1000, prev_sf = -1; 565cabdff1aSopenharmony_ci int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE) 566cabdff1aSopenharmony_ci ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024) 567cabdff1aSopenharmony_ci : (avctx->bit_rate / avctx->ch_layout.nb_channels); 568cabdff1aSopenharmony_ci 569cabdff1aSopenharmony_ci frame_bit_rate *= 1.15f; 570cabdff1aSopenharmony_ci 571cabdff1aSopenharmony_ci if (avctx->cutoff > 0) { 572cabdff1aSopenharmony_ci bandwidth = avctx->cutoff; 573cabdff1aSopenharmony_ci } else { 574cabdff1aSopenharmony_ci bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate)); 575cabdff1aSopenharmony_ci } 576cabdff1aSopenharmony_ci 577cabdff1aSopenharmony_ci cutoff = bandwidth * 2 * wlen / avctx->sample_rate; 578cabdff1aSopenharmony_ci 579cabdff1aSopenharmony_ci memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type)); 580cabdff1aSopenharmony_ci ff_init_nextband_map(sce, nextband); 581cabdff1aSopenharmony_ci for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { 582cabdff1aSopenharmony_ci int wstart = w*128; 583cabdff1aSopenharmony_ci for (g = 0; g < sce->ics.num_swb; g++) { 584cabdff1aSopenharmony_ci int noise_sfi; 585cabdff1aSopenharmony_ci float dist1 = 0.0f, dist2 = 0.0f, noise_amp; 586cabdff1aSopenharmony_ci float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh; 587cabdff1aSopenharmony_ci float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f; 588cabdff1aSopenharmony_ci float min_energy = -1.0f, max_energy = 0.0f; 589cabdff1aSopenharmony_ci const int start = wstart+sce->ics.swb_offset[g]; 590cabdff1aSopenharmony_ci const float freq = (start-wstart)*freq_mult; 591cabdff1aSopenharmony_ci const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f); 592cabdff1aSopenharmony_ci if (freq < NOISE_LOW_LIMIT || (start-wstart) >= cutoff) { 593cabdff1aSopenharmony_ci if (!sce->zeroes[w*16+g]) 594cabdff1aSopenharmony_ci prev_sf = sce->sf_idx[w*16+g]; 595cabdff1aSopenharmony_ci continue; 596cabdff1aSopenharmony_ci } 597cabdff1aSopenharmony_ci for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { 598cabdff1aSopenharmony_ci band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; 599cabdff1aSopenharmony_ci sfb_energy += band->energy; 600cabdff1aSopenharmony_ci spread = FFMIN(spread, band->spread); 601cabdff1aSopenharmony_ci threshold += band->threshold; 602cabdff1aSopenharmony_ci if (!w2) { 603cabdff1aSopenharmony_ci min_energy = max_energy = band->energy; 604cabdff1aSopenharmony_ci } else { 605cabdff1aSopenharmony_ci min_energy = FFMIN(min_energy, band->energy); 606cabdff1aSopenharmony_ci max_energy = FFMAX(max_energy, band->energy); 607cabdff1aSopenharmony_ci } 608cabdff1aSopenharmony_ci } 609cabdff1aSopenharmony_ci 610cabdff1aSopenharmony_ci /* Ramps down at ~8000Hz and loosens the dist threshold */ 611cabdff1aSopenharmony_ci dist_thresh = av_clipf(2.5f*NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias; 612cabdff1aSopenharmony_ci 613cabdff1aSopenharmony_ci /* PNS is acceptable when all of these are true: 614cabdff1aSopenharmony_ci * 1. high spread energy (noise-like band) 615cabdff1aSopenharmony_ci * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed) 616cabdff1aSopenharmony_ci * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS) 617cabdff1aSopenharmony_ci * 618cabdff1aSopenharmony_ci * At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important) 619cabdff1aSopenharmony_ci */ 620cabdff1aSopenharmony_ci if ((!sce->zeroes[w*16+g] && !ff_sfdelta_can_remove_band(sce, nextband, prev_sf, w*16+g)) || 621cabdff1aSopenharmony_ci ((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.0f/freq_boost)) || spread < spread_threshold || 622cabdff1aSopenharmony_ci (!