1// SPDX-License-Identifier: Apache-2.0
2// ----------------------------------------------------------------------------
3// Copyright 2011-2024 Arm Limited
4//
5// Licensed under the Apache License, Version 2.0 (the "License"); you may not
6// use this file except in compliance with the License. You may obtain a copy
7// of the License at:
8//
9//     http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing, software
12// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14// License for the specific language governing permissions and limitations
15// under the License.
16// ----------------------------------------------------------------------------
17
18#if !defined(ASTCENC_DECOMPRESS_ONLY)
19
20/**
21 * @brief Functions for angular-sum algorithm for weight alignment.
22 *
23 * This algorithm works as follows:
24 * - we compute a complex number P as (cos s*i, sin s*i) for each weight,
25 *   where i is the input value and s is a scaling factor based on the spacing between the weights.
26 * - we then add together complex numbers for all the weights.
27 * - we then compute the length and angle of the resulting sum.
28 *
29 * This should produce the following results:
30 * - perfect alignment results in a vector whose length is equal to the sum of lengths of all inputs
31 * - even distribution results in a vector of length 0.
32 * - all samples identical results in perfect alignment for every scaling.
33 *
34 * For each scaling factor within a given set, we compute an alignment factor from 0 to 1. This
35 * should then result in some scalings standing out as having particularly good alignment factors;
36 * we can use this to produce a set of candidate scale/shift values for various quantization levels;
37 * we should then actually try them and see what happens.
38 */
39
40#include "astcenc_internal.h"
41#include "astcenc_vecmathlib.h"
42
43#include <stdio.h>
44#include <cassert>
45#include <cstring>
46
47static constexpr unsigned int ANGULAR_STEPS { 32 };
48
49static_assert((ANGULAR_STEPS % ASTCENC_SIMD_WIDTH) == 0,
50              "ANGULAR_STEPS must be multiple of ASTCENC_SIMD_WIDTH");
51
52static_assert(ANGULAR_STEPS >= 32,
53              "ANGULAR_STEPS must be at least max(steps_for_quant_level)");
54
55// Store a reduced sin/cos table for 64 possible weight values; this causes
56// slight quality loss compared to using sin() and cos() directly. Must be 2^N.
57static constexpr unsigned int SINCOS_STEPS { 64 };
58
59static const uint8_t steps_for_quant_level[12] {
60	2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32
61};
62
63ASTCENC_ALIGNAS static float sin_table[SINCOS_STEPS][ANGULAR_STEPS];
64ASTCENC_ALIGNAS static float cos_table[SINCOS_STEPS][ANGULAR_STEPS];
65
66#if defined(ASTCENC_DIAGNOSTICS)
67	static bool print_once { true };
68#endif
69
70/* See header for documentation. */
71void prepare_angular_tables()
72{
73	for (unsigned int i = 0; i < ANGULAR_STEPS; i++)
74	{
75		float angle_step = static_cast<float>(i + 1);
76
77		for (unsigned int j = 0; j < SINCOS_STEPS; j++)
78		{
79			sin_table[j][i] = static_cast<float>(sinf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
80			cos_table[j][i] = static_cast<float>(cosf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
81		}
82	}
83}
84
85/**
86 * @brief Compute the angular alignment factors and offsets.
87 *
88 * @param      weight_count              The number of (decimated) weights.
89 * @param      dec_weight_ideal_value    The ideal decimated unquantized weight values.
90 * @param      max_angular_steps         The maximum number of steps to be tested.
91 * @param[out] offsets                   The output angular offsets array.
