xref: /third_party/ffmpeg/libavcodec/aaccoder.c (revision cabdff1a)
1cabdff1aSopenharmony_ci/*
2cabdff1aSopenharmony_ci * AAC coefficients encoder
3cabdff1aSopenharmony_ci * Copyright (C) 2008-2009 Konstantin Shishkov
4cabdff1aSopenharmony_ci *
5cabdff1aSopenharmony_ci * This file is part of FFmpeg.
6cabdff1aSopenharmony_ci *
7cabdff1aSopenharmony_ci * FFmpeg is free software; you can redistribute it and/or
8cabdff1aSopenharmony_ci * modify it under the terms of the GNU Lesser General Public
9cabdff1aSopenharmony_ci * License as published by the Free Software Foundation; either
10cabdff1aSopenharmony_ci * version 2.1 of the License, or (at your option) any later version.
11cabdff1aSopenharmony_ci *
12cabdff1aSopenharmony_ci * FFmpeg is distributed in the hope that it will be useful,
13cabdff1aSopenharmony_ci * but WITHOUT ANY WARRANTY; without even the implied warranty of
14cabdff1aSopenharmony_ci * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15cabdff1aSopenharmony_ci * Lesser General Public License for more details.
16cabdff1aSopenharmony_ci *
17cabdff1aSopenharmony_ci * You should have received a copy of the GNU Lesser General Public
18cabdff1aSopenharmony_ci * License along with FFmpeg; if not, write to the Free Software
19cabdff1aSopenharmony_ci * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20cabdff1aSopenharmony_ci */
21cabdff1aSopenharmony_ci
22cabdff1aSopenharmony_ci/**
23cabdff1aSopenharmony_ci * @file
24cabdff1aSopenharmony_ci * AAC coefficients encoder
25cabdff1aSopenharmony_ci */
26cabdff1aSopenharmony_ci
27cabdff1aSopenharmony_ci/***********************************
28cabdff1aSopenharmony_ci *              TODOs:
29cabdff1aSopenharmony_ci * speedup quantizer selection
30cabdff1aSopenharmony_ci * add sane pulse detection
31cabdff1aSopenharmony_ci ***********************************/
32cabdff1aSopenharmony_ci
33cabdff1aSopenharmony_ci#include "libavutil/libm.h" // brought forward to work around cygwin header breakage
34cabdff1aSopenharmony_ci
35cabdff1aSopenharmony_ci#include <float.h>
36cabdff1aSopenharmony_ci
37cabdff1aSopenharmony_ci#include "libavutil/mathematics.h"
38cabdff1aSopenharmony_ci#include "mathops.h"
39cabdff1aSopenharmony_ci#include "avcodec.h"
40cabdff1aSopenharmony_ci#include "put_bits.h"
41cabdff1aSopenharmony_ci#include "aac.h"
42cabdff1aSopenharmony_ci#include "aacenc.h"
43cabdff1aSopenharmony_ci#include "aactab.h"
44cabdff1aSopenharmony_ci#include "aacenctab.h"
45cabdff1aSopenharmony_ci#include "aacenc_utils.h"
46cabdff1aSopenharmony_ci#include "aacenc_quantization.h"
47cabdff1aSopenharmony_ci
48cabdff1aSopenharmony_ci#include "aacenc_is.h"
49cabdff1aSopenharmony_ci#include "aacenc_tns.h"
50cabdff1aSopenharmony_ci#include "aacenc_ltp.h"
51cabdff1aSopenharmony_ci#include "aacenc_pred.h"
52cabdff1aSopenharmony_ci
53cabdff1aSopenharmony_ci#include "libavcodec/aaccoder_twoloop.h"
54cabdff1aSopenharmony_ci
55cabdff1aSopenharmony_ci/* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
56cabdff1aSopenharmony_ci * beyond which no PNS is used (since the SFBs contain tone rather than noise) */
57cabdff1aSopenharmony_ci#define NOISE_SPREAD_THRESHOLD 0.9f
58cabdff1aSopenharmony_ci
59cabdff1aSopenharmony_ci/* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
60cabdff1aSopenharmony_ci * replace low energy non zero bands */
61cabdff1aSopenharmony_ci#define NOISE_LAMBDA_REPLACE 1.948f
62cabdff1aSopenharmony_ci
63cabdff1aSopenharmony_ci#include "libavcodec/aaccoder_trellis.h"
64cabdff1aSopenharmony_ci
65cabdff1aSopenharmony_ci/**
66cabdff1aSopenharmony_ci * structure used in optimal codebook search
67cabdff1aSopenharmony_ci */
68cabdff1aSopenharmony_citypedef struct BandCodingPath {
69cabdff1aSopenharmony_ci    int prev_idx; ///< pointer to the previous path point
70cabdff1aSopenharmony_ci    float cost;   ///< path cost
71cabdff1aSopenharmony_ci    int run;
72cabdff1aSopenharmony_ci} BandCodingPath;
73cabdff1aSopenharmony_ci
74cabdff1aSopenharmony_ci/**
75cabdff1aSopenharmony_ci * Encode band info for single window group bands.
76cabdff1aSopenharmony_ci */
77cabdff1aSopenharmony_cistatic void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
78cabdff1aSopenharmony_ci                                     int win, int group_len, const float lambda)
79cabdff1aSopenharmony_ci{
80cabdff1aSopenharmony_ci    BandCodingPath path[120][CB_TOT_ALL];
81cabdff1aSopenharmony_ci    int w, swb, cb, start, size;
82cabdff1aSopenharmony_ci    int i, j;
83cabdff1aSopenharmony_ci    const int max_sfb  = sce->ics.max_sfb;
84cabdff1aSopenharmony_ci    const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
85cabdff1aSopenharmony_ci    const int run_esc  = (1 << run_bits) - 1;
86cabdff1aSopenharmony_ci    int idx, ppos, count;
87cabdff1aSopenharmony_ci    int stackrun[120], stackcb[120], stack_len;
88cabdff1aSopenharmony_ci    float next_minrd = INFINITY;
89cabdff1aSopenharmony_ci    int next_mincb = 0;
90cabdff1aSopenharmony_ci
91cabdff1aSopenharmony_ci    s->abs_pow34(s->scoefs, sce->coeffs, 1024);
92cabdff1aSopenharmony_ci    start = win*128;
93cabdff1aSopenharmony_ci    for (cb = 0; cb < CB_TOT_ALL; cb++) {
94cabdff1aSopenharmony_ci        path[0][cb].cost     = 0.0f;
95cabdff1aSopenharmony_ci        path[0][cb].prev_idx = -1;
96cabdff1aSopenharmony_ci        path[0][cb].run      = 0;
97cabdff1aSopenharmony_ci    }
98cabdff1aSopenharmony_ci    for (swb = 0; swb < max_sfb; swb++) {
99cabdff1aSopenharmony_ci        size = sce->ics.swb_sizes[swb];
100cabdff1aSopenharmony_ci        if (sce->zeroes[win*16 + swb]) {
101cabdff1aSopenharmony_ci            for (cb = 0; cb < CB_TOT_ALL; cb++) {
102cabdff1aSopenharmony_ci                path[swb+1][cb].prev_idx = cb;
103cabdff1aSopenharmony_ci                path[swb+1][cb].cost     = path[swb][cb].cost;
104cabdff1aSopenharmony_ci                path[swb+1][cb].run      = path[swb][cb].run + 1;
105cabdff1aSopenharmony_ci            }
106cabdff1aSopenharmony_ci        } else {
107cabdff1aSopenharmony_ci            float minrd = next_minrd;
108cabdff1aSopenharmony_ci            int mincb = next_mincb;
109cabdff1aSopenharmony_ci            next_minrd = INFINITY;
110cabdff1aSopenharmony_ci            next_mincb = 0;
111cabdff1aSopenharmony_ci            for (cb = 0; cb < CB_TOT_ALL; cb++) {
112cabdff1aSopenharmony_ci                float cost_stay_here, cost_get_here;
113cabdff1aSopenharmony_ci                float rd = 0.0f;
114cabdff1aSopenharmony_ci                if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
115cabdff1aSopenharmony_ci                    cb  < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
116cabdff1aSopenharmony_ci                    path[swb+1][cb].prev_idx = -1;
117cabdff1aSopenharmony_ci                    path[swb+1][cb].cost     = INFINITY;
118cabdff1aSopenharmony_ci                    path[swb+1][cb].run      = path[swb][cb].run + 1;
119cabdff1aSopenharmony_ci                    continue;
120cabdff1aSopenharmony_ci                }
121cabdff1aSopenharmony_ci                for (w = 0; w < group_len; w++) {
122cabdff1aSopenharmony_ci                    FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
123cabdff1aSopenharmony_ci                    rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
124cabdff1aSopenharmony_ci                                             &s->scoefs[start + w*128], size,
125cabdff1aSopenharmony_ci                                             sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
126cabdff1aSopenharmony_ci                                             lambda / band->threshold, INFINITY, NULL, NULL, 0);
127cabdff1aSopenharmony_ci                }
128cabdff1aSopenharmony_ci                cost_stay_here = path[swb][cb].cost + rd;
129cabdff1aSopenharmony_ci                cost_get_here  = minrd              + rd + run_bits + 4;
130cabdff1aSopenharmony_ci                if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
131cabdff1aSopenharmony_ci                    != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