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) || 623cabdff1aSopenharmony_ci min_energy < pns_transient_energy_r * max_energy ) { 624cabdff1aSopenharmony_ci sce->pns_ener[w*16+g] = sfb_energy; 625cabdff1aSopenharmony_ci if (!sce->zeroes[w*16+g]) 626cabdff1aSopenharmony_ci prev_sf = sce->sf_idx[w*16+g]; 627cabdff1aSopenharmony_ci continue; 628cabdff1aSopenharmony_ci } 629cabdff1aSopenharmony_ci 630cabdff1aSopenharmony_ci pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread); 631cabdff1aSopenharmony_ci noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */ 632cabdff1aSopenharmony_ci noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */ 633cabdff1aSopenharmony_ci if (prev != -1000) { 634cabdff1aSopenharmony_ci int noise_sfdiff = noise_sfi - prev + SCALE_DIFF_ZERO; 635cabdff1aSopenharmony_ci if (noise_sfdiff < 0 || noise_sfdiff > 2*SCALE_MAX_DIFF) { 636cabdff1aSopenharmony_ci if (!sce->zeroes[w*16+g]) 637cabdff1aSopenharmony_ci prev_sf = sce->sf_idx[w*16+g]; 638cabdff1aSopenharmony_ci continue; 639cabdff1aSopenharmony_ci } 640cabdff1aSopenharmony_ci } 641cabdff1aSopenharmony_ci for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { 642cabdff1aSopenharmony_ci float band_energy, scale, pns_senergy; 643cabdff1aSopenharmony_ci const int start_c = (w+w2)*128+sce->ics.swb_offset[g]; 644cabdff1aSopenharmony_ci band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; 645cabdff1aSopenharmony_ci for (i = 0; i < sce->ics.swb_sizes[g]; i++) { 646cabdff1aSopenharmony_ci s->random_state = lcg_random(s->random_state); 647cabdff1aSopenharmony_ci PNS[i] = s->random_state; 648cabdff1aSopenharmony_ci } 649cabdff1aSopenharmony_ci band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]); 650cabdff1aSopenharmony_ci scale = noise_amp/sqrtf(band_energy); 651cabdff1aSopenharmony_ci s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]); 652cabdff1aSopenharmony_ci pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]); 653cabdff1aSopenharmony_ci pns_energy += pns_senergy; 654cabdff1aSopenharmony_ci s->abs_pow34(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]); 655cabdff1aSopenharmony_ci s->abs_pow34(PNS34, PNS, sce->ics.swb_sizes[g]); 656cabdff1aSopenharmony_ci dist1 += quantize_band_cost(s, &sce->coeffs[start_c], 657cabdff1aSopenharmony_ci NOR34, 658cabdff1aSopenharmony_ci sce->ics.swb_sizes[g], 659cabdff1aSopenharmony_ci sce->sf_idx[(w+w2)*16+g], 660cabdff1aSopenharmony_ci sce->band_alt[(w+w2)*16+g], 661cabdff1aSopenharmony_ci lambda/band->threshold, INFINITY, NULL, NULL, 0); 662cabdff1aSopenharmony_ci /* Estimate rd on average as 5 bits for SF, 4 for the CB, plus spread energy * lambda/thr */ 663cabdff1aSopenharmony_ci dist2 += band->energy/(band->spread*band->spread)*lambda*dist_thresh/band->threshold; 664cabdff1aSopenharmony_ci } 665cabdff1aSopenharmony_ci if (g && sce->band_type[w*16+g-1] == NOISE_BT) { 666cabdff1aSopenharmony_ci dist2 += 5; 667cabdff1aSopenharmony_ci } else { 668cabdff1aSopenharmony_ci