92 */
93static void compute_angular_offsets(
94	unsigned int weight_count,
95	const float* dec_weight_ideal_value,
96	unsigned int max_angular_steps,
97	float* offsets
98) {
99	promise(weight_count > 0);
100	promise(max_angular_steps > 0);
101
102	ASTCENC_ALIGNAS int isamplev[BLOCK_MAX_WEIGHTS];
103
104	// Precompute isample; arrays are always allocated 64 elements long
105	for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH)
106	{
107		// Add 2^23 and interpreting bits extracts round-to-nearest int
108		vfloat sample = loada(dec_weight_ideal_value + i) * (SINCOS_STEPS - 1.0f) + vfloat(12582912.0f);
109		vint isample = float_as_int(sample) & vint((SINCOS_STEPS - 1));
110		storea(isample, isamplev + i);
111	}
112
113	// Arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max
114	vfloat mult = vfloat(1.0f / (2.0f * astc::PI));
115
116	for (unsigned int i = 0; i < max_angular_steps; i += ASTCENC_SIMD_WIDTH)
117	{
118		vfloat anglesum_x = vfloat::zero();
119		vfloat anglesum_y = vfloat::zero();
120
121		for (unsigned int j = 0; j < weight_count; j++)
122		{
123			int isample = isamplev[j];
124			anglesum_x += loada(cos_table[isample] + i);
125			anglesum_y += loada(sin_table[isample] + i);
126		}
127
128		vfloat angle = atan2(anglesum_y, anglesum_x);
129		vfloat ofs = angle * mult;
130		storea(ofs, offsets + i);
131	}
132}
133
134/**
135 * @brief For a given step size compute the lowest and highest weight.
136 *
137 * Compute the lowest and highest weight that results from quantizing using the given stepsize and
138 * offset, and then compute the resulting error. The cut errors indicate the error that results from
139 * forcing samples that should have had one weight value one step up or down.
140 *
141 * @param      weight_count              The number of (decimated) weights.
142 * @param      dec_weight_ideal_value    The ideal decimated unquantized weight values.
143 * @param      max_angular_steps         The maximum number of steps to be tested.
144 * @param      max_quant_steps           The maximum quantization level to be tested.
145 * @param      offsets                   The angular offsets array.
146 * @param[out] lowest_weight             Per angular step, the lowest weight.
147 * @param[out] weight_span               Per angular step, the span between lowest and highest weight.
148 * @param[out] error                     Per angular step, the error.
149 * @param[out] cut_low_weight_error      Per angular step, the low weight cut error.
150 * @param[out] cut_high_weight_error     Per angular step, the high weight cut error.
151 */
152#if ASTCENC_NEON != 0
153static void compute_lowest_and_highest_weight(
154	QualityProfile privateProfile,
155	unsigned int weight_count,
156	const float* dec_weight_ideal_value,
157	unsigned int max_angular_steps,
158	unsigned int max_quant_steps,
159	const float* offsets,
160	float* lowest_weight,
161	int* weight_span,
162	float* error,
163	float* cut_low_weight_error,
164	float* cut_high_weight_error
165) {
166	promise(weight_count > 0);
167	promise(max_angular_steps > 0);
168
169	vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f);
170
171	float max_weight = 1.0f;
172	float min_weight = 0.0f;
173	// in HIGH_SPEED_PROFILE, max_weight is always equal to 1.0, and min_weight is always equal to 0
174	if (privateProfile != HIGH_SPEED_PROFILE)
175	{
176		max_weight = dec_weight_ideal_value[0];
177		min_weight = dec_weight_ideal_value[0];
178		for (unsigned int j = 1; j < weight_count; j++)
179		{
180			float weight = dec_weight_ideal_value[j];
181			__asm__ volatile("fmax %s0, %s0, %s1" : "+w"(max_weight) : "w"(weight));
182			__asm__ volatile("fmin %s0, %s0, %s1" : "+w"(min_weight) : "w"(weight));
183		}
184	}
185
186	// Arrays are ANGULAR_STEPS long, so always safe to run full vectors
187	for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH)
188	{
189		vfloat errval = vfloat::zero();
190		vfloat cut_low_weight_err = vfloat::zero();
191		vfloat cut_high_weight_err = vfloat::zero();
192		vfloat offset = loada(offsets + sp);
193
194		offset = (vfloat)vnegq_f32(offset.m);
195		vfloat maxidx = vfloat::zero();
196		vfloat minidx = vfloat::zero();
197
198		if (privateProfile == HIGH_SPEED_PROFILE)
199		{
