1// SPDX-License-Identifier: Apache-2.0
2// ----------------------------------------------------------------------------
3// Copyright 2011-2023 Arm Limited
4//
5// Licensed under the Apache License, Version 2.0 (the "License"); you may not
6// use this file except in compliance with the License. You may obtain a copy
7// of the License at:
8//
9//     http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing, software
12// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14// License for the specific language governing permissions and limitations
15// under the License.
16// ----------------------------------------------------------------------------
17
18/**
19 * @brief Functions for generating partition tables on demand.
20 */
21
22#include "astcenc_internal.h"
23
24/** @brief The number of 64-bit words needed to represent a canonical partition bit pattern. */
25#define BIT_PATTERN_WORDS (((ASTCENC_BLOCK_MAX_TEXELS * 2) + 63) / 64)
26
27/**
28 * @brief Generate a canonical representation of a partition pattern.
29 *
30 * The returned value stores two bits per texel, for up to 6x6x6 texels, where the two bits store
31 * the remapped texel index. Remapping ensures that we only match on the partition pattern,
32 * independent of the partition order generated by the hash.
33 *
34 * @param      texel_count          The number of texels in the block.
35 * @param      partition_of_texel   The partition assignments, in hash order.
36 * @param[out] bit_pattern          The output bit pattern representation.
37 */
38static void generate_canonical_partitioning(
39	unsigned int texel_count,
40	const uint8_t* partition_of_texel,
41	uint64_t bit_pattern[BIT_PATTERN_WORDS]
42) {
43	// Clear the pattern
44	for (unsigned int i = 0; i < BIT_PATTERN_WORDS; i++)
45	{
46		bit_pattern[i] = 0;
47	}
48
49	// Store a mapping to reorder the raw partitions so that the partitions are ordered such
50	// that the lowest texel index in partition N is smaller than the lowest texel index in
51	// partition N + 1.
52	int mapped_index[BLOCK_MAX_PARTITIONS];
53	int map_weight_count = 0;
54
55	for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++)
56	{
57		mapped_index[i] = -1;
58	}
59
60	for (unsigned int i = 0; i < texel_count; i++)
61	{
62		int index = partition_of_texel[i];
63		if (mapped_index[index] < 0)
64		{
65			mapped_index[index] = map_weight_count++;
66		}
67
68		uint64_t xlat_index = mapped_index[index];
69		bit_pattern[i >> 5] |= xlat_index << (2 * (i & 0x1F));
70	}
71}
72
73/**
74 * @brief Compare two canonical patterns to see if they are the same.
75 *
76 * @param part1   The first canonical bit pattern to check.
77 * @param part2   The second canonical bit pattern to check.
78 *
79 * @return @c true if the patterns are the same, @c false otherwise.
80 */
81static bool compare_canonical_partitionings(
82	const uint64_t part1[BIT_PATTERN_WORDS],
83	const uint64_t part2[BIT_PATTERN_WORDS]
84) {
85	return (part1[0] == part2[0])
86#if BIT_PATTERN_WORDS > 1
87	    && (part1[1] == part2[1])
88#endif
89#if BIT_PATTERN_WORDS > 2
90	    && (part1[2] == part2[2])
91#endif
92#if BIT_PATTERN_WORDS > 3
93	    && (part1[3] == part2[3])
94#endif
95#if BIT_PATTERN_WORDS > 4
96	    && (part1[4] == part2[4])
97#endif
98#if BIT_PATTERN_WORDS > 5
99	    && (part1[5] == part2[5])
100#endif
101#if BIT_PATTERN_WORDS > 6
102	    && (part1[6] == part2[6])
103#endif
104	    ;
105}
106
107/**
108 * @brief Hash function used for procedural partition assignment.
109 *
110 * @param inp   The hash seed.
111 *
112 * @return The hashed value.