dist2 += 9; 669cabdff1aSopenharmony_ci } 670cabdff1aSopenharmony_ci energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */ 671cabdff1aSopenharmony_ci sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy; 672cabdff1aSopenharmony_ci if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) { 673cabdff1aSopenharmony_ci sce->band_type[w*16+g] = NOISE_BT; 674cabdff1aSopenharmony_ci sce->zeroes[w*16+g] = 0; 675cabdff1aSopenharmony_ci prev = noise_sfi; 676cabdff1aSopenharmony_ci } else { 677cabdff1aSopenharmony_ci if (!sce->zeroes[w*16+g]) 678cabdff1aSopenharmony_ci prev_sf = sce->sf_idx[w*16+g]; 679cabdff1aSopenharmony_ci } 680cabdff1aSopenharmony_ci } 681cabdff1aSopenharmony_ci } 682cabdff1aSopenharmony_ci} 683cabdff1aSopenharmony_ci 684cabdff1aSopenharmony_cistatic void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce) 685cabdff1aSopenharmony_ci{ 686cabdff1aSopenharmony_ci FFPsyBand *band; 687cabdff1aSopenharmony_ci int w, g, w2; 688cabdff1aSopenharmony_ci int wlen = 1024 / sce->ics.num_windows; 689cabdff1aSopenharmony_ci int bandwidth, cutoff; 690cabdff1aSopenharmony_ci const float lambda = s->lambda; 691cabdff1aSopenharmony_ci const float freq_mult = avctx->sample_rate*0.5f/wlen; 692cabdff1aSopenharmony_ci const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f)); 693cabdff1aSopenharmony_ci const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f); 694cabdff1aSopenharmony_ci 695cabdff1aSopenharmony_ci int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate 696cabdff1aSopenharmony_ci / ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->ch_layout.nb_channels) 697cabdff1aSopenharmony_ci * (lambda / 120.f); 698cabdff1aSopenharmony_ci 699cabdff1aSopenharmony_ci /** Keep this in sync with twoloop's cutoff selection */ 700cabdff1aSopenharmony_ci float rate_bandwidth_multiplier = 1.5f; 701cabdff1aSopenharmony_ci int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE) 702cabdff1aSopenharmony_ci ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024) 703cabdff1aSopenharmony_ci : (avctx->bit_rate / avctx->ch_layout.nb_channels); 704cabdff1aSopenharmony_ci 705cabdff1aSopenharmony_ci frame_bit_rate *= 1.15f; 706cabdff1aSopenharmony_ci 707cabdff1aSopenharmony_ci if (avctx->cutoff > 0) { 708cabdff1aSopenharmony_ci bandwidth = avctx->cutoff; 709cabdff1aSopenharmony_ci } else { 710cabdff1aSopenharmony_ci bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate)); 711cabdff1aSopenharmony_ci } 712cabdff1aSopenharmony_ci 713cabdff1aSopenharmony_ci cutoff = bandwidth * 2 * wlen / avctx->sample_rate; 714cabdff1aSopenharmony_ci 715cabdff1aSopenharmony_ci memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type)); 716cabdff1aSopenharmony_ci for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { 717cabdff1aSopenharmony_ci for (g = 0; g < sce->ics.num_swb; g++) { 718cabdff1aSopenharmony_ci float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f; 719cabdff1aSopenharmony_ci float min_energy = -1.0f, max_energy = 0.0f; 720cabdff1aSopenharmony_ci const int start = sce->ics.swb_offset[g]; 721cabdff1aSopenharmony_ci const float freq = start*freq_mult; 722cabdff1aSopenharmony_ci const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f); 723cabdff1aSopenharmony_ci if (freq < NOISE_LOW_LIMIT || start >= cutoff) { 724cabdff1aSopenharmony_ci