1// SPDX-License-Identifier: BSD-3-Clause
2//
3// Copyright(c) 2021 Intel Corporation. All rights reserved.
4//
5// Author: Seppo Ingalsuo <seppo.ingalsuo@linux.intel.com>
6//         Jaska Uimonen <jaska.uimonen@linux.intel.com>
7
8#include "aconfig.h"
9#include <stdint.h>
10#include <errno.h>
11#include <stdio.h>
12#include <stdlib.h>
13#include <string.h>
14#include <alsa/input.h>
15#include <alsa/output.h>
16#include <alsa/conf.h>
17#include <alsa/error.h>
18#include "../intel-nhlt.h"
19#include "dmic-process.h"
20#include "dmic-internal.h"
21#include "pdm-decim-fir.h"
22#include "dmic-debug.h"
23
24/* Note 1: Higher spec filter must be before lower spec filter if there are multiple filters for a
25 * decimation factor. The first filter is skipped if the length is too much vs. overrun limit. If
26 * other order the better filter would be never selected.
27 *
28 * Note 2: The introduction order of FIR decimation factors is the selection preference order.
29 * The decimation factor 5 and 10 (2*5) cause a often less compatible output sample rate for CIC so
30 * they are not used if there other suitable nearby values.
31 *
32 * The naming scheme of coefficients set is:
33 * <type>_<decim factor>_<rel passband>_<rel stopband>_<ripple>_<attenuation>
34 */
35struct pdm_decim *fir_list[] = {
36	&pdm_decim_int32_02_4375_5100_010_095,
37	&pdm_decim_int32_02_4323_5100_010_095,
38	&pdm_decim_int32_03_4375_5100_010_095,
39	&pdm_decim_int32_04_4318_5100_010_095,
40	&pdm_decim_int32_06_4172_5100_010_095,
41	&pdm_decim_int32_05_4325_5100_010_095,
42	&pdm_decim_int32_08_4156_5301_010_090,
43	&pdm_decim_int32_12_4156_5345_010_090,
44	&pdm_decim_int32_10_4156_5345_010_090,
45	NULL, /* This marks the end of coefficients */
46};
47
48/* This is a divide function that returns ceil of the quotient. E.g. ceil_divide(9, 3) returns 3,
49 * ceil_divide(10, 3) returns 4.
50 */
51static int ceil_divide(int a, int b)
52{
53	int c;
54
55	c = a / b;
56
57	if (!((a ^ b) & (1U << ((sizeof(int) * 8) - 1))) && c * b != a)
58		c++;
59
60	return c;
61}
62
63/* This function searches from vec[] (of length vec_length) integer values of n. The indices to
64 * equal values is returned in idx[]. The function returns the number of found matches.
65 * The max_results should be set to 0 (or negative) or vec_length to get all matches. The
66 * max_result can be set to 1 to receive only the first match in ascending order. It avoids need for
67 * an array for idx.
68 */
69static int find_equal_int16(int16_t idx[], int16_t vec[], int n, int vec_length,
70			    int max_results)
71{
72	int nresults = 0;
73	int i;
74
75	for (i = 0; i < vec_length; i++) {
76		if (vec[i] == n) {
77			idx[nresults++] = i;
78			if (nresults == max_results)
79				break;
80		}
81	}
82
83	return nresults;
84}
85
86/* Return the largest absolute value found in the vector. Note that smallest negative value need to
87 * be saturated to preset as int32_t.
88 */
89static int32_t find_max_abs_int32(int32_t vec[], int vec_length)
90{
91	int i;
92	int64_t amax = (vec[0] > 0) ? vec[0] : -vec[0];
93
94	for (i = 1; i < vec_length; i++) {
95		amax = (vec[i] > amax) ? vec[i] : amax;
96		amax = (-vec[i] > amax) ? -vec[i] : amax;
97	}
98
99	return SATP_INT32(amax); /* Amax is always a positive value */
100}
101
102/* Count the left shift amount to normalize a 32 bit signed integer value without causing overflow.
103 * Input value 0 will result to 31.
