1cc1dc7a3Sopenharmony_ci// SPDX-License-Identifier: Apache-2.0
2cc1dc7a3Sopenharmony_ci// ----------------------------------------------------------------------------
3cc1dc7a3Sopenharmony_ci// Copyright 2011-2024 Arm Limited
4cc1dc7a3Sopenharmony_ci//
5cc1dc7a3Sopenharmony_ci// Licensed under the Apache License, Version 2.0 (the "License"); you may not
6cc1dc7a3Sopenharmony_ci// use this file except in compliance with the License. You may obtain a copy
7cc1dc7a3Sopenharmony_ci// of the License at:
8cc1dc7a3Sopenharmony_ci//
9cc1dc7a3Sopenharmony_ci//     http://www.apache.org/licenses/LICENSE-2.0
10cc1dc7a3Sopenharmony_ci//
11cc1dc7a3Sopenharmony_ci// Unless required by applicable law or agreed to in writing, software
12cc1dc7a3Sopenharmony_ci// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13cc1dc7a3Sopenharmony_ci// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14cc1dc7a3Sopenharmony_ci// License for the specific language governing permissions and limitations
15cc1dc7a3Sopenharmony_ci// under the License.
16cc1dc7a3Sopenharmony_ci// ----------------------------------------------------------------------------
17cc1dc7a3Sopenharmony_ci
18cc1dc7a3Sopenharmony_ci#if !defined(ASTCENC_DECOMPRESS_ONLY)
19cc1dc7a3Sopenharmony_ci
20cc1dc7a3Sopenharmony_ci/**
21cc1dc7a3Sopenharmony_ci * @brief Functions for angular-sum algorithm for weight alignment.
22cc1dc7a3Sopenharmony_ci *
23cc1dc7a3Sopenharmony_ci * This algorithm works as follows:
24cc1dc7a3Sopenharmony_ci * - we compute a complex number P as (cos s*i, sin s*i) for each weight,
25cc1dc7a3Sopenharmony_ci *   where i is the input value and s is a scaling factor based on the spacing between the weights.
26cc1dc7a3Sopenharmony_ci * - we then add together complex numbers for all the weights.
27cc1dc7a3Sopenharmony_ci * - we then compute the length and angle of the resulting sum.
28cc1dc7a3Sopenharmony_ci *
29cc1dc7a3Sopenharmony_ci * This should produce the following results:
30cc1dc7a3Sopenharmony_ci * - perfect alignment results in a vector whose length is equal to the sum of lengths of all inputs
31cc1dc7a3Sopenharmony_ci * - even distribution results in a vector of length 0.
32cc1dc7a3Sopenharmony_ci * - all samples identical results in perfect alignment for every scaling.
33cc1dc7a3Sopenharmony_ci *
34cc1dc7a3Sopenharmony_ci * For each scaling factor within a given set, we compute an alignment factor from 0 to 1. This
35cc1dc7a3Sopenharmony_ci * should then result in some scalings standing out as having particularly good alignment factors;
36cc1dc7a3Sopenharmony_ci * we can use this to produce a set of candidate scale/shift values for various quantization levels;
37cc1dc7a3Sopenharmony_ci * we should then actually try them and see what happens.
38cc1dc7a3Sopenharmony_ci */
39cc1dc7a3Sopenharmony_ci
40cc1dc7a3Sopenharmony_ci#include "astcenc_internal.h"
41cc1dc7a3Sopenharmony_ci#include "astcenc_vecmathlib.h"
42cc1dc7a3Sopenharmony_ci
43cc1dc7a3Sopenharmony_ci#include <stdio.h>
44cc1dc7a3Sopenharmony_ci#include <cassert>
45cc1dc7a3Sopenharmony_ci#include <cstring>
46cc1dc7a3Sopenharmony_ci
47cc1dc7a3Sopenharmony_cistatic constexpr unsigned int ANGULAR_STEPS { 32 };
48cc1dc7a3Sopenharmony_ci
49cc1dc7a3Sopenharmony_cistatic_assert((ANGULAR_STEPS % ASTCENC_SIMD_WIDTH) == 0,
50cc1dc7a3Sopenharmony_ci              "ANGULAR_STEPS must be multiple of ASTCENC_SIMD_WIDTH");
51cc1dc7a3Sopenharmony_ci
52cc1dc7a3Sopenharmony_cistatic_assert(ANGULAR_STEPS >= 32,
53cc1dc7a3Sopenharmony_ci              "ANGULAR_STEPS must be at least max(steps_for_quant_level)");
54cc1dc7a3Sopenharmony_ci
55cc1dc7a3Sopenharmony_ci// Store a reduced sin/cos table for 64 possible weight values; this causes
56cc1dc7a3Sopenharmony_ci// slight quality loss compared to using sin() and cos() directly. Must be 2^N.
57cc1dc7a3Sopenharmony_cistatic constexpr unsigned int SINCOS_STEPS { 64 };
58cc1dc7a3Sopenharmony_ci
59cc1dc7a3Sopenharmony_cistatic const uint8_t steps_for_quant_level[12] {
60cc1dc7a3Sopenharmony_ci	2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32
61cc1dc7a3Sopenharmony_ci};
62cc1dc7a3Sopenharmony_ci
63cc1dc7a3Sopenharmony_ciASTCENC_ALIGNAS static float sin_table[SINCOS_STEPS][ANGULAR_STEPS];
64cc1dc7a3Sopenharmony_ciASTCENC_ALIGNAS static float cos_table[SINCOS_STEPS][ANGULAR_STEPS];
65cc1dc7a3Sopenharmony_ci
66cc1dc7a3Sopenharmony_ci#if defined(ASTCENC_DIAGNOSTICS)
67cc1dc7a3Sopenharmony_ci	static bool print_once { true };
68cc1dc7a3Sopenharmony_ci#endif
69cc1dc7a3Sopenharmony_ci
70cc1dc7a3Sopenharmony_ci/* See header for documentation. */
71cc1dc7a3Sopenharmony_civoid prepare_angular_tables()
72cc1dc7a3Sopenharmony_ci{
73cc1dc7a3Sopenharmony_ci	for (unsigned int i = 0; i < ANGULAR_STEPS; i++)
74cc1dc7a3Sopenharmony_ci	{
75cc1dc7a3Sopenharmony_ci		float angle_step = static_cast<float>(i + 1);
76cc1dc7a3Sopenharmony_ci
77cc1dc7a3Sopenharmony_ci		for (unsigned int j = 0; j < SINCOS_STEPS; j++)
78cc1dc7a3Sopenharmony_ci		{
79cc1dc7a3Sopenharmony_ci			sin_table[j][i] = static_cast<float>(sinf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
80cc1dc7a3Sopenharmony_ci			cos_table[j][i] = static_cast<float>(cosf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
81cc1dc7a3Sopenharmony_ci		}
82cc1dc7a3Sopenharmony_ci	}
83cc1dc7a3Sopenharmony_ci}
84cc1dc7a3Sopenharmony_ci
85cc1dc7a3Sopenharmony_ci/**
86cc1dc7a3Sopenharmony_ci * @brief Compute the angular alignment factors and offsets.