200			maxidx = round((vfloat)vaddq_f32(rcp_stepsize.m, offset.m));
201			minidx = round(offset);
202		}
203		else
204		{
205			maxidx = round((vfloat)vfmaq_n_f32(offset.m, rcp_stepsize.m, max_weight));
206			minidx = round((vfloat)vfmaq_n_f32(offset.m, rcp_stepsize.m, min_weight));
207		}
208
209		for (unsigned int j = 0; j < weight_count; j++)
210		{
211			vfloat sval = (vfloat)vfmaq_n_f32(offset.m, rcp_stepsize.m, *(dec_weight_ideal_value + j));
212			vfloat svalrte = round(sval);
213			vfloat diff = sval - svalrte;
214			errval += diff * diff;
215
216			// Accumulate on min hit
217			vmask mask = svalrte == minidx;
218			vfloat accum = cut_low_weight_err + vfloat(1.0f) - vfloat(2.0f) * diff;
219			cut_low_weight_err = select(cut_low_weight_err, accum, mask);
220
221			// Accumulate on max hit
222			mask = svalrte == maxidx;
223			accum = cut_high_weight_err + vfloat(1.0f) + vfloat(2.0f) * diff;
224			cut_high_weight_err = select(cut_high_weight_err, accum, mask);
225		}
226
227		// Write out min weight and weight span; clamp span to a usable range
228		vint span = float_to_int(maxidx - minidx + vfloat(1));
229		span = min(span, vint(max_quant_steps + 3));
230		span = max(span, vint(2));
231		storea(minidx, lowest_weight + sp);
232		storea(span, weight_span + sp);
233
234		// The cut_(lowest/highest)_weight_error indicate the error that results from  forcing
235		// samples that should have had the weight value one step (up/down).
236		vfloat ssize = 1.0f / rcp_stepsize;
237		vfloat errscale = ssize * ssize;
238		storea(errval * errscale, error + sp);
239		storea(cut_low_weight_err * errscale, cut_low_weight_error + sp);
240		storea(cut_high_weight_err * errscale, cut_high_weight_error + sp);
241
242		rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH);
243	}
244}
245#else
246static void compute_lowest_and_highest_weight(
247	QualityProfile privateProfile,
248	unsigned int weight_count,
249	const float* dec_weight_ideal_value,
250	unsigned int max_angular_steps,
251	unsigned int max_quant_steps,
252	const float* offsets,
253	float* lowest_weight,
254	int* weight_span,
255	float* error,
256	float* cut_low_weight_error,
257	float* cut_high_weight_error
258) {
259	(void) privateProfile;
260	promise(weight_count > 0);
261	promise(max_angular_steps > 0);
262
263	vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f);
264
265	// Arrays are ANGULAR_STEPS long, so always safe to run full vectors
266	for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH)
267	{
268		vfloat minidx(128.0f);
269		vfloat maxidx(-128.0f);
270		vfloat errval = vfloat::zero();
271		vfloat cut_low_weight_err = vfloat::zero();
272		vfloat cut_high_weight_err = vfloat::zero();
273		vfloat offset = loada(offsets + sp);
274
275		for (unsigned int j = 0; j < weight_count; j++)
276		{
277			vfloat sval = load1(dec_weight_ideal_value + j) * rcp_stepsize - offset;
278			vfloat svalrte = round(sval);
279			vfloat diff = sval - svalrte;
280			errval += diff * diff;
281
282			// Reset tracker on min hit
283			vmask mask = svalrte < minidx;
284			minidx = select(minidx, svalrte, mask);
285			cut_low_weight_err = select(cut_low_weight_err, vfloat::zero(), mask);
286
287			// Accumulate on min hit
288			mask = svalrte == minidx;
289			vfloat accum = cut_low_weight_err + vfloat(1.0f) - vfloat(2.0f) * diff;
290			cut_low_weight_err = select(cut_low_weight_err, accum, mask);
291
292			// Reset tracker on max hit
293			mask = svalrte > maxidx;
294			maxidx = select(maxidx, svalrte, mask);
295			cut_high_weight_err = select(cut_high_weight_err, vfloat::zero(), mask);
296
297			// Accumulate on max hit
298			mask = svalrte == maxidx;
299			accum = cut_high_weight_err + vfloat(1.0f) + vfloat(2.0f) * diff;
300			cut_high_weight_err = select(cut_high_weight_err, accum, mask);
301		}
302
303		// Write out min weight and weight span; clamp span to a usable range
304		vint span = float_to_int(maxidx - minidx + vfloat(1));
305		span = min(span, vint(max_quant_steps + 3));
306		span = max(span, vint(2));
307		storea(minidx, lowest_weight + sp);
308		storea(span, weight_span + sp);
309
310		// The cut_(lowest/highest)_weight_error indicate the error that results from  forcing
311		// samples that should have had the weight value one step (up/down).