sce->can_pns[w*16+g] = 0; 725cabdff1aSopenharmony_ci continue; 726cabdff1aSopenharmony_ci } 727cabdff1aSopenharmony_ci for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { 728cabdff1aSopenharmony_ci band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; 729cabdff1aSopenharmony_ci sfb_energy += band->energy; 730cabdff1aSopenharmony_ci spread = FFMIN(spread, band->spread); 731cabdff1aSopenharmony_ci threshold += band->threshold; 732cabdff1aSopenharmony_ci if (!w2) { 733cabdff1aSopenharmony_ci min_energy = max_energy = band->energy; 734cabdff1aSopenharmony_ci } else { 735cabdff1aSopenharmony_ci min_energy = FFMIN(min_energy, band->energy); 736cabdff1aSopenharmony_ci max_energy = FFMAX(max_energy, band->energy); 737cabdff1aSopenharmony_ci } 738cabdff1aSopenharmony_ci } 739cabdff1aSopenharmony_ci 740cabdff1aSopenharmony_ci /* PNS is acceptable when all of these are true: 741cabdff1aSopenharmony_ci * 1. high spread energy (noise-like band) 742cabdff1aSopenharmony_ci * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed) 743cabdff1aSopenharmony_ci * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS) 744cabdff1aSopenharmony_ci */ 745cabdff1aSopenharmony_ci sce->pns_ener[w*16+g] = sfb_energy; 746cabdff1aSopenharmony_ci if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) { 747cabdff1aSopenharmony_ci sce->can_pns[w*16+g] = 0; 748cabdff1aSopenharmony_ci } else { 749cabdff1aSopenharmony_ci sce->can_pns[w*16+g] = 1; 750cabdff1aSopenharmony_ci } 751cabdff1aSopenharmony_ci } 752cabdff1aSopenharmony_ci } 753cabdff1aSopenharmony_ci} 754cabdff1aSopenharmony_ci 755cabdff1aSopenharmony_cistatic void search_for_ms(AACEncContext *s, ChannelElement *cpe) 756cabdff1aSopenharmony_ci{ 757cabdff1aSopenharmony_ci int start = 0, i, w, w2, g, sid_sf_boost, prev_mid, prev_side; 758cabdff1aSopenharmony_ci uint8_t nextband0[128], nextband1[128]; 759cabdff1aSopenharmony_ci float *M = s->scoefs + 128*0, *S = s->scoefs + 128*1; 760cabdff1aSopenharmony_ci float *L34 = s->scoefs + 128*2, *R34 = s->scoefs + 128*3; 761cabdff1aSopenharmony_ci float *M34 = s->scoefs + 128*4, *S34 = s->scoefs + 128*5; 762cabdff1aSopenharmony_ci const float lambda = s->lambda; 763cabdff1aSopenharmony_ci const float mslambda = FFMIN(1.0f, lambda / 120.f); 764cabdff1aSopenharmony_ci SingleChannelElement *sce0 = &cpe->ch[0]; 765cabdff1aSopenharmony_ci SingleChannelElement *sce1 = &cpe->ch[1]; 766cabdff1aSopenharmony_ci if (!cpe->common_window) 767cabdff1aSopenharmony_ci return; 768cabdff1aSopenharmony_ci 769cabdff1aSopenharmony_ci /** Scout out next nonzero bands */ 770cabdff1aSopenharmony_ci ff_init_nextband_map(sce0, nextband0); 771cabdff1aSopenharmony_ci ff_init_nextband_map(sce1, nextband1); 772cabdff1aSopenharmony_ci 773cabdff1aSopenharmony_ci prev_mid = sce0->sf_idx[0]; 774cabdff1aSopenharmony_ci prev_side = sce1->sf_idx[0]; 775cabdff1aSopenharmony_ci for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) { 776cabdff1aSopenharmony_ci start = 0; 777cabdff1aSopenharmony_ci for (g = 0; g < sce0->ics.num_swb; g++) { 778cabdff1aSopenharmony_ci float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f; 779cabdff1aSopenharmony_ci if (!cpe->is_mask[w*16+g]) 780cabdff1aSopenharmony_ci cpe->ms_mask[w*16+g] = 0; 781cabdff1aSopenharmony_ci if (!sce0->zeroes[w*16+g] && !sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g]) { 