1a8c51b3fSopenharmony_ci// Copyright 2016 Ismael Jimenez Martinez. All rights reserved. 2a8c51b3fSopenharmony_ci// Copyright 2017 Roman Lebedev. All rights reserved. 3a8c51b3fSopenharmony_ci// 4a8c51b3fSopenharmony_ci// Licensed under the Apache License, Version 2.0 (the "License"); 5a8c51b3fSopenharmony_ci// you may not use this file except in compliance with the License. 6a8c51b3fSopenharmony_ci// You may obtain a copy of the License at 7a8c51b3fSopenharmony_ci// 8a8c51b3fSopenharmony_ci// http://www.apache.org/licenses/LICENSE-2.0 9a8c51b3fSopenharmony_ci// 10a8c51b3fSopenharmony_ci// Unless required by applicable law or agreed to in writing, software 11a8c51b3fSopenharmony_ci// distributed under the License is distributed on an "AS IS" BASIS, 12a8c51b3fSopenharmony_ci// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13a8c51b3fSopenharmony_ci// See the License for the specific language governing permissions and 14a8c51b3fSopenharmony_ci// limitations under the License. 15a8c51b3fSopenharmony_ci 16a8c51b3fSopenharmony_ci#include "statistics.h" 17a8c51b3fSopenharmony_ci 18a8c51b3fSopenharmony_ci#include <algorithm> 19a8c51b3fSopenharmony_ci#include <cmath> 20a8c51b3fSopenharmony_ci#include <numeric> 21a8c51b3fSopenharmony_ci#include <string> 22a8c51b3fSopenharmony_ci#include <vector> 23a8c51b3fSopenharmony_ci 24a8c51b3fSopenharmony_ci#include "benchmark/benchmark.h" 25a8c51b3fSopenharmony_ci#include "check.h" 26a8c51b3fSopenharmony_ci 27a8c51b3fSopenharmony_cinamespace benchmark { 28a8c51b3fSopenharmony_ci 29a8c51b3fSopenharmony_ciauto StatisticsSum = [](const std::vector<double>& v) { 30a8c51b3fSopenharmony_ci return std::accumulate(v.begin(), v.end(), 0.0); 31a8c51b3fSopenharmony_ci}; 32a8c51b3fSopenharmony_ci 33a8c51b3fSopenharmony_cidouble StatisticsMean(const std::vector<double>& v) { 34a8c51b3fSopenharmony_ci if (v.empty()) return 0.0; 35a8c51b3fSopenharmony_ci return StatisticsSum(v) * (1.0 / v.size()); 36a8c51b3fSopenharmony_ci} 37a8c51b3fSopenharmony_ci 38a8c51b3fSopenharmony_cidouble StatisticsMedian(const std::vector<double>& v) { 39a8c51b3fSopenharmony_ci if (v.size() < 3) return StatisticsMean(v); 40a8c51b3fSopenharmony_ci std::vector<double> copy(v); 41a8c51b3fSopenharmony_ci 42a8c51b3fSopenharmony_ci auto center = copy.begin() + v.size() / 2; 43a8c51b3fSopenharmony_ci std::nth_element(copy.begin(), center, copy.end()); 44a8c51b3fSopenharmony_ci 45a8c51b3fSopenharmony_ci // Did we have an odd number of samples? If yes, then center is the median. 46a8c51b3fSopenharmony_ci // If not, then we are looking for the average between center and the value 47a8c51b3fSopenharmony_ci // before. Instead of resorting, we just look for the max value before it, 48a8c51b3fSopenharmony_ci // which is not necessarily the element immediately preceding `center` Since 49a8c51b3fSopenharmony_ci // `copy` is only partially sorted by `nth_element`. 