87cc1dc7a3Sopenharmony_ci *
88cc1dc7a3Sopenharmony_ci * @param      weight_count              The number of (decimated) weights.
89cc1dc7a3Sopenharmony_ci * @param      dec_weight_ideal_value    The ideal decimated unquantized weight values.
90cc1dc7a3Sopenharmony_ci * @param      max_angular_steps         The maximum number of steps to be tested.
91cc1dc7a3Sopenharmony_ci * @param[out] offsets                   The output angular offsets array.
92cc1dc7a3Sopenharmony_ci */
93cc1dc7a3Sopenharmony_cistatic void compute_angular_offsets(
94cc1dc7a3Sopenharmony_ci	unsigned int weight_count,
95cc1dc7a3Sopenharmony_ci	const float* dec_weight_ideal_value,
96cc1dc7a3Sopenharmony_ci	unsigned int max_angular_steps,
97cc1dc7a3Sopenharmony_ci	float* offsets
98cc1dc7a3Sopenharmony_ci) {
99cc1dc7a3Sopenharmony_ci	promise(weight_count > 0);
100cc1dc7a3Sopenharmony_ci	promise(max_angular_steps > 0);
101cc1dc7a3Sopenharmony_ci
102cc1dc7a3Sopenharmony_ci	ASTCENC_ALIGNAS int isamplev[BLOCK_MAX_WEIGHTS];
103cc1dc7a3Sopenharmony_ci
104cc1dc7a3Sopenharmony_ci	// Precompute isample; arrays are always allocated 64 elements long
105cc1dc7a3Sopenharmony_ci	for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH)
106cc1dc7a3Sopenharmony_ci	{
107cc1dc7a3Sopenharmony_ci		// Add 2^23 and interpreting bits extracts round-to-nearest int
108cc1dc7a3Sopenharmony_ci		vfloat sample = loada(dec_weight_ideal_value + i) * (SINCOS_STEPS - 1.0f) + vfloat(12582912.0f);
109cc1dc7a3Sopenharmony_ci		vint isample = float_as_int(sample) & vint((SINCOS_STEPS - 1));
110cc1dc7a3Sopenharmony_ci		storea(isample, isamplev + i);
111cc1dc7a3Sopenharmony_ci	}
112cc1dc7a3Sopenharmony_ci
113cc1dc7a3Sopenharmony_ci	// Arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max
114cc1dc7a3Sopenharmony_ci	vfloat mult = vfloat(1.0f / (2.0f * astc::PI));
115cc1dc7a3Sopenharmony_ci
116cc1dc7a3Sopenharmony_ci	for (unsigned int i = 0; i < max_angular_steps; i += ASTCENC_SIMD_WIDTH)
117cc1dc7a3Sopenharmony_ci	{
118cc1dc7a3Sopenharmony_ci		vfloat anglesum_x = vfloat::zero();
119cc1dc7a3Sopenharmony_ci		vfloat anglesum_y = vfloat::zero();
120cc1dc7a3Sopenharmony_ci
121cc1dc7a3Sopenharmony_ci		for (unsigned int j = 0; j < weight_count; j++)
122cc1dc7a3Sopenharmony_ci		{
123cc1dc7a3Sopenharmony_ci			int isample = isamplev[j];
124cc1dc7a3Sopenharmony_ci			anglesum_x += loada(cos_table[isample] + i);
125cc1dc7a3Sopenharmony_ci			anglesum_y += loada(sin_table[isample] + i);
126cc1dc7a3Sopenharmony_ci		}
127cc1dc7a3Sopenharmony_ci
128cc1dc7a3Sopenharmony_ci		vfloat angle = atan2(anglesum_y, anglesum_x);
129cc1dc7a3Sopenharmony_ci		vfloat ofs = angle * mult;
130cc1dc7a3Sopenharmony_ci		storea(ofs, offsets + i);
131cc1dc7a3Sopenharmony_ci	}
132cc1dc7a3Sopenharmony_ci}
133cc1dc7a3Sopenharmony_ci
134cc1dc7a3Sopenharmony_ci/**
135cc1dc7a3Sopenharmony_ci * @brief For a given step size compute the lowest and highest weight.
136cc1dc7a3Sopenharmony_ci *
137cc1dc7a3Sopenharmony_ci * Compute the lowest and highest weight that results from quantizing using the given stepsize and
138cc1dc7a3Sopenharmony_ci * offset, and then compute the resulting error. The cut errors indicate the error that results from
139cc1dc7a3Sopenharmony_ci * forcing samples that should have had one weight value one step up or down.
140cc1dc7a3Sopenharmony_ci *
141cc1dc7a3Sopenharmony_ci * @param      weight_count              The number of (decimated) weights.
142cc1dc7a3Sopenharmony_ci * @param      dec_weight_ideal_value    The ideal decimated unquantized weight values.
143cc1dc7a3Sopenharmony_ci * @param      max_angular_steps         The maximum number of steps to be tested.
144cc1dc7a3Sopenharmony_ci * @param      max_quant_steps           The maximum quantization level to be tested.
145cc1dc7a3Sopenharmony_ci * @param      offsets                   The angular offsets array.
146cc1dc7a3Sopenharmony_ci * @param[out] lowest_weight             Per angular step, the lowest weight.