782cabdff1aSopenharmony_ci float Mmax = 0.0f, Smax = 0.0f; 783cabdff1aSopenharmony_ci 784cabdff1aSopenharmony_ci /* Must compute mid/side SF and book for the whole window group */ 785cabdff1aSopenharmony_ci for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { 786cabdff1aSopenharmony_ci for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { 787cabdff1aSopenharmony_ci M[i] = (sce0->coeffs[start+(w+w2)*128+i] 788cabdff1aSopenharmony_ci + sce1->coeffs[start+(w+w2)*128+i]) * 0.5; 789cabdff1aSopenharmony_ci S[i] = M[i] 790cabdff1aSopenharmony_ci - sce1->coeffs[start+(w+w2)*128+i]; 791cabdff1aSopenharmony_ci } 792cabdff1aSopenharmony_ci s->abs_pow34(M34, M, sce0->ics.swb_sizes[g]); 793cabdff1aSopenharmony_ci s->abs_pow34(S34, S, sce0->ics.swb_sizes[g]); 794cabdff1aSopenharmony_ci for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) { 795cabdff1aSopenharmony_ci Mmax = FFMAX(Mmax, M34[i]); 796cabdff1aSopenharmony_ci Smax = FFMAX(Smax, S34[i]); 797cabdff1aSopenharmony_ci } 798cabdff1aSopenharmony_ci } 799cabdff1aSopenharmony_ci 800cabdff1aSopenharmony_ci for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) { 801cabdff1aSopenharmony_ci float dist1 = 0.0f, dist2 = 0.0f; 802cabdff1aSopenharmony_ci int B0 = 0, B1 = 0; 803cabdff1aSopenharmony_ci int minidx; 804cabdff1aSopenharmony_ci int mididx, sididx; 805cabdff1aSopenharmony_ci int midcb, sidcb; 806cabdff1aSopenharmony_ci 807cabdff1aSopenharmony_ci minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]); 808cabdff1aSopenharmony_ci mididx = av_clip(minidx, 0, SCALE_MAX_POS - SCALE_DIV_512); 809cabdff1aSopenharmony_ci sididx = av_clip(minidx - sid_sf_boost * 3, 0, SCALE_MAX_POS - SCALE_DIV_512); 810cabdff1aSopenharmony_ci if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT 811cabdff1aSopenharmony_ci && ( !ff_sfdelta_can_replace(sce0, nextband0, prev_mid, mididx, w*16+g) 812cabdff1aSopenharmony_ci || !ff_sfdelta_can_replace(sce1, nextband1, prev_side, sididx, w*16+g))) { 813cabdff1aSopenharmony_ci /* scalefactor range violation, bad stuff, will decrease quality unacceptably */ 814cabdff1aSopenharmony_ci continue; 815cabdff1aSopenharmony_ci } 816cabdff1aSopenharmony_ci 817cabdff1aSopenharmony_ci midcb = find_min_book(Mmax, mididx); 818cabdff1aSopenharmony_ci sidcb = find_min_book(Smax, sididx); 819cabdff1aSopenharmony_ci 820cabdff1aSopenharmony_ci /* No CB can be zero */ 821cabdff1aSopenharmony_ci midcb = FFMAX(1,midcb); 822cabdff1aSopenharmony_ci sidcb = FFMAX(1,sidcb); 823cabdff1aSopenharmony_ci 824cabdff1aSopenharmony_ci for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { 825cabdff1aSopenharmony_ci FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g]; 826cabdff1aSopenharmony_ci FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g]; 827cabdff1aSopenharmony_ci float minthr = FFMIN(band0->threshold, band1->threshold); 828cabdff1aSopenharmony_ci int b1,b2,b3,b4; 829cabdff1aSopenharmony_ci for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { 830cabdff1aSopenharmony_ci M[i] = (sce0->coeffs[start+(w+w2)*128+i] 831cabdff1aSopenharmony_ci + sce1->coeffs[start+(w+w2)*128+i]) * 0.5; 832cabdff1aSopenharmony_ci S[i] = M[i] 833cabdff1aSopenharmony_ci - sce1->coeffs[start+(w+w2)*128+i]; 834cabdff1aSopenharmony_ci } 835cabdff1aSopenharmony_ci 836cabdff1aSopenharmony_ci