312		vfloat ssize = 1.0f / rcp_stepsize;
313		vfloat errscale = ssize * ssize;
314		storea(errval * errscale, error + sp);
315		storea(cut_low_weight_err * errscale, cut_low_weight_error + sp);
316		storea(cut_high_weight_err * errscale, cut_high_weight_error + sp);
317
318		rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH);
319	}
320}
321#endif
322
323/**
324 * @brief The main function for the angular algorithm.
325 *
326 * @param      weight_count              The number of (decimated) weights.
327 * @param      dec_weight_ideal_value    The ideal decimated unquantized weight values.
328 * @param      max_quant_level           The maximum quantization level to be tested.
329 * @param[out] low_value                 Per angular step, the lowest weight value.
330 * @param[out] high_value                Per angular step, the highest weight value.
331 */
332static void compute_angular_endpoints_for_quant_levels(
333	QualityProfile privateProfile,
334	unsigned int weight_count,
335	const float* dec_weight_ideal_value,
336	unsigned int max_quant_level,
337	float low_value[TUNE_MAX_ANGULAR_QUANT + 1],
338	float high_value[TUNE_MAX_ANGULAR_QUANT + 1]
339) {
340	unsigned int max_quant_steps = steps_for_quant_level[max_quant_level];
341	unsigned int max_angular_steps = steps_for_quant_level[max_quant_level];
342
343	ASTCENC_ALIGNAS float angular_offsets[ANGULAR_STEPS];
344
345	compute_angular_offsets(weight_count, dec_weight_ideal_value,
346	                        max_angular_steps, angular_offsets);
347
348	ASTCENC_ALIGNAS float lowest_weight[ANGULAR_STEPS];
349	ASTCENC_ALIGNAS int32_t weight_span[ANGULAR_STEPS];
350	ASTCENC_ALIGNAS float error[ANGULAR_STEPS];
351	ASTCENC_ALIGNAS float cut_low_weight_error[ANGULAR_STEPS];
352	ASTCENC_ALIGNAS float cut_high_weight_error[ANGULAR_STEPS];
353
354	compute_lowest_and_highest_weight(privateProfile, weight_count, dec_weight_ideal_value,
355	                                  max_angular_steps, max_quant_steps,
356	                                  angular_offsets, lowest_weight, weight_span, error,
357	                                  cut_low_weight_error, cut_high_weight_error);
358
359	// For each quantization level, find the best error terms. Use packed vectors so data-dependent
360	// branches can become selects. This involves some integer to float casts, but the values are
361	// small enough so they never round the wrong way.