132cabdff1aSopenharmony_ci                    cost_stay_here += run_bits;
133cabdff1aSopenharmony_ci                if (cost_get_here < cost_stay_here) {
134cabdff1aSopenharmony_ci                    path[swb+1][cb].prev_idx = mincb;
135cabdff1aSopenharmony_ci                    path[swb+1][cb].cost     = cost_get_here;
136cabdff1aSopenharmony_ci                    path[swb+1][cb].run      = 1;
137cabdff1aSopenharmony_ci                } else {
138cabdff1aSopenharmony_ci                    path[swb+1][cb].prev_idx = cb;
139cabdff1aSopenharmony_ci                    path[swb+1][cb].cost     = cost_stay_here;
140cabdff1aSopenharmony_ci                    path[swb+1][cb].run      = path[swb][cb].run + 1;
141cabdff1aSopenharmony_ci                }
142cabdff1aSopenharmony_ci                if (path[swb+1][cb].cost < next_minrd) {
143cabdff1aSopenharmony_ci                    next_minrd = path[swb+1][cb].cost;
144cabdff1aSopenharmony_ci                    next_mincb = cb;
145cabdff1aSopenharmony_ci                }
146cabdff1aSopenharmony_ci            }
147cabdff1aSopenharmony_ci        }
148cabdff1aSopenharmony_ci        start += sce->ics.swb_sizes[swb];
149cabdff1aSopenharmony_ci    }
150cabdff1aSopenharmony_ci
151cabdff1aSopenharmony_ci    //convert resulting path from backward-linked list
152cabdff1aSopenharmony_ci    stack_len = 0;
153cabdff1aSopenharmony_ci    idx       = 0;
154cabdff1aSopenharmony_ci    for (cb = 1; cb < CB_TOT_ALL; cb++)
155cabdff1aSopenharmony_ci        if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
156cabdff1aSopenharmony_ci            idx = cb;
157cabdff1aSopenharmony_ci    ppos = max_sfb;
158cabdff1aSopenharmony_ci    while (ppos > 0) {
159cabdff1aSopenharmony_ci        av_assert1(idx >= 0);
160cabdff1aSopenharmony_ci        cb = idx;
161cabdff1aSopenharmony_ci        stackrun[stack_len] = path[ppos][cb].run;
162cabdff1aSopenharmony_ci        stackcb [stack_len] = cb;
163cabdff1aSopenharmony_ci        idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
164cabdff1aSopenharmony_ci        ppos -= path[ppos][cb].run;
165cabdff1aSopenharmony_ci        stack_len++;
166cabdff1aSopenharmony_ci    }
167cabdff1aSopenharmony_ci    //perform actual band info encoding
168cabdff1aSopenharmony_ci    start = 0;
169cabdff1aSopenharmony_ci    for (i = stack_len - 1; i >= 0; i--) {
170cabdff1aSopenharmony_ci        cb = aac_cb_out_map[stackcb[i]];
171cabdff1aSopenharmony_ci        put_bits(&s->pb, 4, cb);
172cabdff1aSopenharmony_ci        count = stackrun[i];
173cabdff1aSopenharmony_ci        memset(sce->zeroes + win*16 + start, !cb, count);
174cabdff1aSopenharmony_ci        //XXX: memset when band_type is also uint8_t
175cabdff1aSopenharmony_ci        for (j = 0; j < count; j++) {
176cabdff1aSopenharmony_ci            sce->band_type[win*16 + start] = cb;
177cabdff1aSopenharmony_ci            start++;
178cabdff1aSopenharmony_ci        }
179cabdff1aSopenharmony_ci        while (count >= run_esc) {
180cabdff1aSopenharmony_ci            put_bits(&s->pb, run_bits, run_esc);
181cabdff1aSopenharmony_ci            count -= run_esc;
182cabdff1aSopenharmony_ci        }
183cabdff1aSopenharmony_ci        put_bits(&s->pb, run_bits, count);
184cabdff1aSopenharmony_ci    }
185cabdff1aSopenharmony_ci}
186cabdff1aSopenharmony_ci
187cabdff1aSopenharmony_ci
188cabdff1aSopenharmony_citypedef struct TrellisPath {
189cabdff1aSopenharmony_ci    float cost;
190cabdff1aSopenharmony_ci    int prev;
191cabdff1aSopenharmony_ci} TrellisPath;
192cabdff1aSopenharmony_ci
193cabdff1aSopenharmony_ci#define TRELLIS_STAGES 121
194cabdff1aSopenharmony_ci#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
195cabdff1aSopenharmony_ci
196cabdff1aSopenharmony_cistatic void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
197cabdff1aSopenharmony_ci{
198cabdff1aSopenharmony_ci    int w, g;
199cabdff1aSopenharmony_ci    int prevscaler_n = -255, prevscaler_i = 0;
200cabdff1aSopenharmony_ci    int bands = 0;
201cabdff1aSopenharmony_ci
202cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
203cabdff1aSopenharmony_ci        for (g = 0; g < sce->ics.num_swb; g++) {
204cabdff1aSopenharmony_ci            if (sce->zeroes[w*16+g])
205cabdff1aSopenharmony_ci                continue;
206cabdff1aSopenharmony_ci            if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
207cabdff1aSopenharmony_ci                sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
208cabdff1aSopenharmony_ci                bands++;
209cabdff1aSopenharmony_ci            } else if (sce->band_type[w*16+g] == NOISE_BT) {
210cabdff1aSopenharmony_ci                sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155);
211cabdff1aSopenharmony_ci                if (prevscaler_n == -255)
212cabdff1aSopenharmony_ci                    prevscaler_n = sce->sf_idx[w*16+g];
213cabdff1aSopenharmony_ci                bands++;
214cabdff1aSopenharmony_ci            }
215cabdff1aSopenharmony_ci        }
216cabdff1aSopenharmony_ci    }
217cabdff1aSopenharmony_ci
218cabdff1aSopenharmony_ci    if (!bands)
219cabdff1aSopenharmony_ci        return;
220cabdff1aSopenharmony_ci
221cabdff1aSopenharmony_ci    /* Clip the scalefactor indices */
222cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
223cabdff1aSopenharmony_ci        for (g = 0; g < sce->ics.num_swb; g++) {
224cabdff1aSopenharmony_ci            if (sce->zeroes[w*16+g])
225cabdff1aSopenharmony_ci                continue;
226cabdff1aSopenharmony_ci            if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
227cabdff1aSopenharmony_ci                sce->sf_idx[w*16+g] = prevscaler_i = av_clip(sce->sf_idx[w*16+g], prevscaler_i - SCALE_MAX_DIFF, prevscaler_i + SCALE_MAX_DIFF);
228cabdff1aSopenharmony_ci            } else if (sce->band_type[w*16+g] == NOISE_BT) {
229cabdff1aSopenharmony_ci                sce->sf_idx[w*16+g] = prevscaler_n = av_clip(sce->sf_idx[w*16+g], prevscaler_n - SCALE_MAX_DIFF, prevscaler_n + SCALE_MAX_DIFF);
230cabdff1aSopenharmony_ci            }
231cabdff1aSopenharmony_ci        }
232cabdff1aSopenharmony_ci    }
233cabdff1aSopenharmony_ci}
234cabdff1aSopenharmony_ci
235cabdff1aSopenharmony_cistatic void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
236cabdff1aSopenharmony_ci                                       SingleChannelElement *sce,
237cabdff1aSopenharmony_ci                                       const float lambda)
238cabdff1aSopenharmony_ci{
239cabdff1aSopenharmony_ci    int q, w, w2, g, start = 0;
240cabdff1aSopenharmony_ci    int i, j;
241cabdff1aSopenharmony_ci    int idx;
242cabdff1aSopenharmony_ci    TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
243cabdff1aSopenharmony_ci    int bandaddr[TRELLIS_STAGES];
244cabdff1aSopenharmony_ci    int minq;
245cabdff1aSopenharmony_ci    float mincost;
246cabdff1aSopenharmony_ci    float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
247cabdff1aSopenharmony_ci    int q0, q1, qcnt = 0;
248cabdff1aSopenharmony_ci
249cabdff1aSopenharmony_ci    for (i = 0; i < 1024; i++) {
250cabdff1aSopenharmony_ci        float t = fabsf(sce->coeffs[i]);
251cabdff1aSopenharmony_ci        if (t > 0.0f) {
252cabdff1aSopenharmony_ci            q0f = FFMIN(q0f, t);
253cabdff1aSopenharmony_ci            q1f = FFMAX(q1f, t);
254cabdff1aSopenharmony_ci            qnrgf += t*t;
255cabdff1aSopenharmony_ci            qcnt++;
256cabdff1aSopenharmony_ci        }
257cabdff1aSopenharmony_ci    }
258cabdff1aSopenharmony_ci
259cabdff1aSopenharmony_ci    if (!qcnt) {
260cabdff1aSopenharmony_ci        memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
261cabdff1aSopenharmony_ci        memset(sce->zeroes, 1, sizeof(sce->zeroes));
262cabdff1aSopenharmony_ci        return;
263cabdff1aSopenharmony_ci    }
264cabdff1aSopenharmony_ci
265cabdff1aSopenharmony_ci    //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
266cabdff1aSopenharmony_ci    q0 = av_clip(coef2minsf(q0f), 0, SCALE_MAX_POS-1);
267cabdff1aSopenharmony_ci    //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