147cc1dc7a3Sopenharmony_ci * @param[out] weight_span               Per angular step, the span between lowest and highest weight.
148cc1dc7a3Sopenharmony_ci * @param[out] error                     Per angular step, the error.
149cc1dc7a3Sopenharmony_ci * @param[out] cut_low_weight_error      Per angular step, the low weight cut error.
150cc1dc7a3Sopenharmony_ci * @param[out] cut_high_weight_error     Per angular step, the high weight cut error.
151cc1dc7a3Sopenharmony_ci */
152cc1dc7a3Sopenharmony_ci#if ASTCENC_NEON != 0
153cc1dc7a3Sopenharmony_cistatic void compute_lowest_and_highest_weight(
154cc1dc7a3Sopenharmony_ci	QualityProfile privateProfile,
155cc1dc7a3Sopenharmony_ci	unsigned int weight_count,
156cc1dc7a3Sopenharmony_ci	const float* dec_weight_ideal_value,
157cc1dc7a3Sopenharmony_ci	unsigned int max_angular_steps,
158cc1dc7a3Sopenharmony_ci	unsigned int max_quant_steps,
159cc1dc7a3Sopenharmony_ci	const float* offsets,
160cc1dc7a3Sopenharmony_ci	float* lowest_weight,
161cc1dc7a3Sopenharmony_ci	int* weight_span,
162cc1dc7a3Sopenharmony_ci	float* error,
163cc1dc7a3Sopenharmony_ci	float* cut_low_weight_error,
164cc1dc7a3Sopenharmony_ci	float* cut_high_weight_error
165cc1dc7a3Sopenharmony_ci) {
166cc1dc7a3Sopenharmony_ci	promise(weight_count > 0);
167cc1dc7a3Sopenharmony_ci	promise(max_angular_steps > 0);
168cc1dc7a3Sopenharmony_ci
169cc1dc7a3Sopenharmony_ci	vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f);
170cc1dc7a3Sopenharmony_ci
171cc1dc7a3Sopenharmony_ci	float max_weight = 1.0f;
172cc1dc7a3Sopenharmony_ci	float min_weight = 0.0f;
173cc1dc7a3Sopenharmony_ci	// in HIGH_SPEED_PROFILE, max_weight is always equal to 1.0, and min_weight is always equal to 0
174cc1dc7a3Sopenharmony_ci	if (privateProfile != HIGH_SPEED_PROFILE)
175cc1dc7a3Sopenharmony_ci	{
176cc1dc7a3Sopenharmony_ci		max_weight = dec_weight_ideal_value[0];
177cc1dc7a3Sopenharmony_ci		min_weight = dec_weight_ideal_value[0];
178cc1dc7a3Sopenharmony_ci		for (unsigned int j = 1; j < weight_count; j++)
179cc1dc7a3Sopenharmony_ci		{
180cc1dc7a3Sopenharmony_ci			float weight = dec_weight_ideal_value[j];
181cc1dc7a3Sopenharmony_ci			__asm__ volatile("fmax %s0, %s0, %s1" : "+w"(max_weight) : "w"(weight));
182cc1dc7a3Sopenharmony_ci			__asm__ volatile("fmin %s0, %s0, %s1" : "+w"(min_weight) : "w"(weight));
183cc1dc7a3Sopenharmony_ci		}
184cc1dc7a3Sopenharmony_ci	}
185cc1dc7a3Sopenharmony_ci
186cc1dc7a3Sopenharmony_ci	// Arrays are ANGULAR_STEPS long, so always safe to run full vectors
187cc1dc7a3Sopenharmony_ci	for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH)
188cc1dc7a3Sopenharmony_ci	{
189cc1dc7a3Sopenharmony_ci		vfloat errval = vfloat::zero();
190cc1dc7a3Sopenharmony_ci		vfloat cut_low_weight_err = vfloat::zero();
191cc1dc7a3Sopenharmony_ci		vfloat cut_high_weight_err = vfloat::zero();
192cc1dc7a3Sopenharmony_ci		vfloat offset = loada(offsets + sp);
193cc1dc7a3Sopenharmony_ci
194cc1dc7a3Sopenharmony_ci		offset = (vfloat)vnegq_f32(offset.m);
195cc1dc7a3Sopenharmony_ci		vfloat maxidx = vfloat::zero();
196cc1dc7a3Sopenharmony_ci		vfloat minidx = vfloat::zero();
197cc1dc7a3Sopenharmony_ci
198cc1dc7a3Sopenharmony_ci		if (privateProfile == HIGH_SPEED_PROFILE)
199cc1dc7a3Sopenharmony_ci		{
200cc1dc7a3Sopenharmony_ci			maxidx = round((vfloat)vaddq_f32(rcp_stepsize.m, offset.m));
201cc1dc7a3Sopenharmony_ci			minidx = round(offset);
202cc1dc7a3Sopenharmony_ci		}
203cc1dc7a3Sopenharmony_ci		else
204cc1dc7a3Sopenharmony_ci		{
205cc1dc7a3Sopenharmony_ci			maxidx = round((vfloat)vfmaq_n_f32(offset.m, rcp_stepsize.m, max_weight));
206cc1dc7a3Sopenharmony_ci			minidx = round((vfloat)vfmaq_n_f32(offset.m, rcp_stepsize.m, min_weight));
207cc1dc7a3Sopenharmony_ci		}
208cc1dc7a3Sopenharmony_ci
209cc1dc7a3Sopenharmony_ci		for (unsigned int j = 0; j < weight_count; j++)
210cc1dc7a3Sopenharmony_ci		{
211cc1dc7a3Sopenharmony_ci			vfloat sval = (vfloat)vfmaq_n_f32(offset.m, rcp_stepsize.m, *(dec_weight_ideal_value + j));
212cc1dc7a3Sopenharmony_ci			vfloat svalrte = round(sval);
213cc1dc7a3Sopenharmony_ci			vfloat diff = sval - svalrte;
214cc1dc7a3Sopenharmony_ci			errval += diff * diff;
215cc1dc7a3Sopenharmony_ci
216cc1dc7a3Sopenharmony_ci			// Accumulate on min hit
217cc1dc7a3Sopenharmony_ci			vmask mask = svalrte == minidx;
218cc1dc7a3Sopenharmony_ci			vfloat accum = cut_low_weight_err + vfloat(1.0f) - vfloat(2.0f) * diff;
219cc1dc7a3Sopenharmony_ci			cut_low_weight_err = select(cut_low_weight_err, accum, mask);
220cc1dc7a3Sopenharmony_ci
221cc1dc7a3Sopenharmony_ci			// Accumulate on max hit
222cc1dc7a3Sopenharmony_ci			mask = svalrte == maxidx;
223cc1dc7a3Sopenharmony_ci			accum = cut_high_weight_err + vfloat(1.0f) + vfloat(2.0f) * diff;
224cc1dc7a3Sopenharmony_ci			cut_high_weight_err = select(cut_high_weight_err, accum, mask);
225cc1dc7a3Sopenharmony_ci		}
226cc1dc7a3Sopenharmony_ci
227cc1dc7a3Sopenharmony_ci		// Write out min weight and weight span; clamp span to a usable range
228cc1dc7a3Sopenharmony_ci		vint span = float_to_int(maxidx - minidx + vfloat(1));
229cc1dc7a3Sopenharmony_ci		span = min(span, vint(max_quant_steps + 3));
230cc1dc7a3Sopenharmony_ci		span = max(span, vint(2));
231cc1dc7a3Sopenharmony_ci		storea(minidx, lowest_weight + sp);
232cc1dc7a3Sopenharmony_ci		storea(span, weight_span + sp);
233cc1dc7a3Sopenharmony_ci
234cc1dc7a3Sopenharmony_ci		// The cut_(lowest/highest)_weight_error indicate the error that results from  forcing
235cc1dc7a3Sopenharmony_ci		// samples that should have had the weight value one step (up/down).