50a8c51b3fSopenharmony_ci if (v.size() % 2 == 1) return *center; 51a8c51b3fSopenharmony_ci auto center2 = std::max_element(copy.begin(), center); 52a8c51b3fSopenharmony_ci return (*center + *center2) / 2.0; 53a8c51b3fSopenharmony_ci} 54a8c51b3fSopenharmony_ci 55a8c51b3fSopenharmony_ci// Return the sum of the squares of this sample set 56a8c51b3fSopenharmony_ciauto SumSquares = [](const std::vector<double>& v) { 57a8c51b3fSopenharmony_ci return std::inner_product(v.begin(), v.end(), v.begin(), 0.0); 58a8c51b3fSopenharmony_ci}; 59a8c51b3fSopenharmony_ci 60a8c51b3fSopenharmony_ciauto Sqr = [](const double dat) { return dat * dat; }; 61a8c51b3fSopenharmony_ciauto Sqrt = [](const double dat) { 62a8c51b3fSopenharmony_ci // Avoid NaN due to imprecision in the calculations 63a8c51b3fSopenharmony_ci if (dat < 0.0) return 0.0; 64a8c51b3fSopenharmony_ci return std::sqrt(dat); 65a8c51b3fSopenharmony_ci}; 66a8c51b3fSopenharmony_ci 67a8c51b3fSopenharmony_cidouble StatisticsStdDev(const std::vector<double>& v) { 68a8c51b3fSopenharmony_ci const auto mean = StatisticsMean(v); 69a8c51b3fSopenharmony_ci if (v.empty()) return mean; 70a8c51b3fSopenharmony_ci 71a8c51b3fSopenharmony_ci // Sample standard deviation is undefined for n = 1 72a8c51b3fSopenharmony_ci if (v.size() == 1) return 0.0; 73a8c51b3fSopenharmony_ci 74a8c51b3fSopenharmony_ci const double avg_squares = SumSquares(v) * (1.0 / v.size()); 75a8c51b3fSopenharmony_ci return Sqrt(v.size() / (v.size() - 1.0) * (avg_squares - Sqr(mean))); 76a8c51b3fSopenharmony_ci} 77a8c51b3fSopenharmony_ci 78a8c51b3fSopenharmony_cidouble StatisticsCV(const std::vector<double>& v) { 79a8c51b3fSopenharmony_ci if (v.size() < 2) return 0.0; 80a8c51b3fSopenharmony_ci 81a8c51b3fSopenharmony_ci const auto stddev = StatisticsStdDev(v); 82a8c51b3fSopenharmony_ci const auto mean = StatisticsMean(v); 83a8c51b3fSopenharmony_ci 84a8c51b3fSopenharmony_ci return stddev / mean; 85a8c51b3fSopenharmony_ci} 86a8c51b3fSopenharmony_ci 87a8c51b3fSopenharmony_cistd::vector<BenchmarkReporter::Run> ComputeStats( 88a8c51b3fSopenharmony_ci const std::vector<BenchmarkReporter::Run>& reports) { 89a8c51b3fSopenharmony_ci typedef BenchmarkReporter::Run Run; 90a8c51b3fSopenharmony_ci std::vector<Run> results; 91a8c51b3fSopenharmony_ci 92a8c51b3fSopenharmony_ci auto error_count = std::count_if(reports.begin(), reports.end(), 93a8c51b3fSopenharmony_ci [](Run const& run) { return run.skipped; }); 94a8c51b3fSopenharmony_ci 95a8c51b3fSopenharmony_ci if (reports.size() - error_count < 2) { 96a8c51b3fSopenharmony_ci // We don't report aggregated data if there was a single run. 97a8c51b3fSopenharmony_ci return results; 98a8c51b3fSopenharmony_ci } 99a8c51b3fSopenharmony_ci 100a8c51b3fSopenharmony_ci // Accumulators. 101a8c51b3fSopenharmony_ci std::vector<double> real_accumulated_time_stat; 102a8c51b3fSopenharmony_ci std::vector<double> cpu_accumulated_time_stat; 103a8c51b3fSopenharmony_ci 104a8c51b3fSopenharmony_ci real_accumulated_time_stat.reserve(reports.size()); 105a8c51b3fSopenharmony_ci cpu_accumulated_time_stat.reserve(reports.size()); 106a8c51b3fSopenharmony_ci 107a8c51b3fSopenharmony_ci // All repetitions should be run with the same number of iterations so we 108a8c51b3fSopenharmony_ci // can take this information from the first benchmark. 