s->abs_pow34(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]); 837cabdff1aSopenharmony_ci s->abs_pow34(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]); 838cabdff1aSopenharmony_ci s->abs_pow34(M34, M, sce0->ics.swb_sizes[g]); 839cabdff1aSopenharmony_ci s->abs_pow34(S34, S, sce0->ics.swb_sizes[g]); 840cabdff1aSopenharmony_ci dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128], 841cabdff1aSopenharmony_ci L34, 842cabdff1aSopenharmony_ci sce0->ics.swb_sizes[g], 843cabdff1aSopenharmony_ci sce0->sf_idx[w*16+g], 844cabdff1aSopenharmony_ci sce0->band_type[w*16+g], 845cabdff1aSopenharmony_ci lambda / (band0->threshold + FLT_MIN), INFINITY, &b1, NULL, 0); 846cabdff1aSopenharmony_ci dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128], 847cabdff1aSopenharmony_ci R34, 848cabdff1aSopenharmony_ci sce1->ics.swb_sizes[g], 849cabdff1aSopenharmony_ci sce1->sf_idx[w*16+g], 850cabdff1aSopenharmony_ci sce1->band_type[w*16+g], 851cabdff1aSopenharmony_ci lambda / (band1->threshold + FLT_MIN), INFINITY, &b2, NULL, 0); 852cabdff1aSopenharmony_ci dist2 += quantize_band_cost(s, M, 853cabdff1aSopenharmony_ci M34, 854cabdff1aSopenharmony_ci sce0->ics.swb_sizes[g], 855cabdff1aSopenharmony_ci mididx, 856cabdff1aSopenharmony_ci midcb, 857cabdff1aSopenharmony_ci lambda / (minthr + FLT_MIN), INFINITY, &b3, NULL, 0); 858cabdff1aSopenharmony_ci dist2 += quantize_band_cost(s, S, 859cabdff1aSopenharmony_ci S34, 860cabdff1aSopenharmony_ci sce1->ics.swb_sizes[g], 861cabdff1aSopenharmony_ci sididx, 862cabdff1aSopenharmony_ci sidcb, 863cabdff1aSopenharmony_ci mslambda / (minthr * bmax + FLT_MIN), INFINITY, &b4, NULL, 0); 864cabdff1aSopenharmony_ci B0 += b1+b2; 865cabdff1aSopenharmony_ci B1 += b3+b4; 866cabdff1aSopenharmony_ci dist1 -= b1+b2; 867cabdff1aSopenharmony_ci dist2 -= b3+b4; 868cabdff1aSopenharmony_ci } 869cabdff1aSopenharmony_ci cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0; 870cabdff1aSopenharmony_ci if (cpe->ms_mask[w*16+g]) { 871cabdff1aSopenharmony_ci if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT) { 872cabdff1aSopenharmony_ci sce0->sf_idx[w*16+g] = mididx; 873cabdff1aSopenharmony_ci sce1->sf_idx[w*16+g] = sididx; 874cabdff1aSopenharmony_ci sce0->band_type[w*16+g] = midcb; 875cabdff1aSopenharmony_ci sce1->band_type[w*16+g] = sidcb; 876cabdff1aSopenharmony_ci } else if ((sce0->band_type[w*16+g] != NOISE_BT) ^ (sce1->band_type[w*16+g] != NOISE_BT)) { 877cabdff1aSopenharmony_ci /* ms_mask unneeded, and it confuses some decoders */ 878cabdff1aSopenharmony_ci cpe->ms_mask[w*16+g] = 0; 879cabdff1aSopenharmony_ci } 880cabdff1aSopenharmony_ci break; 881cabdff1aSopenharmony_ci } else if (B1 > B0) { 882cabdff1aSopenharmony_ci /* More boost won't fix this */ 883cabdff1aSopenharmony_ci break; 884cabdff1aSopenharmony_ci } 885cabdff1aSopenharmony_ci } 886cabdff1aSopenharmony_ci } 887cabdff1aSopenharmony_ci if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT) 888cabdff1aSopenharmony_ci prev_mid = sce0->sf_idx[w*16+g]; 889cabdff1aSopenharmony_ci if (!sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT) 890cabdff1aSopenharmony_ci prev_side = sce1->sf_idx[w*16+g]; 891cabdff1aSopenharmony_ci start += sce0->ics.swb_sizes[g]; 892cabdff1aSopenharmony_ci } 893cabdff1aSopenharmony_ci } 894cabdff1aSopenharmony_ci} 895cabdff1aSopenharmony_ci 896cabdff1aSopenharmony_ciconst AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = { 897cabdff1aSopenharmony_ci [AAC_CODER_ANMR] = { 898cabdff1aSopenharmony_ci search_for_quantizers_anmr, 899cabdff1aSopenharmony_ci encode_window_bands_info, 900cabdff1aSopenharmony_ci quantize_and_encode_band, 901cabdff1aSopenharmony_ci ff_aac_encode_tns_info, 902cabdff1aSopenharmony_ci ff_aac_encode_ltp_info, 903cabdff1aSopenharmony_ci ff_aac_encode_main_pred, 904cabdff1aSopenharmony_ci ff_aac_adjust_common_pred, 905cabdff1aSopenharmony_ci ff_aac_adjust_common_ltp, 906cabdff1aSopenharmony_ci ff_aac_apply_main_pred, 907cabdff1aSopenharmony_ci ff_aac_apply_tns, 908cabdff1aSopenharmony_ci ff_aac_update_ltp, 909cabdff1aSopenharmony_ci ff_aac_ltp_insert_new_frame, 910cabdff1aSopenharmony_ci set_special_band_scalefactors, 911cabdff1aSopenharmony_ci search_for_pns, 912cabdff1aSopenharmony_ci mark_pns, 913cabdff1aSopenharmony_ci ff_aac_search_for_tns, 914cabdff1aSopenharmony_ci ff_aac_search_for_ltp, 915cabdff1aSopenharmony_ci search_for_ms, 916cabdff1aSopenharmony_ci ff_aac_search_for_is, 917cabdff1aSopenharmony_ci ff_aac_search_for_pred, 918cabdff1aSopenharmony_ci }, 919cabdff1aSopenharmony_ci [AAC_CODER_TWOLOOP] = { 920cabdff1aSopenharmony_ci search_for_quantizers_twoloop, 921cabdff1aSopenharmony_ci codebook_trellis_rate, 922cabdff1aSopenharmony_ci quantize_and_encode_band, 923cabdff1aSopenharmony_ci ff_aac_encode_tns_info, 924cabdff1aSopenharmony_ci ff_aac_encode_ltp_info, 925cabdff1aSopenharmony_ci ff_aac_encode_main_pred, 926cabdff1aSopenharmony_ci ff_aac_adjust_common_pred, 927cabdff1aSopenharmony_ci ff_aac_adjust_common_ltp, 928cabdff1aSopenharmony_ci ff_aac_apply_main_pred, 929cabdff1aSopenharmony_ci ff_aac_apply_tns, 930cabdff1aSopenharmony_ci ff_aac_update_ltp, 931cabdff1aSopenharmony_ci ff_aac_ltp_insert_new_frame, 932cabdff1aSopenharmony_ci set_special_band_scalefactors, 933cabdff1aSopenharmony_ci search_for_pns, 934cabdff1aSopenharmony_ci mark_pns, 935cabdff1aSopenharmony_ci ff_aac_search_for_tns, 936cabdff1aSopenharmony_ci ff_aac_search_for_ltp, 937cabdff1aSopenharmony_ci search_for_ms, 938cabdff1aSopenharmony_ci ff_aac_search_for_is, 939cabdff1aSopenharmony_ci ff_aac_search_for_pred, 940cabdff1aSopenharmony_ci }, 941cabdff1aSopenharmony_ci [AAC_CODER_FAST] = { 942cabdff1aSopenharmony_ci search_for_quantizers_fast, 943cabdff1aSopenharmony_ci codebook_trellis_rate, 944cabdff1aSopenharmony_ci quantize_and_encode_band, 945cabdff1aSopenharmony_ci ff_aac_encode_tns_info, 946cabdff1aSopenharmony_ci ff_aac_encode_ltp_info, 947cabdff1aSopenharmony_ci ff_aac_encode_main_pred, 948cabdff1aSopenharmony_ci ff_aac_adjust_common_pred, 949cabdff1aSopenharmony_ci ff_aac_adjust_common_ltp, 950cabdff1aSopenharmony_ci ff_aac_apply_main_pred, 951cabdff1aSopenharmony_ci ff_aac_apply_tns, 952cabdff1aSopenharmony_ci ff_aac_update_ltp, 953cabdff1aSopenharmony_ci ff_aac_ltp_insert_new_frame, 954cabdff1aSopenharmony_ci set_special_band_scalefactors, 955cabdff1aSopenharmony_ci search_for_pns, 956cabdff1aSopenharmony_ci mark_pns, 957cabdff1aSopenharmony_ci ff_aac_search_for_tns, 958cabdff1aSopenharmony_ci ff_aac_search_for_ltp, 959cabdff1aSopenharmony_ci search_for_ms, 960cabdff1aSopenharmony_ci ff_aac_search_for_is, 961cabdff1aSopenharmony_ci ff_aac_search_for_pred, 962cabdff1aSopenharmony_ci }, 963cabdff1aSopenharmony_ci}; 964