236cc1dc7a3Sopenharmony_ci		vfloat ssize = 1.0f / rcp_stepsize;
237cc1dc7a3Sopenharmony_ci		vfloat errscale = ssize * ssize;
238cc1dc7a3Sopenharmony_ci		storea(errval * errscale, error + sp);
239cc1dc7a3Sopenharmony_ci		storea(cut_low_weight_err * errscale, cut_low_weight_error + sp);
240cc1dc7a3Sopenharmony_ci		storea(cut_high_weight_err * errscale, cut_high_weight_error + sp);
241cc1dc7a3Sopenharmony_ci
242cc1dc7a3Sopenharmony_ci		rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH);
243cc1dc7a3Sopenharmony_ci	}
244cc1dc7a3Sopenharmony_ci}
245cc1dc7a3Sopenharmony_ci#else
246cc1dc7a3Sopenharmony_cistatic void compute_lowest_and_highest_weight(
247cc1dc7a3Sopenharmony_ci	QualityProfile privateProfile,
248cc1dc7a3Sopenharmony_ci	unsigned int weight_count,
249cc1dc7a3Sopenharmony_ci	const float* dec_weight_ideal_value,
250cc1dc7a3Sopenharmony_ci	unsigned int max_angular_steps,
251cc1dc7a3Sopenharmony_ci	unsigned int max_quant_steps,
252cc1dc7a3Sopenharmony_ci	const float* offsets,
253cc1dc7a3Sopenharmony_ci	float* lowest_weight,
254cc1dc7a3Sopenharmony_ci	int* weight_span,
255cc1dc7a3Sopenharmony_ci	float* error,
256cc1dc7a3Sopenharmony_ci	float* cut_low_weight_error,
257cc1dc7a3Sopenharmony_ci	float* cut_high_weight_error
258cc1dc7a3Sopenharmony_ci) {
259cc1dc7a3Sopenharmony_ci	(void) privateProfile;
260cc1dc7a3Sopenharmony_ci	promise(weight_count > 0);
261cc1dc7a3Sopenharmony_ci	promise(max_angular_steps > 0);
262cc1dc7a3Sopenharmony_ci
263cc1dc7a3Sopenharmony_ci	vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f);
264cc1dc7a3Sopenharmony_ci
265cc1dc7a3Sopenharmony_ci	// Arrays are ANGULAR_STEPS long, so always safe to run full vectors
266cc1dc7a3Sopenharmony_ci	for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH)
267cc1dc7a3Sopenharmony_ci	{
268cc1dc7a3Sopenharmony_ci		vfloat minidx(128.0f);
269cc1dc7a3Sopenharmony_ci		vfloat maxidx(-128.0f);
270cc1dc7a3Sopenharmony_ci		vfloat errval = vfloat::zero();
271cc1dc7a3Sopenharmony_ci		vfloat cut_low_weight_err = vfloat::zero();
272cc1dc7a3Sopenharmony_ci		vfloat cut_high_weight_err = vfloat::zero();
273cc1dc7a3Sopenharmony_ci		vfloat offset = loada(offsets + sp);
274cc1dc7a3Sopenharmony_ci
275cc1dc7a3Sopenharmony_ci		for (unsigned int j = 0; j < weight_count; j++)
276cc1dc7a3Sopenharmony_ci		{
277cc1dc7a3Sopenharmony_ci			vfloat sval = load1(dec_weight_ideal_value + j) * rcp_stepsize - offset;
278cc1dc7a3Sopenharmony_ci			vfloat svalrte = round(sval);
279cc1dc7a3Sopenharmony_ci			vfloat diff = sval - svalrte;
280cc1dc7a3Sopenharmony_ci			errval += diff * diff;
281cc1dc7a3Sopenharmony_ci
282cc1dc7a3Sopenharmony_ci			// Reset tracker on min hit
283cc1dc7a3Sopenharmony_ci			vmask mask = svalrte < minidx;
284cc1dc7a3Sopenharmony_ci			minidx = select(minidx, svalrte, mask);
285cc1dc7a3Sopenharmony_ci			cut_low_weight_err = select(cut_low_weight_err, vfloat::zero(), mask);
286cc1dc7a3Sopenharmony_ci
287cc1dc7a3Sopenharmony_ci			// Accumulate on min hit
288cc1dc7a3Sopenharmony_ci			mask = svalrte == minidx;
289cc1dc7a3Sopenharmony_ci			vfloat accum = cut_low_weight_err + vfloat(1.0f) - vfloat(2.0f) * diff;
290cc1dc7a3Sopenharmony_ci			cut_low_weight_err = select(cut_low_weight_err, accum, mask);
291cc1dc7a3Sopenharmony_ci
292cc1dc7a3Sopenharmony_ci			// Reset tracker on max hit
293cc1dc7a3Sopenharmony_ci			mask = svalrte > maxidx;
294cc1dc7a3Sopenharmony_ci			maxidx = select(maxidx, svalrte, mask);
295cc1dc7a3Sopenharmony_ci			cut_high_weight_err = select(cut_high_weight_err, vfloat::zero(), mask);
296cc1dc7a3Sopenharmony_ci
297cc1dc7a3Sopenharmony_ci			// Accumulate on max hit
298cc1dc7a3Sopenharmony_ci			mask = svalrte == maxidx;
299cc1dc7a3Sopenharmony_ci			accum = cut_high_weight_err + vfloat(1.0f) + vfloat(2.0f) * diff;
300cc1dc7a3Sopenharmony_ci			cut_high_weight_err = select(cut_high_weight_err, accum, mask);
301cc1dc7a3Sopenharmony_ci		}
302cc1dc7a3Sopenharmony_ci
303cc1dc7a3Sopenharmony_ci		// Write out min weight and weight span; clamp span to a usable range
304cc1dc7a3Sopenharmony_ci		vint span = float_to_int(maxidx - minidx + vfloat(1));