268cabdff1aSopenharmony_ci    q1 = av_clip(coef2maxsf(q1f), 1, SCALE_MAX_POS);
269cabdff1aSopenharmony_ci    if (q1 - q0 > 60) {
270cabdff1aSopenharmony_ci        int q0low  = q0;
271cabdff1aSopenharmony_ci        int q1high = q1;
272cabdff1aSopenharmony_ci        //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
273cabdff1aSopenharmony_ci        int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
274cabdff1aSopenharmony_ci        q1 = qnrg + 30;
275cabdff1aSopenharmony_ci        q0 = qnrg - 30;
276cabdff1aSopenharmony_ci        if (q0 < q0low) {
277cabdff1aSopenharmony_ci            q1 += q0low - q0;
278cabdff1aSopenharmony_ci            q0  = q0low;
279cabdff1aSopenharmony_ci        } else if (q1 > q1high) {
280cabdff1aSopenharmony_ci            q0 -= q1 - q1high;
281cabdff1aSopenharmony_ci            q1  = q1high;
282cabdff1aSopenharmony_ci        }
283cabdff1aSopenharmony_ci    }
284cabdff1aSopenharmony_ci    // q0 == q1 isn't really a legal situation
285cabdff1aSopenharmony_ci    if (q0 == q1) {
286cabdff1aSopenharmony_ci        // the following is indirect but guarantees q1 != q0 && q1 near q0
287cabdff1aSopenharmony_ci        q1 = av_clip(q0+1, 1, SCALE_MAX_POS);
288cabdff1aSopenharmony_ci        q0 = av_clip(q1-1, 0, SCALE_MAX_POS - 1);
289cabdff1aSopenharmony_ci    }
290cabdff1aSopenharmony_ci
291cabdff1aSopenharmony_ci    for (i = 0; i < TRELLIS_STATES; i++) {
292cabdff1aSopenharmony_ci        paths[0][i].cost    = 0.0f;
293cabdff1aSopenharmony_ci        paths[0][i].prev    = -1;
294cabdff1aSopenharmony_ci    }
295cabdff1aSopenharmony_ci    for (j = 1; j < TRELLIS_STAGES; j++) {
296cabdff1aSopenharmony_ci        for (i = 0; i < TRELLIS_STATES; i++) {
297cabdff1aSopenharmony_ci            paths[j][i].cost    = INFINITY;
298cabdff1aSopenharmony_ci            paths[j][i].prev    = -2;
299cabdff1aSopenharmony_ci        }
300cabdff1aSopenharmony_ci    }
301cabdff1aSopenharmony_ci    idx = 1;
302cabdff1aSopenharmony_ci    s->abs_pow34(s->scoefs, sce->coeffs, 1024);
303cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
304cabdff1aSopenharmony_ci        start = w*128;
305cabdff1aSopenharmony_ci        for (g = 0; g < sce->ics.num_swb; g++) {
306cabdff1aSopenharmony_ci            const float *coefs = &sce->coeffs[start];
307cabdff1aSopenharmony_ci            float qmin, qmax;
308cabdff1aSopenharmony_ci            int nz = 0;
309cabdff1aSopenharmony_ci
310cabdff1aSopenharmony_ci            bandaddr[idx] = w * 16 + g;
311cabdff1aSopenharmony_ci            qmin = INT_MAX;
312cabdff1aSopenharmony_ci            qmax = 0.0f;
313cabdff1aSopenharmony_ci            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
314cabdff1aSopenharmony_ci                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
315cabdff1aSopenharmony_ci                if (band->energy <= band->threshold || band->threshold == 0.0f) {
316cabdff1aSopenharmony_ci                    sce->zeroes[(w+w2)*16+g] = 1;
317cabdff1aSopenharmony_ci                    continue;
318cabdff1aSopenharmony_ci                }
319cabdff1aSopenharmony_ci                sce->zeroes[(w+w2)*16+g] = 0;
320cabdff1aSopenharmony_ci                nz = 1;
321cabdff1aSopenharmony_ci                for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
322cabdff1aSopenharmony_ci                    float t = fabsf(coefs[w2*128+i]);
323cabdff1aSopenharmony_ci                    if (t > 0.0f)
324cabdff1aSopenharmony_ci                        qmin = FFMIN(qmin, t);
325cabdff1aSopenharmony_ci                    qmax = FFMAX(qmax, t);
326cabdff1aSopenharmony_ci                }
327cabdff1aSopenharmony_ci            }
328cabdff1aSopenharmony_ci            if (nz) {
329cabdff1aSopenharmony_ci                int minscale, maxscale;
330cabdff1aSopenharmony_ci                float minrd = INFINITY;
331cabdff1aSopenharmony_ci                float maxval;
332cabdff1aSopenharmony_ci                //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
333cabdff1aSopenharmony_ci                minscale = coef2minsf(qmin);
334cabdff1aSopenharmony_ci                //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
335cabdff1aSopenharmony_ci                maxscale = coef2maxsf(qmax);
336cabdff1aSopenharmony_ci                minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
337cabdff1aSopenharmony_ci                maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
338cabdff1aSopenharmony_ci                if (minscale == maxscale) {
339cabdff1aSopenharmony_ci                    maxscale = av_clip(minscale+1, 1, TRELLIS_STATES);
340cabdff1aSopenharmony_ci                    minscale = av_clip(maxscale-1, 0, TRELLIS_STATES - 1);
341cabdff1aSopenharmony_ci                }
342cabdff1aSopenharmony_ci                maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
343cabdff1aSopenharmony_ci                for (q = minscale; q < maxscale; q++) {
344cabdff1aSopenharmony_ci                    float dist = 0;
345cabdff1aSopenharmony_ci                    int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
346cabdff1aSopenharmony_ci                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
347cabdff1aSopenharmony_ci                        FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
348cabdff1aSopenharmony_ci                        dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
349cabdff1aSopenharmony_ci                                                   q + q0, cb, lambda / band->threshold, INFINITY, NULL, NULL, 0);
350cabdff1aSopenharmony_ci                    }
351cabdff1aSopenharmony_ci                    minrd = FFMIN(minrd, dist);
352cabdff1aSopenharmony_ci
353cabdff1aSopenharmony_ci                    for (i = 0; i < q1 - q0; i++) {
354cabdff1aSopenharmony_ci                        float cost;
355cabdff1aSopenharmony_ci                        cost = paths[idx - 1][i].cost + dist
356cabdff1aSopenharmony_ci                               + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
357cabdff1aSopenharmony_ci                        if (cost < paths[idx][q].cost) {
358cabdff1aSopenharmony_ci                            paths[idx][q].cost    = cost;
359cabdff1aSopenharmony_ci                            paths[idx][q].prev    = i;
360cabdff1aSopenharmony_ci                        }
361cabdff1aSopenharmony_ci                    }
362cabdff1aSopenharmony_ci                }
363cabdff1aSopenharmony_ci            } else {
364cabdff1aSopenharmony_ci                for (q = 0; q < q1 - q0; q++) {
365cabdff1aSopenharmony_ci                    paths[idx][q].cost = paths[idx - 1][q].cost + 1;
366cabdff1aSopenharmony_ci                    paths[idx][q].prev = q;
367cabdff1aSopenharmony_ci                }
368cabdff1aSopenharmony_ci            }
369cabdff1aSopenharmony_ci            sce->zeroes[w*16+g] = !nz;
370cabdff1aSopenharmony_ci            start += sce->ics.swb_sizes[g];
371cabdff1aSopenharmony_ci            idx++;
372cabdff1aSopenharmony_ci        }
373cabdff1aSopenharmony_ci    }
374cabdff1aSopenharmony_ci    idx--;
375cabdff1aSopenharmony_ci    mincost = paths[idx][0].cost;
376cabdff1aSopenharmony_ci    minq    = 0;
377cabdff1aSopenharmony_ci    for (i = 1; i < TRELLIS_STATES; i++) {
378cabdff1aSopenharmony_ci        if (paths[idx][i].cost < mincost) {
379cabdff1aSopenharmony_ci            mincost = paths[idx][i].cost;
380cabdff1aSopenharmony_ci            minq = i;
381cabdff1aSopenharmony_ci        }
382cabdff1aSopenharmony_ci    }
383cabdff1aSopenharmony_ci    while (idx) {
384cabdff1aSopenharmony_ci        sce->sf_idx[bandaddr[idx]] = minq + q0;
385cabdff1aSopenharmony_ci        minq = FFMAX(paths[idx][minq].prev, 0);
386cabdff1aSopenharmony_ci        idx--;
387cabdff1aSopenharmony_ci    }
388cabdff1aSopenharmony_ci    //set the same quantizers inside window groups
389cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
390cabdff1aSopenharmony_ci        for (g = 0; g < sce->ics.num_swb; g++)
391cabdff1aSopenharmony_ci            for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