109a8c51b3fSopenharmony_ci const IterationCount run_iterations = reports.front().iterations; 110a8c51b3fSopenharmony_ci // create stats for user counters 111a8c51b3fSopenharmony_ci struct CounterStat { 112a8c51b3fSopenharmony_ci Counter c; 113a8c51b3fSopenharmony_ci std::vector<double> s; 114a8c51b3fSopenharmony_ci }; 115a8c51b3fSopenharmony_ci std::map<std::string, CounterStat> counter_stats; 116a8c51b3fSopenharmony_ci for (Run const& r : reports) { 117a8c51b3fSopenharmony_ci for (auto const& cnt : r.counters) { 118a8c51b3fSopenharmony_ci auto it = counter_stats.find(cnt.first); 119a8c51b3fSopenharmony_ci if (it == counter_stats.end()) { 120a8c51b3fSopenharmony_ci it = counter_stats 121a8c51b3fSopenharmony_ci .emplace(cnt.first, 122a8c51b3fSopenharmony_ci CounterStat{cnt.second, std::vector<double>{}}) 123a8c51b3fSopenharmony_ci .first; 124a8c51b3fSopenharmony_ci it->second.s.reserve(reports.size()); 125a8c51b3fSopenharmony_ci } else { 126a8c51b3fSopenharmony_ci BM_CHECK_EQ(it->second.c.flags, cnt.second.flags); 127a8c51b3fSopenharmony_ci } 128a8c51b3fSopenharmony_ci } 129a8c51b3fSopenharmony_ci } 130a8c51b3fSopenharmony_ci 131a8c51b3fSopenharmony_ci // Populate the accumulators. 132a8c51b3fSopenharmony_ci for (Run const& run : reports) { 133a8c51b3fSopenharmony_ci BM_CHECK_EQ(reports[0].benchmark_name(), run.benchmark_name()); 134a8c51b3fSopenharmony_ci BM_CHECK_EQ(run_iterations, run.iterations); 135a8c51b3fSopenharmony_ci if (run.skipped) continue; 136a8c51b3fSopenharmony_ci real_accumulated_time_stat.emplace_back(run.real_accumulated_time); 137a8c51b3fSopenharmony_ci cpu_accumulated_time_stat.emplace_back(run.cpu_accumulated_time); 138a8c51b3fSopenharmony_ci // user counters 139a8c51b3fSopenharmony_ci for (auto const& cnt : run.counters) { 140a8c51b3fSopenharmony_ci auto it = counter_stats.find(cnt.first); 141a8c51b3fSopenharmony_ci BM_CHECK_NE(it, counter_stats.end()); 142a8c51b3fSopenharmony_ci it->second.s.emplace_back(cnt.second); 143a8c51b3fSopenharmony_ci } 144a8c51b3fSopenharmony_ci } 145a8c51b3fSopenharmony_ci 146a8c51b3fSopenharmony_ci // Only add label if it is same for all runs 147a8c51b3fSopenharmony_ci std::string report_label = reports[0].report_label; 148a8c51b3fSopenharmony_ci for (std::size_t i = 1; i < reports.size(); i++) { 149a8c51b3fSopenharmony_ci if (reports[i].report_label != report_label) { 150a8c51b3fSopenharmony_ci report_label = ""; 151a8c51b3fSopenharmony_ci break; 152a8c51b3fSopenharmony_ci } 153a8c51b3fSopenharmony_ci } 154a8c51b3fSopenharmony_ci 155a8c51b3fSopenharmony_ci const double iteration_rescale_factor = 156a8c51b3fSopenharmony_ci double(reports.size()) / double(run_iterations); 157a8c51b3fSopenharmony_ci 158a8c51b3fSopenharmony_ci for (const auto& Stat : *reports[0].statistics) { 159a8c51b3fSopenharmony_ci // Get the data from the accumulator to BenchmarkReporter::Run's. 160a8c51b3fSopenharmony_ci Run data; 161a8c51b3fSopenharmony_ci data.run_name = reports[0].run_name; 162a8c51b3fSopenharmony_ci data.family_index = reports[0].family_index; 163a8c51b3fSopenharmony_ci data.per_family_instance_index = reports[0].per_family_instance_index; 164a8c51b3fSopenharmony_ci data.run_type = BenchmarkReporter::Run::RT_Aggregate; 165a8c51b3fSopenharmony_ci data.threads = reports[0].threads; 166a8c51b3fSopenharmony_ci data.repetitions = reports[0].repetitions; 167a8c51b3fSopenharmony_ci data.repetition_index = Run::no_repetition_index; 168a8c51b3fSopenharmony_ci data.aggregate_name = Stat.name_; 169a8c51b3fSopenharmony_ci data.aggregate_unit = Stat.unit_; 170a8c51b3fSopenharmony_ci data.report_label = report_label; 171a8c51b3fSopenharmony_ci 172a8c51b3fSopenharmony_ci // It is incorrect to say that an aggregate is computed over 173a8c51b3fSopenharmony_ci // run's iterations, because those iterations already got averaged. 174a8c51b3fSopenharmony_ci // Similarly, if there are N repetitions with 1 iterations each, 175a8c51b3fSopenharmony_ci // an aggregate will be computed over N measurements, not 1. 176a8c51b3fSopenharmony_ci // Thus it is best to simply use the count of separate reports. 177a8c51b3fSopenharmony_ci data.iterations = reports.size(); 178a8c51b3fSopenharmony_ci 179a8c51b3fSopenharmony_ci data.real_accumulated_time = Stat.compute_(real_accumulated_time_stat); 180a8c51b3fSopenharmony_ci data.cpu_accumulated_time = Stat.compute_(cpu_accumulated_time_stat); 181a8c51b3fSopenharmony_ci 182a8c51b3fSopenharmony_ci if (data.aggregate_unit == StatisticUnit::kTime) { 183a8c51b3fSopenharmony_ci // We will divide these times by data.iterations when reporting, but the 184a8c51b3fSopenharmony_ci // data.iterations is not necessarily the scale of these measurements, 185a8c51b3fSopenharmony_ci // because in each repetition, these timers are sum over all the iters. 186a8c51b3fSopenharmony_ci // And if we want to say that the stats are over N repetitions and not 187a8c51b3fSopenharmony_ci // M iterations, we need to multiply these by (N/M). 188a8c51b3fSopenharmony_ci data.real_accumulated_time *= iteration_rescale_factor; 189a8c51b3fSopenharmony_ci data.cpu_accumulated_time *= iteration_rescale_factor; 190a8c51b3fSopenharmony_ci } 191a8c51b3fSopenharmony_ci 192a8c51b3fSopenharmony_ci data.time_unit = reports[0].time_unit; 193a8c51b3fSopenharmony_ci 194a8c51b3fSopenharmony_ci // user counters 195a8c51b3fSopenharmony_ci for (auto const& kv : counter_stats) { 196a8c51b3fSopenharmony_ci // Do *NOT* rescale the custom counters. They are already properly scaled. 197a8c51b3fSopenharmony_ci const auto uc_stat = Stat.compute_(kv.second.s); 198a8c51b3fSopenharmony_ci auto c = Counter(uc_stat, counter_stats[kv.first].c.flags, 199a8c51b3fSopenharmony_ci counter_stats[kv.first].c.oneK); 200a8c51b3fSopenharmony_ci data.counters[kv.first] = c; 201a8c51b3fSopenharmony_ci } 202a8c51b3fSopenharmony_ci 203a8c51b3fSopenharmony_ci results.push_back(data); 204a8c51b3fSopenharmony_ci } 205a8c51b3fSopenharmony_ci 206a8c51b3fSopenharmony_ci return results; 207a8c51b3fSopenharmony_ci} 208a8c51b3fSopenharmony_ci 209a8c51b3fSopenharmony_ci} // end namespace benchmark 210