305cc1dc7a3Sopenharmony_ci		span = min(span, vint(max_quant_steps + 3));
306cc1dc7a3Sopenharmony_ci		span = max(span, vint(2));
307cc1dc7a3Sopenharmony_ci		storea(minidx, lowest_weight + sp);
308cc1dc7a3Sopenharmony_ci		storea(span, weight_span + sp);
309cc1dc7a3Sopenharmony_ci
310cc1dc7a3Sopenharmony_ci		// The cut_(lowest/highest)_weight_error indicate the error that results from  forcing
311cc1dc7a3Sopenharmony_ci		// samples that should have had the weight value one step (up/down).
312cc1dc7a3Sopenharmony_ci		vfloat ssize = 1.0f / rcp_stepsize;
313cc1dc7a3Sopenharmony_ci		vfloat errscale = ssize * ssize;
314cc1dc7a3Sopenharmony_ci		storea(errval * errscale, error + sp);
315cc1dc7a3Sopenharmony_ci		storea(cut_low_weight_err * errscale, cut_low_weight_error + sp);
316cc1dc7a3Sopenharmony_ci		storea(cut_high_weight_err * errscale, cut_high_weight_error + sp);
317cc1dc7a3Sopenharmony_ci
318cc1dc7a3Sopenharmony_ci		rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH);
319cc1dc7a3Sopenharmony_ci	}
320cc1dc7a3Sopenharmony_ci}
321cc1dc7a3Sopenharmony_ci#endif
322cc1dc7a3Sopenharmony_ci
323cc1dc7a3Sopenharmony_ci/**
324cc1dc7a3Sopenharmony_ci * @brief The main function for the angular algorithm.
325cc1dc7a3Sopenharmony_ci *
326cc1dc7a3Sopenharmony_ci * @param      weight_count              The number of (decimated) weights.
327cc1dc7a3Sopenharmony_ci * @param      dec_weight_ideal_value    The ideal decimated unquantized weight values.
328cc1dc7a3Sopenharmony_ci * @param      max_quant_level           The maximum quantization level to be tested.
329cc1dc7a3Sopenharmony_ci * @param[out] low_value                 Per angular step, the lowest weight value.
330cc1dc7a3Sopenharmony_ci * @param[out] high_value                Per angular step, the highest weight value.
331cc1dc7a3Sopenharmony_ci */
332cc1dc7a3Sopenharmony_cistatic void compute_angular_endpoints_for_quant_levels(
333cc1dc7a3Sopenharmony_ci	QualityProfile privateProfile,
334cc1dc7a3Sopenharmony_ci	unsigned int weight_count,
335cc1dc7a3Sopenharmony_ci	const float* dec_weight_ideal_value,
336cc1dc7a3Sopenharmony_ci	unsigned int max_quant_level,
337cc1dc7a3Sopenharmony_ci	float low_value[TUNE_MAX_ANGULAR_QUANT + 1],
338cc1dc7a3Sopenharmony_ci	float high_value[TUNE_MAX_ANGULAR_QUANT + 1]
339cc1dc7a3Sopenharmony_ci) {
340cc1dc7a3Sopenharmony_ci	unsigned int max_quant_steps = steps_for_quant_level[max_quant_level];
341cc1dc7a3Sopenharmony_ci	unsigned int max_angular_steps = steps_for_quant_level[max_quant_level];
342cc1dc7a3Sopenharmony_ci
343cc1dc7a3Sopenharmony_ci	ASTCENC_ALIGNAS float angular_offsets[ANGULAR_STEPS];
344cc1dc7a3Sopenharmony_ci
345cc1dc7a3Sopenharmony_ci	compute_angular_offsets(weight_count, dec_weight_ideal_value,
346cc1dc7a3Sopenharmony_ci	                        max_angular_steps, angular_offsets);
347cc1dc7a3Sopenharmony_ci
348cc1dc7a3Sopenharmony_ci	ASTCENC_ALIGNAS float lowest_weight[ANGULAR_STEPS];
349cc1dc7a3Sopenharmony_ci	ASTCENC_ALIGNAS int32_t weight_span[ANGULAR_STEPS];
350cc1dc7a3Sopenharmony_ci	ASTCENC_ALIGNAS float error[ANGULAR_STEPS];
351cc1dc7a3Sopenharmony_ci	ASTCENC_ALIGNAS float cut_low_weight_error[ANGULAR_STEPS];
352cc1dc7a3Sopenharmony_ci	ASTCENC_ALIGNAS float cut_high_weight_error[ANGULAR_STEPS];
353cc1dc7a3Sopenharmony_ci
354cc1dc7a3Sopenharmony_ci	compute_lowest_and_highest_weight(privateProfile, weight_count, dec_weight_ideal_value,
355cc1dc7a3Sopenharmony_ci	                                  max_angular_steps, max_quant_steps,
356cc1dc7a3Sopenharmony_ci	                                  angular_offsets, lowest_weight, weight_span, error,
357cc1dc7a3Sopenharmony_ci	                                  cut_low_weight_error, cut_high_weight_error);
358cc1dc7a3Sopenharmony_ci
359cc1dc7a3Sopenharmony_ci	// For each quantization level, find the best error terms. Use packed vectors so data-dependent
360cc1dc7a3Sopenharmony_ci	// branches can become selects. This involves some integer to float casts, but the values are
361cc1dc7a3Sopenharmony_ci	// small enough so they never round the wrong way.