392cabdff1aSopenharmony_ci                sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
393cabdff1aSopenharmony_ci}
394cabdff1aSopenharmony_ci
395cabdff1aSopenharmony_cistatic void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
396cabdff1aSopenharmony_ci                                       SingleChannelElement *sce,
397cabdff1aSopenharmony_ci                                       const float lambda)
398cabdff1aSopenharmony_ci{
399cabdff1aSopenharmony_ci    int start = 0, i, w, w2, g;
400cabdff1aSopenharmony_ci    int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->ch_layout.nb_channels * (lambda / 120.f);
401cabdff1aSopenharmony_ci    float dists[128] = { 0 }, uplims[128] = { 0 };
402cabdff1aSopenharmony_ci    float maxvals[128];
403cabdff1aSopenharmony_ci    int fflag, minscaler;
404cabdff1aSopenharmony_ci    int its  = 0;
405cabdff1aSopenharmony_ci    int allz = 0;
406cabdff1aSopenharmony_ci    float minthr = INFINITY;
407cabdff1aSopenharmony_ci
408cabdff1aSopenharmony_ci    // for values above this the decoder might end up in an endless loop
409cabdff1aSopenharmony_ci    // due to always having more bits than what can be encoded.
410cabdff1aSopenharmony_ci    destbits = FFMIN(destbits, 5800);
411cabdff1aSopenharmony_ci    //some heuristic to determine initial quantizers will reduce search time
412cabdff1aSopenharmony_ci    //determine zero bands and upper limits
413cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
414cabdff1aSopenharmony_ci        start = 0;
415cabdff1aSopenharmony_ci        for (g = 0; g < sce->ics.num_swb; g++) {
416cabdff1aSopenharmony_ci            int nz = 0;
417cabdff1aSopenharmony_ci            float uplim = 0.0f;
418cabdff1aSopenharmony_ci            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
419cabdff1aSopenharmony_ci                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
420cabdff1aSopenharmony_ci                uplim += band->threshold;
421cabdff1aSopenharmony_ci                if (band->energy <= band->threshold || band->threshold == 0.0f) {
422cabdff1aSopenharmony_ci                    sce->zeroes[(w+w2)*16+g] = 1;
423cabdff1aSopenharmony_ci                    continue;
424cabdff1aSopenharmony_ci                }
425cabdff1aSopenharmony_ci                nz = 1;
426cabdff1aSopenharmony_ci            }
427cabdff1aSopenharmony_ci            uplims[w*16+g] = uplim *512;
428cabdff1aSopenharmony_ci            sce->band_type[w*16+g] = 0;
429cabdff1aSopenharmony_ci            sce->zeroes[w*16+g] = !nz;
430cabdff1aSopenharmony_ci            if (nz)
431cabdff1aSopenharmony_ci                minthr = FFMIN(minthr, uplim);
432cabdff1aSopenharmony_ci            allz |= nz;
433cabdff1aSopenharmony_ci            start += sce->ics.swb_sizes[g];
434cabdff1aSopenharmony_ci        }
435cabdff1aSopenharmony_ci    }
436cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
437cabdff1aSopenharmony_ci        for (g = 0; g < sce->ics.num_swb; g++) {
438cabdff1aSopenharmony_ci            if (sce->zeroes[w*16+g]) {
439cabdff1aSopenharmony_ci                sce->sf_idx[w*16+g] = SCALE_ONE_POS;
440cabdff1aSopenharmony_ci                continue;
441cabdff1aSopenharmony_ci            }
442cabdff1aSopenharmony_ci            sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
443cabdff1aSopenharmony_ci        }
444cabdff1aSopenharmony_ci    }
445cabdff1aSopenharmony_ci
446cabdff1aSopenharmony_ci    if (!allz)
447cabdff1aSopenharmony_ci        return;
448cabdff1aSopenharmony_ci    s->abs_pow34(s->scoefs, sce->coeffs, 1024);
449cabdff1aSopenharmony_ci    ff_quantize_band_cost_cache_init(s);
450cabdff1aSopenharmony_ci
451cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
452cabdff1aSopenharmony_ci        start = w*128;
453cabdff1aSopenharmony_ci        for (g = 0; g < sce->ics.num_swb; g++) {
454cabdff1aSopenharmony_ci            const float *scaled = s->scoefs + start;
455cabdff1aSopenharmony_ci            maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
456cabdff1aSopenharmony_ci            start += sce->ics.swb_sizes[g];
457cabdff1aSopenharmony_ci        }
458cabdff1aSopenharmony_ci    }
459cabdff1aSopenharmony_ci
460cabdff1aSopenharmony_ci    //perform two-loop search
461cabdff1aSopenharmony_ci    //outer loop - improve quality
462cabdff1aSopenharmony_ci    do {
463cabdff1aSopenharmony_ci        int tbits, qstep;
464cabdff1aSopenharmony_ci        minscaler = sce->sf_idx[0];
465cabdff1aSopenharmony_ci        //inner loop - quantize spectrum to fit into given number of bits
466cabdff1aSopenharmony_ci        qstep = its ? 1 : 32;
467cabdff1aSopenharmony_ci        do {
468cabdff1aSopenharmony_ci            int prev = -1;
469cabdff1aSopenharmony_ci            tbits = 0;
470cabdff1aSopenharmony_ci            for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
471cabdff1aSopenharmony_ci                start = w*128;
472cabdff1aSopenharmony_ci                for (g = 0; g < sce->ics.num_swb; g++) {
473cabdff1aSopenharmony_ci                    const float *coefs = sce->coeffs + start;
474cabdff1aSopenharmony_ci                    const float *scaled = s->scoefs + start;
475cabdff1aSopenharmony_ci                    int bits = 0;
476cabdff1aSopenharmony_ci                    int cb;
477cabdff1aSopenharmony_ci                    float dist = 0.0f;
478cabdff1aSopenharmony_ci
479cabdff1aSopenharmony_ci                    if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
480cabdff1aSopenharmony_ci                        start += sce->ics.swb_sizes[g];
481cabdff1aSopenharmony_ci                        continue;
482cabdff1aSopenharmony_ci                    }
483cabdff1aSopenharmony_ci                    minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
484cabdff1aSopenharmony_ci                    cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
485cabdff1aSopenharmony_ci                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
486cabdff1aSopenharmony_ci                        int b;
487cabdff1aSopenharmony_ci                        dist += quantize_band_cost_cached(s, w + w2, g,
488cabdff1aSopenharmony_ci                                                          coefs + w2*128,
489cabdff1aSopenharmony_ci                                                          scaled + w2*128,
490cabdff1aSopenharmony_ci                                                          sce->ics.swb_sizes[g],
491cabdff1aSopenharmony_ci                                                          sce->sf_idx[w*16+g],
492cabdff1aSopenharmony_ci                                                          cb, 1.0f, INFINITY,
493cabdff1aSopenharmony_ci                                                          &b, NULL, 0);
494cabdff1aSopenharmony_ci                        bits += b;
495cabdff1aSopenharmony_ci                    }
496cabdff1aSopenharmony_ci                    dists[w*16+g] = dist - bits;
497cabdff1aSopenharmony_ci                    if (prev != -1) {
498cabdff1aSopenharmony_ci                        bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
499cabdff1aSopenharmony_ci                    }
500cabdff1aSopenharmony_ci                    tbits += bits;
501cabdff1aSopenharmony_ci                    start += sce->ics.swb_sizes[g];
502cabdff1aSopenharmony_ci                    prev = sce->sf_idx[w*16+g];
503cabdff1aSopenharmony_ci                }
504cabdff1aSopenharmony_ci            }
505cabdff1aSopenharmony_ci            if (tbits > destbits) {
506cabdff1aSopenharmony_ci                for (i = 0; i < 128; i++)
507cabdff1aSopenharmony_ci                    if (sce->sf_idx[i] < 218 - qstep)
508cabdff1aSopenharmony_ci                        sce->sf_idx[i] += qstep;
509cabdff1aSopenharmony_ci            } else {
510cabdff1aSopenharmony_ci                for (i = 0; i < 128; i++)
511cabdff1aSopenharmony_ci                    if (sce->sf_idx[i] > 60 - qstep)
512cabdff1aSopenharmony_ci                        sce->sf_idx[i] -= qstep;
513cabdff1aSopenharmony_ci            }