104 */
105static int norm_int32(int32_t val)
106{
107	int c = 0;
108
109	/* count number of bits c that val can be right-shifted arithmetically
110	 * until there is -1 (if val is negative) or 0 (if val is positive)
111	 * norm of val will be 31-c
112	 */
113	for (; val != -1 && val != 0; c++)
114		val >>= 1;
115
116	return 31 - c;
117}
118
119/* This function returns a raw list of potential microphone clock and decimation modes for achieving
120 * requested sample rates. The search is constrained by decimation HW capabililies and setup
121 * parameters. The parameters such as microphone clock min/max and duty cycle requirements need be
122 * checked from used microphone component datasheet.
123 */
124static void find_modes(struct intel_dmic_params *dmic, struct dmic_calc_decim_modes *modes,
125		       uint32_t fs)
126{
127	int di = dmic->dmic_dai_index;
128	int clkdiv_min;
129	int clkdiv_max;
130	int clkdiv;
131	int c1;
132	int du_min;
133	int du_max;
134	int pdmclk;
135	int osr;
136	int mfir;
137	int mcic;
138	unsigned int ioclk_test;
139	int osr_min = DMIC_MIN_OSR;
140	int j;
141	int i = 0;
142
143	/* Defaults, empty result */
144	modes->num_of_modes = 0;
145
146	/* The FIFO is not requested if sample rate is set to zero. Just return in such case with
147	 * num_of_modes as zero.
148	 */
149	if (fs == 0) {
150		return;
151	}
152
153	/* Override DMIC_MIN_OSR for very high sample rates, use as minimum the nominal clock for
154	 * the high rates.
155	 */
156	if (fs >= DMIC_HIGH_RATE_MIN_FS)
157		osr_min = DMIC_HIGH_RATE_OSR_MIN;
158
159	/* Check for sane pdm clock, min 100 kHz, max ioclk/2 */
160	if (dmic->dmic_prm[di].pdmclk_max < DMIC_HW_PDM_CLK_MIN ||
161	    dmic->dmic_prm[di].pdmclk_max > dmic->dmic_prm[di].io_clk / 2) {
162		fprintf(stderr, "find_modes():  pdm clock max not in range\n");
163		return;
164	}
165	if (dmic->dmic_prm[di].pdmclk_min < DMIC_HW_PDM_CLK_MIN ||
166	    dmic->dmic_prm[di].pdmclk_min > dmic->dmic_prm[di].pdmclk_max) {
167		fprintf(stderr, "find_modes():  pdm clock min not in range\n");
168		return;
169	}
170
171	/* Check for sane duty cycle */
172	if (dmic->dmic_prm[di].duty_min > dmic->dmic_prm[di].duty_max) {
173		fprintf(stderr, "find_modes(): duty cycle min > max\n");
174		return;
175	}
176	if (dmic->dmic_prm[di].duty_min < DMIC_HW_DUTY_MIN ||
177	    dmic->dmic_prm[di].duty_min > DMIC_HW_DUTY_MAX) {
178		fprintf(stderr, "find_modes():  pdm clock min not in range\n");
179		return;
180	}
181	if (dmic->dmic_prm[di].duty_max < DMIC_HW_DUTY_MIN ||
182	    dmic->dmic_prm[di].duty_max > DMIC_HW_DUTY_MAX) {
183		fprintf(stderr, "find_modes(): pdm clock max not in range\n");
184		return;
185	}
186
187	/* Min and max clock dividers */
188	clkdiv_min = ceil_divide(dmic->dmic_prm[di].io_clk, dmic->dmic_prm[di].pdmclk_max);
189	clkdiv_min = MAX(clkdiv_min, DMIC_HW_CIC_DECIM_MIN);
190	clkdiv_max = dmic->dmic_prm[di].io_clk / dmic->dmic_prm[di].pdmclk_min;
191
192	/* Loop possible clock dividers and check based on resulting oversampling ratio that CIC and
193	 * FIR decimation ratios are feasible. The ratios need to be integers. Also the mic clock
194	 * duty cycle need to be within limits.