362cc1dc7a3Sopenharmony_ci	vfloat4 best_results[36];
363cc1dc7a3Sopenharmony_ci
364cc1dc7a3Sopenharmony_ci	// Initialize the array to some safe defaults
365cc1dc7a3Sopenharmony_ci	promise(max_quant_steps > 0);
366cc1dc7a3Sopenharmony_ci	for (unsigned int i = 0; i < (max_quant_steps + 4); i++)
367cc1dc7a3Sopenharmony_ci	{
368cc1dc7a3Sopenharmony_ci		// Lane<0> = Best error
369cc1dc7a3Sopenharmony_ci		// Lane<1> = Best scale; -1 indicates no solution found
370cc1dc7a3Sopenharmony_ci		// Lane<2> = Cut low weight
371cc1dc7a3Sopenharmony_ci		best_results[i] = vfloat4(ERROR_CALC_DEFAULT, -1.0f, 0.0f, 0.0f);
372cc1dc7a3Sopenharmony_ci	}
373cc1dc7a3Sopenharmony_ci
374cc1dc7a3Sopenharmony_ci	promise(max_angular_steps > 0);
375cc1dc7a3Sopenharmony_ci	for (unsigned int i = 0; i < max_angular_steps; i++)
376cc1dc7a3Sopenharmony_ci	{
377cc1dc7a3Sopenharmony_ci		float i_flt = static_cast<float>(i);
378cc1dc7a3Sopenharmony_ci
379cc1dc7a3Sopenharmony_ci		int idx_span = weight_span[i];
380cc1dc7a3Sopenharmony_ci
381cc1dc7a3Sopenharmony_ci		float error_cut_low = error[i] + cut_low_weight_error[i];
382cc1dc7a3Sopenharmony_ci		float error_cut_high = error[i] + cut_high_weight_error[i];
383cc1dc7a3Sopenharmony_ci		float error_cut_low_high = error[i] + cut_low_weight_error[i] + cut_high_weight_error[i];
384cc1dc7a3Sopenharmony_ci
385cc1dc7a3Sopenharmony_ci		// Check best error against record N
386cc1dc7a3Sopenharmony_ci		vfloat4 best_result = best_results[idx_span];
387cc1dc7a3Sopenharmony_ci		vfloat4 new_result = vfloat4(error[i], i_flt, 0.0f, 0.0f);
388cc1dc7a3Sopenharmony_ci		vmask4 mask = vfloat4(best_result.lane<0>()) > vfloat4(error[i]);
389cc1dc7a3Sopenharmony_ci		best_results[idx_span] = select(best_result, new_result, mask);
390cc1dc7a3Sopenharmony_ci
391cc1dc7a3Sopenharmony_ci		// Check best error against record N-1 with either cut low or cut high
392cc1dc7a3Sopenharmony_ci		best_result = best_results[idx_span - 1];
393cc1dc7a3Sopenharmony_ci
394cc1dc7a3Sopenharmony_ci		new_result = vfloat4(error_cut_low, i_flt, 1.0f, 0.0f);
395cc1dc7a3Sopenharmony_ci		mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low);
396cc1dc7a3Sopenharmony_ci		best_result = select(best_result, new_result, mask);
397cc1dc7a3Sopenharmony_ci
398cc1dc7a3Sopenharmony_ci		new_result = vfloat4(error_cut_high, i_flt, 0.0f, 0.0f);
399cc1dc7a3Sopenharmony_ci		mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_high);
400cc1dc7a3Sopenharmony_ci		best_results[idx_span - 1] = select(best_result, new_result, mask);
401cc1dc7a3Sopenharmony_ci
402cc1dc7a3Sopenharmony_ci		// Check best error against record N-2 with both cut low and high
403cc1dc7a3Sopenharmony_ci		best_result = best_results[idx_span - 2];
404cc1dc7a3Sopenharmony_ci		new_result = vfloat4(error_cut_low_high, i_flt, 1.0f, 0.0f);
405cc1dc7a3Sopenharmony_ci		mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low_high);
406cc1dc7a3Sopenharmony_ci		best_results[idx_span - 2] = select(best_result, new_result, mask);
407cc1dc7a3Sopenharmony_ci	}
408cc1dc7a3Sopenharmony_ci
409cc1dc7a3Sopenharmony_ci	for (unsigned int i = 0; i <= max_quant_level; i++)
410cc1dc7a3Sopenharmony_ci	{
411cc1dc7a3Sopenharmony_ci		unsigned int q = steps_for_quant_level[i];
412cc1dc7a3Sopenharmony_ci		int bsi = static_cast<int>(best_results[q].lane<1>());
413cc1dc7a3Sopenharmony_ci
414cc1dc7a3Sopenharmony_ci		// Did we find anything?