514cabdff1aSopenharmony_ci            qstep >>= 1;
515cabdff1aSopenharmony_ci            if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
516cabdff1aSopenharmony_ci                qstep = 1;
517cabdff1aSopenharmony_ci        } while (qstep);
518cabdff1aSopenharmony_ci
519cabdff1aSopenharmony_ci        fflag = 0;
520cabdff1aSopenharmony_ci        minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
521cabdff1aSopenharmony_ci
522cabdff1aSopenharmony_ci        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
523cabdff1aSopenharmony_ci            for (g = 0; g < sce->ics.num_swb; g++) {
524cabdff1aSopenharmony_ci                int prevsc = sce->sf_idx[w*16+g];
525cabdff1aSopenharmony_ci                if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
526cabdff1aSopenharmony_ci                    if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
527cabdff1aSopenharmony_ci                        sce->sf_idx[w*16+g]--;
528cabdff1aSopenharmony_ci                    else //Try to make sure there is some energy in every band
529cabdff1aSopenharmony_ci                        sce->sf_idx[w*16+g]-=2;
530cabdff1aSopenharmony_ci                }
531cabdff1aSopenharmony_ci                sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
532cabdff1aSopenharmony_ci                sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
533cabdff1aSopenharmony_ci                if (sce->sf_idx[w*16+g] != prevsc)
534cabdff1aSopenharmony_ci                    fflag = 1;
535cabdff1aSopenharmony_ci                sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
536cabdff1aSopenharmony_ci            }
537cabdff1aSopenharmony_ci        }
538cabdff1aSopenharmony_ci        its++;
539cabdff1aSopenharmony_ci    } while (fflag && its < 10);
540cabdff1aSopenharmony_ci}
541cabdff1aSopenharmony_ci
542cabdff1aSopenharmony_cistatic void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
543cabdff1aSopenharmony_ci{
544cabdff1aSopenharmony_ci    FFPsyBand *band;
545cabdff1aSopenharmony_ci    int w, g, w2, i;
546cabdff1aSopenharmony_ci    int wlen = 1024 / sce->ics.num_windows;
547cabdff1aSopenharmony_ci    int bandwidth, cutoff;
548cabdff1aSopenharmony_ci    float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
549cabdff1aSopenharmony_ci    float *NOR34 = &s->scoefs[3*128];
550cabdff1aSopenharmony_ci    uint8_t nextband[128];
551cabdff1aSopenharmony_ci    const float lambda = s->lambda;
552cabdff1aSopenharmony_ci    const float freq_mult = avctx->sample_rate*0.5f/wlen;
553cabdff1aSopenharmony_ci    const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
554cabdff1aSopenharmony_ci    const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
555cabdff1aSopenharmony_ci    const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f);
556cabdff1aSopenharmony_ci    const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
557cabdff1aSopenharmony_ci
558cabdff1aSopenharmony_ci    int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
559cabdff1aSopenharmony_ci        / ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->ch_layout.nb_channels)
560cabdff1aSopenharmony_ci        * (lambda / 120.f);
561cabdff1aSopenharmony_ci
562cabdff1aSopenharmony_ci    /** Keep this in sync with twoloop's cutoff selection */
563cabdff1aSopenharmony_ci    float rate_bandwidth_multiplier = 1.5f;
564cabdff1aSopenharmony_ci    int prev = -1000, prev_sf = -1;
565cabdff1aSopenharmony_ci    int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE)
566cabdff1aSopenharmony_ci        ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
567cabdff1aSopenharmony_ci        : (avctx->bit_rate / avctx->ch_layout.nb_channels);
568cabdff1aSopenharmony_ci
569cabdff1aSopenharmony_ci    frame_bit_rate *= 1.15f;
570cabdff1aSopenharmony_ci
571cabdff1aSopenharmony_ci    if (avctx->cutoff > 0) {
572cabdff1aSopenharmony_ci        bandwidth = avctx->cutoff;
573cabdff1aSopenharmony_ci    } else {
574cabdff1aSopenharmony_ci        bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
575cabdff1aSopenharmony_ci    }
576cabdff1aSopenharmony_ci
577cabdff1aSopenharmony_ci    cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
578cabdff1aSopenharmony_ci
579cabdff1aSopenharmony_ci    memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
580cabdff1aSopenharmony_ci    ff_init_nextband_map(sce, nextband);
581cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
582cabdff1aSopenharmony_ci        int wstart = w*128;
583cabdff1aSopenharmony_ci        for (g = 0; g < sce->ics.num_swb; g++) {
584cabdff1aSopenharmony_ci            int noise_sfi;
585cabdff1aSopenharmony_ci            float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
586cabdff1aSopenharmony_ci            float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
587cabdff1aSopenharmony_ci            float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
588cabdff1aSopenharmony_ci            float min_energy = -1.0f, max_energy = 0.0f;
589cabdff1aSopenharmony_ci            const int start = wstart+sce->ics.swb_offset[g];
590cabdff1aSopenharmony_ci            const float freq = (start-wstart)*freq_mult;
591cabdff1aSopenharmony_ci            const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
592cabdff1aSopenharmony_ci            if (freq < NOISE_LOW_LIMIT || (start-wstart) >= cutoff) {
593cabdff1aSopenharmony_ci                if (!sce->zeroes[w*16+g])
594cabdff1aSopenharmony_ci                    prev_sf = sce->sf_idx[w*16+g];
595cabdff1aSopenharmony_ci                continue;
596cabdff1aSopenharmony_ci            }
597cabdff1aSopenharmony_ci            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
598cabdff1aSopenharmony_ci                band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
599cabdff1aSopenharmony_ci                sfb_energy += band->energy;
600cabdff1aSopenharmony_ci                spread     = FFMIN(spread, band->spread);
601cabdff1aSopenharmony_ci                threshold  += band->threshold;
602cabdff1aSopenharmony_ci                if (!w2) {
603cabdff1aSopenharmony_ci                    min_energy = max_energy = band->energy;
604cabdff1aSopenharmony_ci                } else {
605cabdff1aSopenharmony_ci                    min_energy = FFMIN(min_energy, band->energy);
606cabdff1aSopenharmony_ci                    max_energy = FFMAX(max_energy, band->energy);
607cabdff1aSopenharmony_ci                }
608cabdff1aSopenharmony_ci            }
609cabdff1aSopenharmony_ci
610cabdff1aSopenharmony_ci            /* Ramps down at ~8000Hz and loosens the dist threshold */
611cabdff1aSopenharmony_ci            dist_thresh = av_clipf(2.5f*NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias;
612cabdff1aSopenharmony_ci
613cabdff1aSopenharmony_ci            /* PNS is acceptable when all of these are true:
614cabdff1aSopenharmony_ci             * 1. high spread energy (noise-like band)
615cabdff1aSopenharmony_ci             * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
616cabdff1aSopenharmony_ci             * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
617cabdff1aSopenharmony_ci             *
618cabdff1aSopenharmony_ci             * At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important)
619cabdff1aSopenharmony_ci             */
620cabdff1aSopenharmony_ci            if ((!sce->zeroes[w*16+g] && !ff_sfdelta_can_remove_band(sce, nextband, prev_sf, w*16+g)) ||
621cabdff1aSopenharmony_ci                ((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.0f/freq_boost)) || spread < spread_threshold ||
622cabdff1aSopenharmony_ci                (!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) ||
623cabdff1aSopenharmony_ci                min_energy < pns_transient_energy_r * max_energy ) {
624cabdff1aSopenharmony_ci                sce->pns_ener[w*16+g] = sfb_energy;
625cabdff1aSopenharmony_ci                if (!sce->zeroes[w*16+g])
626cabdff1aSopenharmony_ci                    prev_sf = sce->sf_idx[w*16+g];
627cabdff1aSopenharmony_ci                continue;