362	vfloat4 best_results[36];
363
364	// Initialize the array to some safe defaults
365	promise(max_quant_steps > 0);
366	for (unsigned int i = 0; i < (max_quant_steps + 4); i++)
367	{
368		// Lane<0> = Best error
369		// Lane<1> = Best scale; -1 indicates no solution found
370		// Lane<2> = Cut low weight
371		best_results[i] = vfloat4(ERROR_CALC_DEFAULT, -1.0f, 0.0f, 0.0f);
372	}
373
374	promise(max_angular_steps > 0);
375	for (unsigned int i = 0; i < max_angular_steps; i++)
376	{
377		float i_flt = static_cast<float>(i);
378
379		int idx_span = weight_span[i];
380
381		float error_cut_low = error[i] + cut_low_weight_error[i];
382		float error_cut_high = error[i] + cut_high_weight_error[i];
383		float error_cut_low_high = error[i] + cut_low_weight_error[i] + cut_high_weight_error[i];
384
385		// Check best error against record N
386		vfloat4 best_result = best_results[idx_span];
387		vfloat4 new_result = vfloat4(error[i], i_flt, 0.0f, 0.0f);
388		vmask4 mask = vfloat4(best_result.lane<0>()) > vfloat4(error[i]);
389		best_results[idx_span] = select(best_result, new_result, mask);
390
391		// Check best error against record N-1 with either cut low or cut high
392		best_result = best_results[idx_span - 1];
393
394		new_result = vfloat4(error_cut_low, i_flt, 1.0f, 0.0f);
395		mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low);
396		best_result = select(best_result, new_result, mask);
397
398		new_result = vfloat4(error_cut_high, i_flt, 0.0f, 0.0f);
399		mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_high);
400		best_results[idx_span - 1] = select(best_result, new_result, mask);
401
402		// Check best error against record N-2 with both cut low and high
403		best_result = best_results[idx_span - 2];
404		new_result = vfloat4(error_cut_low_high, i_flt, 1.0f, 0.0f);
405		mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low_high);
406		best_results[idx_span - 2] = select(best_result, new_result, mask);
407	}
408
409	for (unsigned int i = 0; i <= max_quant_level; i++)
410	{
411		unsigned int q = steps_for_quant_level[i];
412		int bsi = static_cast<int>(best_results[q].lane<1>());
413
414		// Did we find anything?
415#if defined(ASTCENC_DIAGNOSTICS)
416		if ((bsi < 0) && print_once)
417		{
418			print_once = false;
419			printf("INFO: Unable to find full encoding within search error limit.\n\n");
420		}
421#endif
422
423		bsi = astc::max(0, bsi);
424
425		float lwi = lowest_weight[bsi] + best_results[q].lane<2>();
426		float hwi = lwi + static_cast<float>(q) - 1.0f;
427
428		float stepsize = 1.0f / (1.0f + static_cast<float>(bsi));
429		low_value[i]  = (angular_offsets[bsi] + lwi) * stepsize;
430		high_value[i] = (angular_offsets[bsi] + hwi) * stepsize;
431	}
432}
433
434/* See header for documentation. */
435void compute_angular_endpoints_1plane(
436	QualityProfile privateProfile,
437	bool only_always,
438	const block_size_descriptor& bsd,
439	const float* dec_weight_ideal_value,
440	unsigned int max_weight_quant,
441	compression_working_buffers& tmpbuf
442) {
443	float (&low_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1;
444	float (&high_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1;
445
446	float (&low_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1;
447	float (&high_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1;
448
449	unsigned int max_decimation_modes = only_always ? bsd.decimation_mode_count_always
450	                                                : bsd.decimation_mode_count_selected;
451	promise(max_decimation_modes > 0);
452	for (unsigned int i = 0; i < max_decimation_modes; i++)
453	{
454		const decimation_mode& dm = bsd.decimation_modes[i];
455		if (!dm.is_ref_1plane(static_cast<quant_method>(max_weight_quant)))
456		{
457			continue;
458		}
459
460		unsigned int weight_count = bsd.get_decimation_info(i).weight_count;
461
462		unsigned int max_precision = dm.maxprec_1plane;
463		if (max_precision > TUNE_MAX_ANGULAR_QUANT)