415cc1dc7a3Sopenharmony_ci#if defined(ASTCENC_DIAGNOSTICS)
416cc1dc7a3Sopenharmony_ci		if ((bsi < 0) && print_once)
417cc1dc7a3Sopenharmony_ci		{
418cc1dc7a3Sopenharmony_ci			print_once = false;
419cc1dc7a3Sopenharmony_ci			printf("INFO: Unable to find full encoding within search error limit.\n\n");
420cc1dc7a3Sopenharmony_ci		}
421cc1dc7a3Sopenharmony_ci#endif
422cc1dc7a3Sopenharmony_ci
423cc1dc7a3Sopenharmony_ci		bsi = astc::max(0, bsi);
424cc1dc7a3Sopenharmony_ci
425cc1dc7a3Sopenharmony_ci		float lwi = lowest_weight[bsi] + best_results[q].lane<2>();
426cc1dc7a3Sopenharmony_ci		float hwi = lwi + static_cast<float>(q) - 1.0f;
427cc1dc7a3Sopenharmony_ci
428cc1dc7a3Sopenharmony_ci		float stepsize = 1.0f / (1.0f + static_cast<float>(bsi));
429cc1dc7a3Sopenharmony_ci		low_value[i]  = (angular_offsets[bsi] + lwi) * stepsize;
430cc1dc7a3Sopenharmony_ci		high_value[i] = (angular_offsets[bsi] + hwi) * stepsize;
431cc1dc7a3Sopenharmony_ci	}
432cc1dc7a3Sopenharmony_ci}
433cc1dc7a3Sopenharmony_ci
434cc1dc7a3Sopenharmony_ci/* See header for documentation. */
435cc1dc7a3Sopenharmony_civoid compute_angular_endpoints_1plane(
436cc1dc7a3Sopenharmony_ci	QualityProfile privateProfile,
437cc1dc7a3Sopenharmony_ci	bool only_always,
438cc1dc7a3Sopenharmony_ci	const block_size_descriptor& bsd,
439cc1dc7a3Sopenharmony_ci	const float* dec_weight_ideal_value,
440cc1dc7a3Sopenharmony_ci	unsigned int max_weight_quant,
441cc1dc7a3Sopenharmony_ci	compression_working_buffers& tmpbuf
442cc1dc7a3Sopenharmony_ci) {
443cc1dc7a3Sopenharmony_ci	float (&low_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1;
444cc1dc7a3Sopenharmony_ci	float (&high_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1;
445cc1dc7a3Sopenharmony_ci
446cc1dc7a3Sopenharmony_ci	float (&low_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1;
447cc1dc7a3Sopenharmony_ci	float (&high_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1;
448cc1dc7a3Sopenharmony_ci
449cc1dc7a3Sopenharmony_ci	unsigned int max_decimation_modes = only_always ? bsd.decimation_mode_count_always
450cc1dc7a3Sopenharmony_ci	                                                : bsd.decimation_mode_count_selected;
451cc1dc7a3Sopenharmony_ci	promise(max_decimation_modes > 0);
452cc1dc7a3Sopenharmony_ci	for (unsigned int i = 0; i < max_decimation_modes; i++)
453cc1dc7a3Sopenharmony_ci	{
454cc1dc7a3Sopenharmony_ci		const decimation_mode& dm = bsd.decimation_modes[i];
455cc1dc7a3Sopenharmony_ci		if (!dm.is_ref_1plane(static_cast<quant_method>(max_weight_quant)))
456cc1dc7a3Sopenharmony_ci		{
457cc1dc7a3Sopenharmony_ci			continue;
458cc1dc7a3Sopenharmony_ci		}
459cc1dc7a3Sopenharmony_ci
460cc1dc7a3Sopenharmony_ci		unsigned int weight_count = bsd.get_decimation_info(i).weight_count;
461cc1dc7a3Sopenharmony_ci
462cc1dc7a3Sopenharmony_ci		unsigned int max_precision = dm.maxprec_1plane;
463cc1dc7a3Sopenharmony_ci		if (max_precision > TUNE_MAX_ANGULAR_QUANT)
464cc1dc7a3Sopenharmony_ci		{
465cc1dc7a3Sopenharmony_ci			max_precision = TUNE_MAX_ANGULAR_QUANT;
466cc1dc7a3Sopenharmony_ci		}
467cc1dc7a3Sopenharmony_ci
468cc1dc7a3Sopenharmony_ci		if (max_precision > max_weight_quant)
469cc1dc7a3Sopenharmony_ci		{
470cc1dc7a3Sopenharmony_ci			max_precision = max_weight_quant;
471cc1dc7a3Sopenharmony_ci		}
472cc1dc7a3Sopenharmony_ci
473cc1dc7a3Sopenharmony_ci		compute_angular_endpoints_for_quant_levels(
474cc1dc7a3Sopenharmony_ci		    privateProfile,
475cc1dc7a3Sopenharmony_ci		    weight_count,
476cc1dc7a3Sopenharmony_ci		    dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS,
477cc1dc7a3Sopenharmony_ci		    max_precision, low_values[i], high_values[i]);
478cc1dc7a3Sopenharmony_ci	}
479cc1dc7a3Sopenharmony_ci
480cc1dc7a3Sopenharmony_ci	unsigned int max_block_modes = only_always ? bsd.block_mode_count_1plane_always
481cc1dc7a3Sopenharmony_ci	                                           : bsd.block_mode_count_1plane_selected;
482cc1dc7a3Sopenharmony_ci	promise(max_block_modes > 0);
483cc1dc7a3Sopenharmony_ci	for (unsigned int i = 0; i < max_block_modes; i++)
484cc1dc7a3Sopenharmony_ci	{
485cc1dc7a3Sopenharmony_ci		const block_mode& bm = bsd.block_modes[i];
486cc1dc7a3Sopenharmony_ci		assert(!bm.is_dual_plane);
487cc1dc7a3Sopenharmony_ci
488cc1dc7a3Sopenharmony_ci		unsigned int quant_mode = bm.quant_mode;
489cc1dc7a3Sopenharmony_ci		unsigned int decim_mode = bm.decimation_mode;
490cc1dc7a3Sopenharmony_ci
491cc1dc7a3Sopenharmony_ci		if (quant_mode <= TUNE_MAX_ANGULAR_QUANT)
492cc1dc7a3Sopenharmony_ci		{
493cc1dc7a3Sopenharmony_ci			low_value[i] = low_values[decim_mode][quant_mode];
494cc1dc7a3Sopenharmony_ci			high_value[i] = high_values[decim_mode][quant_mode];
495cc1dc7a3Sopenharmony_ci		}
496cc1dc7a3Sopenharmony_ci		else
497cc1dc7a3Sopenharmony_ci		{
498cc1dc7a3Sopenharmony_ci			low_value[i] = 0.0f;