628cabdff1aSopenharmony_ci            }
629cabdff1aSopenharmony_ci
630cabdff1aSopenharmony_ci            pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread);
631cabdff1aSopenharmony_ci            noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */
632cabdff1aSopenharmony_ci            noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO];    /* Dequantize */
633cabdff1aSopenharmony_ci            if (prev != -1000) {
634cabdff1aSopenharmony_ci                int noise_sfdiff = noise_sfi - prev + SCALE_DIFF_ZERO;
635cabdff1aSopenharmony_ci                if (noise_sfdiff < 0 || noise_sfdiff > 2*SCALE_MAX_DIFF) {
636cabdff1aSopenharmony_ci                    if (!sce->zeroes[w*16+g])
637cabdff1aSopenharmony_ci                        prev_sf = sce->sf_idx[w*16+g];
638cabdff1aSopenharmony_ci                    continue;
639cabdff1aSopenharmony_ci                }
640cabdff1aSopenharmony_ci            }
641cabdff1aSopenharmony_ci            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
642cabdff1aSopenharmony_ci                float band_energy, scale, pns_senergy;
643cabdff1aSopenharmony_ci                const int start_c = (w+w2)*128+sce->ics.swb_offset[g];
644cabdff1aSopenharmony_ci                band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
645cabdff1aSopenharmony_ci                for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
646cabdff1aSopenharmony_ci                    s->random_state  = lcg_random(s->random_state);
647cabdff1aSopenharmony_ci                    PNS[i] = s->random_state;
648cabdff1aSopenharmony_ci                }
649cabdff1aSopenharmony_ci                band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
650cabdff1aSopenharmony_ci                scale = noise_amp/sqrtf(band_energy);
651cabdff1aSopenharmony_ci                s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
652cabdff1aSopenharmony_ci                pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
653cabdff1aSopenharmony_ci                pns_energy += pns_senergy;
654cabdff1aSopenharmony_ci                s->abs_pow34(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]);
655cabdff1aSopenharmony_ci                s->abs_pow34(PNS34, PNS, sce->ics.swb_sizes[g]);
656cabdff1aSopenharmony_ci                dist1 += quantize_band_cost(s, &sce->coeffs[start_c],
657cabdff1aSopenharmony_ci                                            NOR34,
658cabdff1aSopenharmony_ci                                            sce->ics.swb_sizes[g],
659cabdff1aSopenharmony_ci                                            sce->sf_idx[(w+w2)*16+g],
660cabdff1aSopenharmony_ci                                            sce->band_alt[(w+w2)*16+g],
661cabdff1aSopenharmony_ci                                            lambda/band->threshold, INFINITY, NULL, NULL, 0);
662cabdff1aSopenharmony_ci                /* Estimate rd on average as 5 bits for SF, 4 for the CB, plus spread energy * lambda/thr */
663cabdff1aSopenharmony_ci                dist2 += band->energy/(band->spread*band->spread)*lambda*dist_thresh/band->threshold;
664cabdff1aSopenharmony_ci            }
665cabdff1aSopenharmony_ci            if (g && sce->band_type[w*16+g-1] == NOISE_BT) {
666cabdff1aSopenharmony_ci                dist2 += 5;
667cabdff1aSopenharmony_ci            } else {
668cabdff1aSopenharmony_ci                dist2 += 9;
669cabdff1aSopenharmony_ci            }
670cabdff1aSopenharmony_ci            energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */
671cabdff1aSopenharmony_ci            sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy;
672cabdff1aSopenharmony_ci            if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
673cabdff1aSopenharmony_ci                sce->band_type[w*16+g] = NOISE_BT;
674cabdff1aSopenharmony_ci                sce->zeroes[w*16+g] = 0;
675cabdff1aSopenharmony_ci                prev = noise_sfi;
676cabdff1aSopenharmony_ci            } else {
677cabdff1aSopenharmony_ci                if (!sce->zeroes[w*16+g])
678cabdff1aSopenharmony_ci                    prev_sf = sce->sf_idx[w*16+g];
679cabdff1aSopenharmony_ci            }
680cabdff1aSopenharmony_ci        }
681cabdff1aSopenharmony_ci    }
682cabdff1aSopenharmony_ci}
683cabdff1aSopenharmony_ci
684cabdff1aSopenharmony_cistatic void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
685cabdff1aSopenharmony_ci{
686cabdff1aSopenharmony_ci    FFPsyBand *band;
687cabdff1aSopenharmony_ci    int w, g, w2;
688cabdff1aSopenharmony_ci    int wlen = 1024 / sce->ics.num_windows;
689cabdff1aSopenharmony_ci    int bandwidth, cutoff;
690cabdff1aSopenharmony_ci    const float lambda = s->lambda;
691cabdff1aSopenharmony_ci    const float freq_mult = avctx->sample_rate*0.5f/wlen;
692cabdff1aSopenharmony_ci    const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
693cabdff1aSopenharmony_ci    const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
694cabdff1aSopenharmony_ci
695cabdff1aSopenharmony_ci    int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
696cabdff1aSopenharmony_ci        / ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->ch_layout.nb_channels)
697cabdff1aSopenharmony_ci        * (lambda / 120.f);
698cabdff1aSopenharmony_ci
699cabdff1aSopenharmony_ci    /** Keep this in sync with twoloop's cutoff selection */
700cabdff1aSopenharmony_ci    float rate_bandwidth_multiplier = 1.5f;
701cabdff1aSopenharmony_ci    int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE)
702cabdff1aSopenharmony_ci        ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
703cabdff1aSopenharmony_ci        : (avctx->bit_rate / avctx->ch_layout.nb_channels);
704cabdff1aSopenharmony_ci
705cabdff1aSopenharmony_ci    frame_bit_rate *= 1.15f;
706cabdff1aSopenharmony_ci
707cabdff1aSopenharmony_ci    if (avctx->cutoff > 0) {
708cabdff1aSopenharmony_ci        bandwidth = avctx->cutoff;
709cabdff1aSopenharmony_ci    } else {
710cabdff1aSopenharmony_ci        bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
711cabdff1aSopenharmony_ci    }
712cabdff1aSopenharmony_ci
713cabdff1aSopenharmony_ci    cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
714cabdff1aSopenharmony_ci
715cabdff1aSopenharmony_ci    memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
716cabdff1aSopenharmony_ci    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
717cabdff1aSopenharmony_ci        for (g = 0; g < sce->ics.num_swb; g++) {
718cabdff1aSopenharmony_ci            float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
719cabdff1aSopenharmony_ci            float min_energy = -1.0f, max_energy = 0.0f;
720cabdff1aSopenharmony_ci            const int start = sce->ics.swb_offset[g];
721cabdff1aSopenharmony_ci            const float freq = start*freq_mult;
722cabdff1aSopenharmony_ci            const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
723cabdff1aSopenharmony_ci            if (freq < NOISE_LOW_LIMIT || start >= cutoff) {
724cabdff1aSopenharmony_ci                sce->can_pns[w*16+g] = 0;
725cabdff1aSopenharmony_ci                continue;
726cabdff1aSopenharmony_ci            }
727cabdff1aSopenharmony_ci            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
728cabdff1aSopenharmony_ci                band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
729cabdff1aSopenharmony_ci                sfb_energy += band->energy;
730cabdff1aSopenharmony_ci                spread     = FFMIN(spread, band->spread);
731cabdff1aSopenharmony_ci                threshold  += band->threshold;
732cabdff1aSopenharmony_ci                if (!w2) {
733cabdff1aSopenharmony_ci                    min_energy = max_energy = band->energy;
734cabdff1aSopenharmony_ci                } else {
735cabdff1aSopenharmony_ci                    min_energy = FFMIN(min_energy, band->energy);
736cabdff1aSopenharmony_ci                    max_energy = FFMAX(max_energy, band->energy);
737cabdff1aSopenharmony_ci                }
738cabdff1aSopenharmony_ci            }
739cabdff1aSopenharmony_ci