195	 */
196	for (clkdiv = clkdiv_min; clkdiv <= clkdiv_max; clkdiv++) {
197		/* Calculate duty cycle for this clock divider. Note that odd dividers cause non-50%
198		 * duty cycle.
199		 */
200		c1 = clkdiv >> 1;
201		du_min = 100 * c1 / clkdiv;
202		du_max = 100 - du_min;
203
204		/* Calculate PDM clock rate and oversampling ratio. */
205		pdmclk = dmic->dmic_prm[di].io_clk / clkdiv;
206		osr = pdmclk / fs;
207
208		/* Check that OSR constraints is met and clock duty cycle does not exceed microphone
209		 * specification. If exceed proceed to next clkdiv.
210		 */
211		if (osr < osr_min || du_min < dmic->dmic_prm[di].duty_min ||
212		    du_max > dmic->dmic_prm[di].duty_max)
213			continue;
214
215		/* Loop FIR decimation factors candidates. If the integer divided decimation factors
216		 * and clock dividers as multiplied with sample rate match the IO clock rate the
217		 * division was exact and such decimation mode is possible. Then check that CIC
218		 * decimation constraints are met. The passed decimation modes are added to array.
219		 */
220		for (j = 0; fir_list[j]; j++) {
221			mfir = fir_list[j]->decim_factor;
222
223			/* Skip if previous decimation factor was the same */
224			if (j > 1 && fir_list[j - 1]->decim_factor == mfir)
225				continue;
226
227			mcic = osr / mfir;
228			ioclk_test = fs * mfir * mcic * clkdiv;
229
230			if (ioclk_test == dmic->dmic_prm[di].io_clk &&
231			    mcic >= DMIC_HW_CIC_DECIM_MIN &&
232			    mcic <= DMIC_HW_CIC_DECIM_MAX &&
233			    i < DMIC_MAX_MODES) {
234				modes->clkdiv[i] = clkdiv;
235				modes->mcic[i] = mcic;
236				modes->mfir[i] = mfir;
237				i++;
238			}
239		}
240	}
241
242	modes->num_of_modes = i;
243}
244
245/* The previous raw modes list contains sane configuration possibilities. When there is request for
246 * both FIFOs A and B operation this function returns list of compatible settings.
247 */
248static void match_modes(struct dmic_calc_matched_modes *c, struct dmic_calc_decim_modes *a,
249			struct dmic_calc_decim_modes *b)
250{
251	int16_t idx[DMIC_MAX_MODES];
252	int idx_length;
253	int i;
254	int n;
255	int m;
256
257	/* Check if previous search got results. */
258	c->num_of_modes = 0;
259	if (a->num_of_modes == 0 && b->num_of_modes == 0) {
260		/* Nothing to do */
261		return;
262	}
263
264	/* Ensure that num_of_modes is sane. */
265	if (a->num_of_modes > DMIC_MAX_MODES ||
266	    b->num_of_modes > DMIC_MAX_MODES)
267		return;
268
269	/* Check for request only for FIFO A or B. In such case pass list for A or B as such. */
270	if (b->num_of_modes == 0) {
271		c->num_of_modes = a->num_of_modes;
272		for (i = 0; i < a->num_of_modes; i++) {
273			c->clkdiv[i] = a->clkdiv[i];
274			c->mcic[i] = a->mcic[i];
275			c->mfir_a[i] = a->mfir[i];
276			c->mfir_b[i] = 0; /* Mark FIR B as non-used */
277		}
278		return;
279	}
280
281	if (a->num_of_modes == 0) {
282		c->num_of_modes = b->num_of_modes;
283		for (i = 0; i < b->num_of_modes; i++) {
284			c->clkdiv[i] = b->clkdiv[i];
285			c->mcic[i] = b->mcic[i];
286			c->mfir_b[i] = b->mfir[i];
287			c->mfir_a[i] = 0; /* Mark FIR A as non-used */