464		{
465			max_precision = TUNE_MAX_ANGULAR_QUANT;
466		}
467
468		if (max_precision > max_weight_quant)
469		{
470			max_precision = max_weight_quant;
471		}
472
473		compute_angular_endpoints_for_quant_levels(
474		    privateProfile,
475		    weight_count,
476		    dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS,
477		    max_precision, low_values[i], high_values[i]);
478	}
479
480	unsigned int max_block_modes = only_always ? bsd.block_mode_count_1plane_always
481	                                           : bsd.block_mode_count_1plane_selected;
482	promise(max_block_modes > 0);
483	for (unsigned int i = 0; i < max_block_modes; i++)
484	{
485		const block_mode& bm = bsd.block_modes[i];
486		assert(!bm.is_dual_plane);
487
488		unsigned int quant_mode = bm.quant_mode;
489		unsigned int decim_mode = bm.decimation_mode;
490
491		if (quant_mode <= TUNE_MAX_ANGULAR_QUANT)
492		{
493			low_value[i] = low_values[decim_mode][quant_mode];
494			high_value[i] = high_values[decim_mode][quant_mode];
495		}
496		else
497		{
498			low_value[i] = 0.0f;
499			high_value[i] = 1.0f;
500		}
501	}
502}
503
504/* See header for documentation. */
505void compute_angular_endpoints_2planes(
506	QualityProfile privateProfile,
507	const block_size_descriptor& bsd,
508	const float* dec_weight_ideal_value,
509	unsigned int max_weight_quant,
510	compression_working_buffers& tmpbuf
511) {
512	float (&low_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1;
513	float (&high_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1;
514	float (&low_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value2;
515	float (&high_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value2;
516
517	float (&low_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1;
518	float (&high_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1;
519	float (&low_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values2;
520	float (&high_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values2;
521
522	promise(bsd.decimation_mode_count_selected > 0);
523	for (unsigned int i = 0; i < bsd.decimation_mode_count_selected; i++)
524	{
525		const decimation_mode& dm = bsd.decimation_modes[i];
526		if (!dm.is_ref_2plane(static_cast<quant_method>(max_weight_quant)))
527		{
528			continue;
529		}
530
531		unsigned int weight_count = bsd.get_decimation_info(i).weight_count;
532
533		unsigned int max_precision = dm.maxprec_2planes;
534		if (max_precision > TUNE_MAX_ANGULAR_QUANT)
535		{
536			max_precision = TUNE_MAX_ANGULAR_QUANT;
537		}
538
539		if (max_precision > max_weight_quant)
540		{
541			max_precision = max_weight_quant;
542		}
543
544		compute_angular_endpoints_for_quant_levels(
545		    privateProfile,
546		    weight_count,
547		    dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS,
548		    max_precision, low_values1[i], high_values1[i]);
549
550		compute_angular_endpoints_for_quant_levels(
551		    privateProfile,
552		    weight_count,
553		    dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET,
554		    max_precision, low_values2[i], high_values2[i]);
555	}
556
557	unsigned int start = bsd.block_mode_count_1plane_selected;
558	unsigned int end = bsd.block_mode_count_1plane_2plane_selected;
559	for (unsigned int i = start; i < end; i++)
560	{
561		const block_mode& bm = bsd.block_modes[i];
562		unsigned int quant_mode = bm.quant_mode;
563		unsigned int decim_mode = bm.decimation_mode;
564
565		if (quant_mode <= TUNE_MAX_ANGULAR_QUANT)
566		{
567			low_value1[i] = low_values1[decim_mode][quant_mode];
568			high_value1[i] = high_values1[decim_mode][quant_mode];
569			low_value2[i] = low_values2[decim_mode][quant_mode];
570			high_value2[i] = high_values2[decim_mode][quant_mode];
571		}
572		else
573		{
574			low_value1[i] = 0.0f;
575			high_value1[i] = 1.0f;
576			low_value2[i] = 0.0f;
577			high_value2[i] = 1.0f;
578		}
579	}
580}
581
582#endif
583