499cc1dc7a3Sopenharmony_ci			high_value[i] = 1.0f;
500cc1dc7a3Sopenharmony_ci		}
501cc1dc7a3Sopenharmony_ci	}
502cc1dc7a3Sopenharmony_ci}
503cc1dc7a3Sopenharmony_ci
504cc1dc7a3Sopenharmony_ci/* See header for documentation. */
505cc1dc7a3Sopenharmony_civoid compute_angular_endpoints_2planes(
506cc1dc7a3Sopenharmony_ci	QualityProfile privateProfile,
507cc1dc7a3Sopenharmony_ci	const block_size_descriptor& bsd,
508cc1dc7a3Sopenharmony_ci	const float* dec_weight_ideal_value,
509cc1dc7a3Sopenharmony_ci	unsigned int max_weight_quant,
510cc1dc7a3Sopenharmony_ci	compression_working_buffers& tmpbuf
511cc1dc7a3Sopenharmony_ci) {
512cc1dc7a3Sopenharmony_ci	float (&low_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1;
513cc1dc7a3Sopenharmony_ci	float (&high_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1;
514cc1dc7a3Sopenharmony_ci	float (&low_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value2;
515cc1dc7a3Sopenharmony_ci	float (&high_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value2;
516cc1dc7a3Sopenharmony_ci
517cc1dc7a3Sopenharmony_ci	float (&low_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1;
518cc1dc7a3Sopenharmony_ci	float (&high_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1;
519cc1dc7a3Sopenharmony_ci	float (&low_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values2;
520cc1dc7a3Sopenharmony_ci	float (&high_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values2;
521cc1dc7a3Sopenharmony_ci
522cc1dc7a3Sopenharmony_ci	promise(bsd.decimation_mode_count_selected > 0);
523cc1dc7a3Sopenharmony_ci	for (unsigned int i = 0; i < bsd.decimation_mode_count_selected; i++)
524cc1dc7a3Sopenharmony_ci	{
525cc1dc7a3Sopenharmony_ci		const decimation_mode& dm = bsd.decimation_modes[i];
526cc1dc7a3Sopenharmony_ci		if (!dm.is_ref_2plane(static_cast<quant_method>(max_weight_quant)))
527cc1dc7a3Sopenharmony_ci		{
528cc1dc7a3Sopenharmony_ci			continue;
529cc1dc7a3Sopenharmony_ci		}
530cc1dc7a3Sopenharmony_ci
531cc1dc7a3Sopenharmony_ci		unsigned int weight_count = bsd.get_decimation_info(i).weight_count;
532cc1dc7a3Sopenharmony_ci
533cc1dc7a3Sopenharmony_ci		unsigned int max_precision = dm.maxprec_2planes;
534cc1dc7a3Sopenharmony_ci		if (max_precision > TUNE_MAX_ANGULAR_QUANT)
535cc1dc7a3Sopenharmony_ci		{
536cc1dc7a3Sopenharmony_ci			max_precision = TUNE_MAX_ANGULAR_QUANT;
537cc1dc7a3Sopenharmony_ci		}
538cc1dc7a3Sopenharmony_ci
539cc1dc7a3Sopenharmony_ci		if (max_precision > max_weight_quant)
540cc1dc7a3Sopenharmony_ci		{
541cc1dc7a3Sopenharmony_ci			max_precision = max_weight_quant;
542cc1dc7a3Sopenharmony_ci		}
543cc1dc7a3Sopenharmony_ci
544cc1dc7a3Sopenharmony_ci		compute_angular_endpoints_for_quant_levels(
545cc1dc7a3Sopenharmony_ci		    privateProfile,
546cc1dc7a3Sopenharmony_ci		    weight_count,
547cc1dc7a3Sopenharmony_ci		    dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS,
548cc1dc7a3Sopenharmony_ci		    max_precision, low_values1[i], high_values1[i]);
549cc1dc7a3Sopenharmony_ci
550cc1dc7a3Sopenharmony_ci		compute_angular_endpoints_for_quant_levels(
551cc1dc7a3Sopenharmony_ci		    privateProfile,
552cc1dc7a3Sopenharmony_ci		    weight_count,
553cc1dc7a3Sopenharmony_ci		    dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET,
554cc1dc7a3Sopenharmony_ci		    max_precision, low_values2[i], high_values2[i]);
555cc1dc7a3Sopenharmony_ci	}
556cc1dc7a3Sopenharmony_ci
557cc1dc7a3Sopenharmony_ci	unsigned int start = bsd.block_mode_count_1plane_selected;
558cc1dc7a3Sopenharmony_ci	unsigned int end = bsd.block_mode_count_1plane_2plane_selected;
559cc1dc7a3Sopenharmony_ci	for (unsigned int i = start; i < end; i++)
560cc1dc7a3Sopenharmony_ci	{
561cc1dc7a3Sopenharmony_ci		const block_mode& bm = bsd.block_modes[i];
562cc1dc7a3Sopenharmony_ci		unsigned int quant_mode = bm.quant_mode;
563cc1dc7a3Sopenharmony_ci		unsigned int decim_mode = bm.decimation_mode;
564cc1dc7a3Sopenharmony_ci
565cc1dc7a3Sopenharmony_ci		if (quant_mode <= TUNE_MAX_ANGULAR_QUANT)
566cc1dc7a3Sopenharmony_ci		{
567cc1dc7a3Sopenharmony_ci			low_value1[i] = low_values1[decim_mode][quant_mode];
568cc1dc7a3Sopenharmony_ci			high_value1[i] = high_values1[decim_mode][quant_mode];
569cc1dc7a3Sopenharmony_ci			low_value2[i] = low_values2[decim_mode][quant_mode];
570cc1dc7a3Sopenharmony_ci			high_value2[i] = high_values2[decim_mode][quant_mode];
571cc1dc7a3Sopenharmony_ci		}
572cc1dc7a3Sopenharmony_ci		else
573cc1dc7a3Sopenharmony_ci		{
574cc1dc7a3Sopenharmony_ci			low_value1[i] = 0.0f;
575cc1dc7a3Sopenharmony_ci			high_value1[i] = 1.0f;
576cc1dc7a3Sopenharmony_ci			low_value2[i] = 0.0f;
577cc1dc7a3Sopenharmony_ci			high_value2[i] = 1.0f;
578cc1dc7a3Sopenharmony_ci		}
579cc1dc7a3Sopenharmony_ci	}
580cc1dc7a3Sopenharmony_ci}
581cc1dc7a3Sopenharmony_ci
582cc1dc7a3Sopenharmony_ci#endif
583