288		}
289		return;
290	}
291
292	/* Merge a list of compatible modes */
293	i = 0;
294	for (n = 0; n < a->num_of_modes; n++) {
295		/* Find all indices of values a->clkdiv[n] in b->clkdiv[] */
296		idx_length = find_equal_int16(idx, b->clkdiv, a->clkdiv[n],
297					      b->num_of_modes, 0);
298		for (m = 0; m < idx_length; m++) {
299			if (b->mcic[idx[m]] == a->mcic[n]) {
300				c->clkdiv[i] = a->clkdiv[n];
301				c->mcic[i] = a->mcic[n];
302				c->mfir_a[i] = a->mfir[n];
303				c->mfir_b[i] = b->mfir[idx[m]];
304				i++;
305			}
306		}
307		c->num_of_modes = i;
308	}
309}
310
311/* Finds a suitable FIR decimation filter from the included set */
312static struct pdm_decim *get_fir(struct intel_dmic_params *dmic,
313				 struct dmic_calc_configuration *cfg, int mfir)
314{
315	int i = 0;
316	int fs;
317	int cic_fs;
318	int fir_max_length;
319	struct pdm_decim *fir = NULL;
320	int di = dmic->dmic_dai_index;
321
322	if (mfir <= 0)
323		return fir;
324
325	cic_fs = dmic->dmic_prm[di].io_clk / cfg->clkdiv / cfg->mcic;
326	fs = cic_fs / mfir;
327	/* FIR max. length depends on available cycles and coef RAM length. Exceeding this length
328	 * sets HW overrun status and overwrite of other register.
329	 */
330	fir_max_length = MIN(DMIC_HW_FIR_LENGTH_MAX,
331			     (int)dmic->dmic_prm[di].io_clk / fs / 2 -
332			     DMIC_FIR_PIPELINE_OVERHEAD);
333
334	/* Loop until NULL */
335	while (fir_list[i]) {
336		if (fir_list[i]->decim_factor == mfir) {
337			if (fir_list[i]->length <= fir_max_length) {
338				/* Store pointer, break from loop to avoid a possible other mode
339				 * with lower FIR length.
340				 */
341				fir = fir_list[i];
342				break;
343			}
344		}
345		i++;
346	}
347
348	return fir;
349}
350
351/* Calculate scale and shift to use for FIR coefficients. Scale is applied before write to HW coef
352 * RAM. Shift will be programmed to HW register.
353 */
354static int fir_coef_scale(int32_t *fir_scale, int *fir_shift, int add_shift,
355			  const int32_t coef[], int coef_length, int32_t gain)
356{
357	int32_t amax;
358	int32_t new_amax;
359	int32_t fir_gain;
360	int shift;
361
362	/* Multiply gain passed from CIC with output full scale. */
363	fir_gain = Q_MULTSR_32X32((int64_t)gain, DMIC_HW_SENS_Q28,
364				  DMIC_FIR_SCALE_Q, 28, DMIC_FIR_SCALE_Q);
365
366	/* Find the largest FIR coefficient value. */
367	amax = find_max_abs_int32((int32_t *)coef, coef_length);
368
369	/* Scale max. tap value with FIR gain. */
370	new_amax = Q_MULTSR_32X32((int64_t)amax, fir_gain, 31,
371				  DMIC_FIR_SCALE_Q, DMIC_FIR_SCALE_Q);
372	if (new_amax <= 0)
373		return -EINVAL;
374
375	/* Get left shifts count to normalize the fractional value as 32 bit. We need right shifts
376	 * count for scaling so need to invert. The difference of Q31 vs. used Q format is added to
377	 * get the correct normalization right shift value.
378	 */
379	shift = 31 - DMIC_FIR_SCALE_Q - norm_int32(new_amax);
380
381	/* Add to shift for coef raw Q31 format shift and store to configuration. Ensure range (fail
382	 * should not happen with OK coefficient set).