113 */
114static uint32_t hash52(
115	uint32_t inp
116) {
117	inp ^= inp >> 15;
118
119	// (2^4 + 1) * (2^7 + 1) * (2^17 - 1)
120	inp *= 0xEEDE0891;
121	inp ^= inp >> 5;
122	inp += inp << 16;
123	inp ^= inp >> 7;
124	inp ^= inp >> 3;
125	inp ^= inp << 6;
126	inp ^= inp >> 17;
127	return inp;
128}
129
130/**
131 * @brief Select texel assignment for a single coordinate.
132 *
133 * @param seed              The seed - the partition index from the block.
134 * @param x                 The texel X coordinate in the block.
135 * @param y                 The texel Y coordinate in the block.
136 * @param z                 The texel Z coordinate in the block.
137 * @param partition_count   The total partition count of this encoding.
138 * @param small_block       @c true if the block has fewer than 32 texels.
139 *
140 * @return The assigned partition index for this texel.
141 */
142static uint8_t select_partition(
143	int seed,
144	int x,
145	int y,
146	int z,
147	int partition_count,
148	bool small_block
149) {
150	// For small blocks bias the coordinates to get better distribution
151	if (small_block)
152	{
153		x <<= 1;
154		y <<= 1;
155		z <<= 1;
156	}
157
158	seed += (partition_count - 1) * 1024;
159
160	uint32_t rnum = hash52(seed);
161
162	uint8_t seed1 = rnum & 0xF;
163	uint8_t seed2 = (rnum >> 4) & 0xF;
164	uint8_t seed3 = (rnum >> 8) & 0xF;
165	uint8_t seed4 = (rnum >> 12) & 0xF;
166	uint8_t seed5 = (rnum >> 16) & 0xF;
167	uint8_t seed6 = (rnum >> 20) & 0xF;
168	uint8_t seed7 = (rnum >> 24) & 0xF;
169	uint8_t seed8 = (rnum >> 28) & 0xF;
170	uint8_t seed9 = (rnum >> 18) & 0xF;
171	uint8_t seed10 = (rnum >> 22) & 0xF;
172	uint8_t seed11 = (rnum >> 26) & 0xF;
173	uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF;
174
175	// Squaring all the seeds in order to bias their distribution towards lower values.
176	seed1 *= seed1;
177	seed2 *= seed2;
178	seed3 *= seed3;
179	seed4 *= seed4;
180	seed5 *= seed5;
181	seed6 *= seed6;
182	seed7 *= seed7;
183	seed8 *= seed8;
184	seed9 *= seed9;
185	seed10 *= seed10;
186	seed11 *= seed11;
187	seed12 *= seed12;
188
189	int sh1, sh2;
190	if (seed & 1)
191	{
192		sh1 = (seed & 2 ? 4 : 5);
193		sh2 = (partition_count == 3 ? 6 : 5);
194	}
195	else
196	{
197		sh1 = (partition_count == 3 ? 6 : 5);
198		sh2 = (seed & 2 ? 4 : 5);
199	}
200
201	int sh3 = (seed & 0x10) ? sh1 : sh2;
202
203	seed1 >>= sh1;
204	seed2 >>= sh2;
205	seed3 >>= sh1;
206	seed4 >>= sh2;
207	seed5 >>= sh1;
208	seed6 >>= sh2;
209	seed7 >>= sh1;
210	seed8 >>= sh2;
211
212	seed9 >>= sh3;
213	seed10 >>= sh3;
214	seed11 >>= sh3;
215	seed12 >>= sh3;
216
217	int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
218	int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
219	int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
220	int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
221
222	// Apply the saw
223	a &= 0x3F;
224	b &= 0x3F;
225	c &= 0x3F;
226	d &= 0x3F;
227
228	// Remove some of the components if we are to output < 4 partitions.
229	if (partition_count <= 3)
230	{
231		d = 0;
232	}
233
234	if (partition_count <= 2)
235	{
236		c = 0;
237	}
238
239	if (partition_count <= 1)
240	{
241		b = 0;
242	}
243
244	uint8_t partition;
245	if (a >= b && a >= c && a >= d)
246	{
247		partition = 0;
248	}
249	else if (b >= c && b >= d)
250	{
251		partition = 1;
252	}
253	else if (c >= d)
254	{
255		partition = 2;
256	}
257	else
258	{
259		partition = 3;
260	}
261
262	return partition;
263}
264
265/**
266 * @brief Generate a single partition info structure.