740cabdff1aSopenharmony_ci            /* PNS is acceptable when all of these are true:
741cabdff1aSopenharmony_ci             * 1. high spread energy (noise-like band)
742cabdff1aSopenharmony_ci             * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
743cabdff1aSopenharmony_ci             * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
744cabdff1aSopenharmony_ci             */
745cabdff1aSopenharmony_ci            sce->pns_ener[w*16+g] = sfb_energy;
746cabdff1aSopenharmony_ci            if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) {
747cabdff1aSopenharmony_ci                sce->can_pns[w*16+g] = 0;
748cabdff1aSopenharmony_ci            } else {
749cabdff1aSopenharmony_ci                sce->can_pns[w*16+g] = 1;
750cabdff1aSopenharmony_ci            }
751cabdff1aSopenharmony_ci        }
752cabdff1aSopenharmony_ci    }
753cabdff1aSopenharmony_ci}
754cabdff1aSopenharmony_ci
755cabdff1aSopenharmony_cistatic void search_for_ms(AACEncContext *s, ChannelElement *cpe)
756cabdff1aSopenharmony_ci{
757cabdff1aSopenharmony_ci    int start = 0, i, w, w2, g, sid_sf_boost, prev_mid, prev_side;
758cabdff1aSopenharmony_ci    uint8_t nextband0[128], nextband1[128];
759cabdff1aSopenharmony_ci    float *M   = s->scoefs + 128*0, *S   = s->scoefs + 128*1;
760cabdff1aSopenharmony_ci    float *L34 = s->scoefs + 128*2, *R34 = s->scoefs + 128*3;
761cabdff1aSopenharmony_ci    float *M34 = s->scoefs + 128*4, *S34 = s->scoefs + 128*5;
762cabdff1aSopenharmony_ci    const float lambda = s->lambda;
763cabdff1aSopenharmony_ci    const float mslambda = FFMIN(1.0f, lambda / 120.f);
764cabdff1aSopenharmony_ci    SingleChannelElement *sce0 = &cpe->ch[0];
765cabdff1aSopenharmony_ci    SingleChannelElement *sce1 = &cpe->ch[1];
766cabdff1aSopenharmony_ci    if (!cpe->common_window)
767cabdff1aSopenharmony_ci        return;
768cabdff1aSopenharmony_ci
769cabdff1aSopenharmony_ci    /** Scout out next nonzero bands */
770cabdff1aSopenharmony_ci    ff_init_nextband_map(sce0, nextband0);
771cabdff1aSopenharmony_ci    ff_init_nextband_map(sce1, nextband1);
772cabdff1aSopenharmony_ci
773cabdff1aSopenharmony_ci    prev_mid = sce0->sf_idx[0];
774cabdff1aSopenharmony_ci    prev_side = sce1->sf_idx[0];
775cabdff1aSopenharmony_ci    for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
776cabdff1aSopenharmony_ci        start = 0;
777cabdff1aSopenharmony_ci        for (g = 0; g < sce0->ics.num_swb; g++) {
778cabdff1aSopenharmony_ci            float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f;
779cabdff1aSopenharmony_ci            if (!cpe->is_mask[w*16+g])
780cabdff1aSopenharmony_ci                cpe->ms_mask[w*16+g] = 0;
781cabdff1aSopenharmony_ci            if (!sce0->zeroes[w*16+g] && !sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g]) {
782cabdff1aSopenharmony_ci                float Mmax = 0.0f, Smax = 0.0f;
783cabdff1aSopenharmony_ci
784cabdff1aSopenharmony_ci                /* Must compute mid/side SF and book for the whole window group */
785cabdff1aSopenharmony_ci                for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
786cabdff1aSopenharmony_ci                    for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
787cabdff1aSopenharmony_ci                        M[i] = (sce0->coeffs[start+(w+w2)*128+i]
788cabdff1aSopenharmony_ci                              + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
789cabdff1aSopenharmony_ci                        S[i] =  M[i]
790cabdff1aSopenharmony_ci                              - sce1->coeffs[start+(w+w2)*128+i];
791cabdff1aSopenharmony_ci                    }
792cabdff1aSopenharmony_ci                    s->abs_pow34(M34, M, sce0->ics.swb_sizes[g]);
793cabdff1aSopenharmony_ci                    s->abs_pow34(S34, S, sce0->ics.swb_sizes[g]);
794cabdff1aSopenharmony_ci                    for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) {
795cabdff1aSopenharmony_ci                        Mmax = FFMAX(Mmax, M34[i]);
796cabdff1aSopenharmony_ci                        Smax = FFMAX(Smax, S34[i]);
797cabdff1aSopenharmony_ci                    }
798cabdff1aSopenharmony_ci                }
799cabdff1aSopenharmony_ci
800cabdff1aSopenharmony_ci                for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
801cabdff1aSopenharmony_ci                    float dist1 = 0.0f, dist2 = 0.0f;
802cabdff1aSopenharmony_ci                    int B0 = 0, B1 = 0;
803cabdff1aSopenharmony_ci                    int minidx;
804cabdff1aSopenharmony_ci                    int mididx, sididx;
805cabdff1aSopenharmony_ci                    int midcb, sidcb;
806cabdff1aSopenharmony_ci
807cabdff1aSopenharmony_ci                    minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]);
808cabdff1aSopenharmony_ci                    mididx = av_clip(minidx, 0, SCALE_MAX_POS - SCALE_DIV_512);
809cabdff1aSopenharmony_ci                    sididx = av_clip(minidx - sid_sf_boost * 3, 0, SCALE_MAX_POS - SCALE_DIV_512);
810cabdff1aSopenharmony_ci                    if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT
811cabdff1aSopenharmony_ci                        && (   !ff_sfdelta_can_replace(sce0, nextband0, prev_mid, mididx, w*16+g)
812cabdff1aSopenharmony_ci                            || !ff_sfdelta_can_replace(sce1, nextband1, prev_side, sididx, w*16+g))) {
813cabdff1aSopenharmony_ci                        /* scalefactor range violation, bad stuff, will decrease quality unacceptably */
814cabdff1aSopenharmony_ci                        continue;
815cabdff1aSopenharmony_ci                    }
816cabdff1aSopenharmony_ci
817cabdff1aSopenharmony_ci                    midcb = find_min_book(Mmax, mididx);
818cabdff1aSopenharmony_ci                    sidcb = find_min_book(Smax, sididx);
819cabdff1aSopenharmony_ci
820cabdff1aSopenharmony_ci                    /* No CB can be zero */
821cabdff1aSopenharmony_ci                    midcb = FFMAX(1,midcb);
822cabdff1aSopenharmony_ci                    sidcb = FFMAX(1,sidcb);
823cabdff1aSopenharmony_ci
824cabdff1aSopenharmony_ci                    for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
825cabdff1aSopenharmony_ci                        FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
826cabdff1aSopenharmony_ci                        FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
827cabdff1aSopenharmony_ci                        float minthr = FFMIN(band0->threshold, band1->threshold);
828cabdff1aSopenharmony_ci                        int b1,b2,b3,b4;
829cabdff1aSopenharmony_ci                        for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
830cabdff1aSopenharmony_ci                            M[i] = (sce0->coeffs[start+(w+w2)*128+i]
831cabdff1aSopenharmony_ci                                  + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
832cabdff1aSopenharmony_ci                            S[i] =  M[i]
833cabdff1aSopenharmony_ci                                  - sce1->coeffs[start+(w+w2)*128+i];
834cabdff1aSopenharmony_ci                        }
835cabdff1aSopenharmony_ci
836cabdff1aSopenharmony_ci                        s->abs_pow34(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
837cabdff1aSopenharmony_ci                        s->abs_pow34(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
838cabdff1aSopenharmony_ci                        s->abs_pow34(M34, M,                         sce0->ics.swb_sizes[g]);
839cabdff1aSopenharmony_ci                        s->abs_pow34(S34, S,                         sce0->ics.swb_sizes[g]);
840cabdff1aSopenharmony_ci                        dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
841cabdff1aSopenharmony_ci                                                    L34,
842cabdff1aSopenharmony_ci                                                    sce0->ics.swb_sizes[g],
843cabdff1aSopenharmony_ci                                                    sce0->sf_idx[w*16+g],
844cabdff1aSopenharmony_ci                                                    sce0->band_type[w*16+g],