383	 */
384	*fir_shift = -shift + add_shift;
385	if (*fir_shift < DMIC_HW_FIR_SHIFT_MIN ||
386	    *fir_shift > DMIC_HW_FIR_SHIFT_MAX)
387		return -EINVAL;
388
389	/* Compensate shift into FIR coef scaler and store as Q4.20. */
390	if (shift < 0)
391		*fir_scale = fir_gain << -shift;
392	else
393		*fir_scale = fir_gain >> shift;
394
395	return 0;
396}
397
398/* This function selects with a simple criteria one mode to set up the decimator. For the settings
399 * chosen for FIFOs A and B output a lookup is done for FIR coefficients from the included
400 * coefficients tables. For some decimation factors there may be several length coefficient sets. It
401 * is due to possible restruction of decimation engine cycles per given sample rate. If the
402 * coefficients length is exceeded the lookup continues. Therefore the list of coefficient set must
403 * present the filters for a decimation factor in decreasing length order.
404 *
405 * Note: If there is no filter available an error is returned. The parameters should be reviewed for
406 * such case. If still a filter is missing it should be added into the included set. FIR decimation
407 * with a high factor usually needs compromizes into specifications and is not desirable.
408 */
409static int select_mode(struct intel_dmic_params *dmic, struct dmic_calc_configuration *cfg,
410		       struct dmic_calc_matched_modes *modes)
411{
412	int32_t g_cic;
413	int32_t fir_in_max;
414	int32_t cic_out_max;
415	int32_t gain_to_fir;
416	int16_t idx[DMIC_MAX_MODES];
417	int16_t *mfir;
418	int mcic;
419	int bits_cic;
420	int ret;
421	int n;
422	int found = 0;
423
424	/* If there are more than one possibilities select a mode with a preferred FIR decimation
425	 * factor. If there are several select mode with highest ioclk divider to minimize
426	 * microphone power consumption. The highest clock divisors are in the end of list so select
427	 * the last of list. The minimum OSR criteria used in previous ensures that quality in the
428	 * candidates should be sufficient.
429	 */
430	if (modes->num_of_modes == 0) {
431		fprintf(stderr, "select_mode(): no modes available\n");
432		return -EINVAL;
433	}
434
435	/* Valid modes presence is indicated with non-zero decimation factor in 1st element. If FIR
436	 * A is not used get decimation factors from FIR B instead.
437	 */
438	if (modes->mfir_a[0] > 0)
439		mfir = modes->mfir_a;
440	else
441		mfir = modes->mfir_b;
442
443	/* Search fir_list[] decimation factors from start towards end. The found last configuration
444	 * entry with searched decimation factor will be used.
445	 */
446	for (n = 0; fir_list[n]; n++) {
447		found = find_equal_int16(idx, mfir, fir_list[n]->decim_factor,
448					 modes->num_of_modes, 0);
449		if (found)
450			break;
451	}
452
453	if (!found) {
454		fprintf(stderr, "select_mode(): No filter for decimation found\n");
455		return -EINVAL;
456	}
457	n = idx[found - 1]; /* Option with highest clock divisor and lowest mic clock rate */
458
459	/* Get microphone clock and decimation parameters for used mode from the list. */
460	cfg->clkdiv = modes->clkdiv[n];
461	cfg->mfir_a = modes->mfir_a[n];
462	cfg->mfir_b = modes->mfir_b[n];
463	cfg->mcic = modes->mcic[n];
464	cfg->fir_a = NULL;
465	cfg->fir_b = NULL;
466
467	/* Find raw FIR coefficients to match the decimation factors of FIR A and B. */
468	if (cfg->mfir_a > 0) {
469		cfg->fir_a = get_fir(dmic, cfg, cfg->mfir_a);
470		if (!cfg->fir_a) {
471			fprintf(stderr, "select_mode(): can't find FIR coefficients, mfir_a = %d\n",
472				cfg->mfir_a);
473			return -EINVAL;
474		}
475	}
476
477	if (cfg->mfir_b > 0) {
478		cfg->fir_b = get_fir(dmic, cfg, cfg->mfir_b);
479		if (!cfg->fir_b) {
480			fprintf(stderr, "select_mode(): can't find FIR coefficients, mfir_b = %d\n",
481				cfg->mfir_b);
482			return -EINVAL;
483		}
484	}
485
486	/* Calculate CIC shift from the decimation factor specific gain. The gain of HW decimator
487	 * equals decimation factor to power of 5.