267 *
268 * @param[out] bsd                     The block size information.
269 * @param      partition_count         The partition count of this partitioning.
270 * @param      partition_index         The partition index / seed of this partitioning.
271 * @param      partition_remap_index   The remapped partition index of this partitioning.
272 * @param[out] pi                      The partition info structure to populate.
273 *
274 * @return True if this is a useful partition index, False if we can skip it.
275 */
276static bool generate_one_partition_info_entry(
277	block_size_descriptor& bsd,
278	unsigned int partition_count,
279	unsigned int partition_index,
280	unsigned int partition_remap_index,
281	partition_info& pi
282) {
283	int texels_per_block = bsd.texel_count;
284	bool small_block = texels_per_block < 32;
285
286	uint8_t *partition_of_texel = pi.partition_of_texel;
287
288	// Assign texels to partitions
289	int texel_idx = 0;
290	int counts[BLOCK_MAX_PARTITIONS] { 0 };
291	for (unsigned int z = 0; z < bsd.zdim; z++)
292	{
293		for (unsigned int y = 0; y <  bsd.ydim; y++)
294		{
295			for (unsigned int x = 0; x <  bsd.xdim; x++)
296			{
297				uint8_t part = select_partition(partition_index, x, y, z, partition_count, small_block);
298				pi.texels_of_partition[part][counts[part]++] = static_cast<uint8_t>(texel_idx++);
299				*partition_of_texel++ = part;
300			}
301		}
302	}
303
304	// Fill loop tail so we can overfetch later
305	for (unsigned int i = 0; i < partition_count; i++)
306	{
307		int ptex_count = counts[i];
308		int ptex_count_simd = round_up_to_simd_multiple_vla(ptex_count);
309		for (int j = ptex_count; j < ptex_count_simd; j++)
310		{
311			pi.texels_of_partition[i][j] = pi.texels_of_partition[i][ptex_count - 1];
312		}
313	}
314
315	// Populate the actual procedural partition count
316	if (counts[0] == 0)
317	{
318		pi.partition_count = 0;
319	}
320	else if (counts[1] == 0)
321	{
322		pi.partition_count = 1;
323	}
324	else if (counts[2] == 0)
325	{
326		pi.partition_count = 2;
327	}
328	else if (counts[3] == 0)
329	{
330		pi.partition_count = 3;
331	}
332	else
333	{
334		pi.partition_count = 4;
335	}
336
337	// Populate the partition index
338	pi.partition_index = static_cast<uint16_t>(partition_index);
339
340	// Populate the coverage bitmaps for 2/3/4 partitions
341	uint64_t* bitmaps { nullptr };
342	if (partition_count == 2)
343	{
344		bitmaps = bsd.coverage_bitmaps_2[partition_remap_index];
345	}
346	else if (partition_count == 3)
347	{
348		bitmaps = bsd.coverage_bitmaps_3[partition_remap_index];
349	}
350	else if (partition_count == 4)
351	{
352		bitmaps = bsd.coverage_bitmaps_4[partition_remap_index];
353	}
354
355	for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++)
356	{
357		pi.partition_texel_count[i] = static_cast<uint8_t>(counts[i]);
358	}
359
360	// Valid partitionings have texels in all of the requested partitions
361	bool valid = pi.partition_count == partition_count;
362
363	if (bitmaps)
364	{
365		// Populate the partition coverage bitmap
366		for (unsigned int i = 0; i < partition_count; i++)
367		{
368			bitmaps[i] = 0ULL;
369		}
370
371		unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS);
372		for (unsigned int i = 0; i < texels_to_process; i++)
373		{
374			unsigned int idx = bsd.kmeans_texels[i];
375			bitmaps[pi.partition_of_texel[idx]] |= 1ULL << i;
376		}
377	}
378
379	return valid;
380}
381
382static void build_partition_table_for_one_partition_count(