845cabdff1aSopenharmony_ci                                                    lambda / (band0->threshold + FLT_MIN), INFINITY, &b1, NULL, 0);
846cabdff1aSopenharmony_ci                        dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
847cabdff1aSopenharmony_ci                                                    R34,
848cabdff1aSopenharmony_ci                                                    sce1->ics.swb_sizes[g],
849cabdff1aSopenharmony_ci                                                    sce1->sf_idx[w*16+g],
850cabdff1aSopenharmony_ci                                                    sce1->band_type[w*16+g],
851cabdff1aSopenharmony_ci                                                    lambda / (band1->threshold + FLT_MIN), INFINITY, &b2, NULL, 0);
852cabdff1aSopenharmony_ci                        dist2 += quantize_band_cost(s, M,
853cabdff1aSopenharmony_ci                                                    M34,
854cabdff1aSopenharmony_ci                                                    sce0->ics.swb_sizes[g],
855cabdff1aSopenharmony_ci                                                    mididx,
856cabdff1aSopenharmony_ci                                                    midcb,
857cabdff1aSopenharmony_ci                                                    lambda / (minthr + FLT_MIN), INFINITY, &b3, NULL, 0);
858cabdff1aSopenharmony_ci                        dist2 += quantize_band_cost(s, S,
859cabdff1aSopenharmony_ci                                                    S34,
860cabdff1aSopenharmony_ci                                                    sce1->ics.swb_sizes[g],
861cabdff1aSopenharmony_ci                                                    sididx,
862cabdff1aSopenharmony_ci                                                    sidcb,
863cabdff1aSopenharmony_ci                                                    mslambda / (minthr * bmax + FLT_MIN), INFINITY, &b4, NULL, 0);
864cabdff1aSopenharmony_ci                        B0 += b1+b2;
865cabdff1aSopenharmony_ci                        B1 += b3+b4;
866cabdff1aSopenharmony_ci                        dist1 -= b1+b2;
867cabdff1aSopenharmony_ci                        dist2 -= b3+b4;
868cabdff1aSopenharmony_ci                    }
869cabdff1aSopenharmony_ci                    cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0;
870cabdff1aSopenharmony_ci                    if (cpe->ms_mask[w*16+g]) {
871cabdff1aSopenharmony_ci                        if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT) {
872cabdff1aSopenharmony_ci                            sce0->sf_idx[w*16+g] = mididx;
873cabdff1aSopenharmony_ci                            sce1->sf_idx[w*16+g] = sididx;
874cabdff1aSopenharmony_ci                            sce0->band_type[w*16+g] = midcb;
875cabdff1aSopenharmony_ci                            sce1->band_type[w*16+g] = sidcb;
876cabdff1aSopenharmony_ci                        } else if ((sce0->band_type[w*16+g] != NOISE_BT) ^ (sce1->band_type[w*16+g] != NOISE_BT)) {
877cabdff1aSopenharmony_ci                            /* ms_mask unneeded, and it confuses some decoders */
878cabdff1aSopenharmony_ci                            cpe->ms_mask[w*16+g] = 0;
879cabdff1aSopenharmony_ci                        }
880cabdff1aSopenharmony_ci                        break;
881cabdff1aSopenharmony_ci                    } else if (B1 > B0) {
882cabdff1aSopenharmony_ci                        /* More boost won't fix this */
883cabdff1aSopenharmony_ci                        break;
884cabdff1aSopenharmony_ci                    }
885cabdff1aSopenharmony_ci                }
886cabdff1aSopenharmony_ci            }
887cabdff1aSopenharmony_ci            if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT)
888cabdff1aSopenharmony_ci                prev_mid = sce0->sf_idx[w*16+g];
889cabdff1aSopenharmony_ci            if (!sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
890cabdff1aSopenharmony_ci                prev_side = sce1->sf_idx[w*16+g];
891cabdff1aSopenharmony_ci            start += sce0->ics.swb_sizes[g];
892cabdff1aSopenharmony_ci        }
893cabdff1aSopenharmony_ci    }
894cabdff1aSopenharmony_ci}
895cabdff1aSopenharmony_ci
896cabdff1aSopenharmony_ciconst AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
897cabdff1aSopenharmony_ci    [AAC_CODER_ANMR] = {
898cabdff1aSopenharmony_ci        search_for_quantizers_anmr,
899cabdff1aSopenharmony_ci        encode_window_bands_info,
900cabdff1aSopenharmony_ci        quantize_and_encode_band,
901cabdff1aSopenharmony_ci        ff_aac_encode_tns_info,
902cabdff1aSopenharmony_ci        ff_aac_encode_ltp_info,
903cabdff1aSopenharmony_ci        ff_aac_encode_main_pred,
904cabdff1aSopenharmony_ci        ff_aac_adjust_common_pred,
905cabdff1aSopenharmony_ci        ff_aac_adjust_common_ltp,
906cabdff1aSopenharmony_ci        ff_aac_apply_main_pred,
907cabdff1aSopenharmony_ci        ff_aac_apply_tns,
908cabdff1aSopenharmony_ci        ff_aac_update_ltp,
909cabdff1aSopenharmony_ci        ff_aac_ltp_insert_new_frame,
910cabdff1aSopenharmony_ci        set_special_band_scalefactors,
911cabdff1aSopenharmony_ci        search_for_pns,
912cabdff1aSopenharmony_ci        mark_pns,
913cabdff1aSopenharmony_ci        ff_aac_search_for_tns,
914cabdff1aSopenharmony_ci        ff_aac_search_for_ltp,
915cabdff1aSopenharmony_ci        search_for_ms,
916cabdff1aSopenharmony_ci        ff_aac_search_for_is,
917cabdff1aSopenharmony_ci        ff_aac_search_for_pred,
918cabdff1aSopenharmony_ci    },
919cabdff1aSopenharmony_ci    [AAC_CODER_TWOLOOP] = {
920cabdff1aSopenharmony_ci        search_for_quantizers_twoloop,
921cabdff1aSopenharmony_ci        codebook_trellis_rate,
922cabdff1aSopenharmony_ci        quantize_and_encode_band,
923cabdff1aSopenharmony_ci        ff_aac_encode_tns_info,
924cabdff1aSopenharmony_ci        ff_aac_encode_ltp_info,
925cabdff1aSopenharmony_ci        ff_aac_encode_main_pred,
926cabdff1aSopenharmony_ci        ff_aac_adjust_common_pred,
927cabdff1aSopenharmony_ci        ff_aac_adjust_common_ltp,
928cabdff1aSopenharmony_ci        ff_aac_apply_main_pred,
929cabdff1aSopenharmony_ci        ff_aac_apply_tns,
930cabdff1aSopenharmony_ci        ff_aac_update_ltp,
931cabdff1aSopenharmony_ci        ff_aac_ltp_insert_new_frame,
932cabdff1aSopenharmony_ci        set_special_band_scalefactors,
933cabdff1aSopenharmony_ci        search_for_pns,
934cabdff1aSopenharmony_ci        mark_pns,
935cabdff1aSopenharmony_ci        ff_aac_search_for_tns,
936cabdff1aSopenharmony_ci        ff_aac_search_for_ltp,
937cabdff1aSopenharmony_ci        search_for_ms,
938cabdff1aSopenharmony_ci        ff_aac_search_for_is,
939cabdff1aSopenharmony_ci        ff_aac_search_for_pred,
940cabdff1aSopenharmony_ci    },
941cabdff1aSopenharmony_ci    [AAC_CODER_FAST] = {
942cabdff1aSopenharmony_ci        search_for_quantizers_fast,
943cabdff1aSopenharmony_ci        codebook_trellis_rate,
944cabdff1aSopenharmony_ci        quantize_and_encode_band,
945cabdff1aSopenharmony_ci        ff_aac_encode_tns_info,
946cabdff1aSopenharmony_ci        ff_aac_encode_ltp_info,
947cabdff1aSopenharmony_ci        ff_aac_encode_main_pred,
948cabdff1aSopenharmony_ci        ff_aac_adjust_common_pred,
949cabdff1aSopenharmony_ci        ff_aac_adjust_common_ltp,
950cabdff1aSopenharmony_ci        ff_aac_apply_main_pred,
951cabdff1aSopenharmony_ci        ff_aac_apply_tns,
952cabdff1aSopenharmony_ci        ff_aac_update_ltp,
953cabdff1aSopenharmony_ci        ff_aac_ltp_insert_new_frame,
954cabdff1aSopenharmony_ci        set_special_band_scalefactors,
955cabdff1aSopenharmony_ci        search_for_pns,
956cabdff1aSopenharmony_ci        mark_pns,
957cabdff1aSopenharmony_ci        ff_aac_search_for_tns,
958cabdff1aSopenharmony_ci        ff_aac_search_for_ltp,
959cabdff1aSopenharmony_ci        search_for_ms,
960cabdff1aSopenharmony_ci        ff_aac_search_for_is,
961cabdff1aSopenharmony_ci        ff_aac_search_for_pred,
962cabdff1aSopenharmony_ci    },
963cabdff1aSopenharmony_ci};
964