383	block_size_descriptor& bsd,
384	bool can_omit_partitionings,
385	unsigned int partition_count_cutoff,
386	unsigned int partition_count,
387	partition_info* ptab,
388	uint64_t* canonical_patterns
389) {
390	unsigned int next_index = 0;
391	bsd.partitioning_count_selected[partition_count - 1] = 0;
392	bsd.partitioning_count_all[partition_count - 1] = 0;
393
394	// Skip tables larger than config max partition count if we can omit modes
395	if (can_omit_partitionings && (partition_count > partition_count_cutoff))
396	{
397		return;
398	}
399
400	// Iterate through twice
401	//   - Pass 0: Keep selected partitionings
402	//   - Pass 1: Keep non-selected partitionings (skip if in omit mode)
403	unsigned int max_iter = can_omit_partitionings ? 1 : 2;
404
405	// Tracker for things we built in the first iteration
406	uint8_t build[BLOCK_MAX_PARTITIONINGS] { 0 };
407	for (unsigned int x = 0; x < max_iter; x++)
408	{
409		for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONINGS; i++)
410		{
411			// Don't include things we built in the first pass
412			if ((x == 1) && build[i])
413			{
414				continue;
415			}
416
417			bool keep_useful = generate_one_partition_info_entry(bsd, partition_count, i, next_index, ptab[next_index]);
418			if ((x == 0) && !keep_useful)
419			{
420				continue;
421			}
422
423			generate_canonical_partitioning(bsd.texel_count, ptab[next_index].partition_of_texel, canonical_patterns + next_index * BIT_PATTERN_WORDS);
424			bool keep_canonical = true;
425			for (unsigned int j = 0; j < next_index; j++)
426			{
427				bool match = compare_canonical_partitionings(canonical_patterns + next_index * BIT_PATTERN_WORDS, canonical_patterns +  j * BIT_PATTERN_WORDS);
428				if (match)
429				{
430					keep_canonical = false;
431					break;
432				}
433			}
434
435			if (keep_useful && keep_canonical)
436			{
437				if (x == 0)
438				{
439					bsd.partitioning_packed_index[partition_count - 2][i] = static_cast<uint16_t>(next_index);
440					bsd.partitioning_count_selected[partition_count - 1]++;
441					bsd.partitioning_count_all[partition_count - 1]++;
442					build[i] = 1;
443					next_index++;
444				}
445			}
446			else
447			{
448				if (x == 1)
449				{
450					bsd.partitioning_packed_index[partition_count - 2][i] = static_cast<uint16_t>(next_index);
451					bsd.partitioning_count_all[partition_count - 1]++;
452					next_index++;
453				}
454			}
455		}
456	}
457}
458
459/* See header for documentation. */
460void init_partition_tables(
461	block_size_descriptor& bsd,
462	bool can_omit_partitionings,
463	unsigned int partition_count_cutoff
464) {
465	partition_info* par_tab2 = bsd.partitionings;
466	partition_info* par_tab3 = par_tab2 + BLOCK_MAX_PARTITIONINGS;
467	partition_info* par_tab4 = par_tab3 + BLOCK_MAX_PARTITIONINGS;
468	partition_info* par_tab1 = par_tab4 + BLOCK_MAX_PARTITIONINGS;
469
470	generate_one_partition_info_entry(bsd, 1, 0, 0, *par_tab1);
471	bsd.partitioning_count_selected[0] = 1;
472	bsd.partitioning_count_all[0] = 1;
473
474	uint64_t* canonical_patterns = new uint64_t[BLOCK_MAX_PARTITIONINGS * BIT_PATTERN_WORDS];
475
476	build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 2, par_tab2, canonical_patterns);
477	build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 3, par_tab3, canonical_patterns);
478	build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 4, par_tab4, canonical_patterns);
479
480	delete[] canonical_patterns;
481}
482