488	 */
489	mcic = cfg->mcic;
490	g_cic = mcic * mcic * mcic * mcic * mcic;
491	if (g_cic < 0) {
492		/* Erroneous decimation factor and CIC gain */
493		fprintf(stderr, "select_mode(): erroneous decimation factor and CIC gain\n");
494		return -EINVAL;
495	}
496
497	bits_cic = 32 - norm_int32(g_cic);
498	cfg->cic_shift = bits_cic - DMIC_HW_BITS_FIR_INPUT;
499
500	/* Calculate remaining gain to FIR in Q format used for gain values. */
501	fir_in_max = INT_MAX(DMIC_HW_BITS_FIR_INPUT);
502	if (cfg->cic_shift >= 0)
503		cic_out_max = g_cic >> cfg->cic_shift;
504	else
505		cic_out_max = g_cic << -cfg->cic_shift;
506
507	gain_to_fir = (int32_t)((((int64_t)fir_in_max) << DMIC_FIR_SCALE_Q) /
508		cic_out_max);
509
510	/* Calculate FIR scale and shift */
511	if (cfg->mfir_a > 0) {
512		cfg->fir_a_length = cfg->fir_a->length;
513		ret = fir_coef_scale(&cfg->fir_a_scale, &cfg->fir_a_shift,
514				     cfg->fir_a->shift, cfg->fir_a->coef,
515				     cfg->fir_a->length, gain_to_fir);
516		if (ret < 0) {
517			/* Invalid coefficient set found, should not happen. */
518			fprintf(stderr, "select_mode(): invalid coefficient set found\n");
519			return -EINVAL;
520		}
521	} else {
522		cfg->fir_a_scale = 0;
523		cfg->fir_a_shift = 0;
524		cfg->fir_a_length = 0;
525	}
526
527	if (cfg->mfir_b > 0) {
528		cfg->fir_b_length = cfg->fir_b->length;
529		ret = fir_coef_scale(&cfg->fir_b_scale, &cfg->fir_b_shift,
530				     cfg->fir_b->shift, cfg->fir_b->coef,
531				     cfg->fir_b->length, gain_to_fir);
532		if (ret < 0) {
533			/* Invalid coefficient set found, should not happen. */
534			fprintf(stderr, "select_mode(): invalid coefficient set found\n");
535			return -EINVAL;
536		}
537	} else {
538		cfg->fir_b_scale = 0;
539		cfg->fir_b_shift = 0;
540		cfg->fir_b_length = 0;
541	}
542
543	return 0;
544}
545
546/* The FIFO input packer mode (IPM) settings are somewhat different in HW versions. This helper
547 * function returns a suitable IPM bit field value to use.
548 */
549static void ipm_helper1(struct intel_dmic_params *dmic, int *ipm)
550{
551	int di = dmic->dmic_dai_index;
552	int pdm[DMIC_HW_CONTROLLERS];
553	int i;
554
555	/* Loop number of PDM controllers in the configuration. If mic A or B is enabled then a pdm
556	 * controller is marked as active for this DAI.
557	 */
558	for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
559		if (dmic->dmic_prm[di].pdm[i].enable_mic_a ||
560		    dmic->dmic_prm[di].pdm[i].enable_mic_b)
561			pdm[i] = 1;
562		else
563			pdm[i] = 0;
564	}
565
566	/* Set IPM to match active pdm controllers. */
567	*ipm = 0;
568
569	if (pdm[0] == 0 && pdm[1] > 0)
570		*ipm = 1;
571
572	if (pdm[0] > 0 && pdm[1] > 0)
573		*ipm = 2;
574}
575
576static void ipm_helper2(struct intel_dmic_params *dmic, int source[], int *ipm)
577{
578	int di = dmic->dmic_dai_index;
579	int pdm[DMIC_HW_CONTROLLERS];
580	int i;
581	int n = 0;
582
583	for (i = 0; i < OUTCONTROLX_IPM_NUMSOURCES; i++)
584		source[i] = 0;
585
586	/* Loop number of PDM controllers in the configuration. If mic A or B is enabled then a pdm
587	 * controller is marked as active. The function returns in array source[] the indice of
588	 * enabled pdm controllers to be used for IPM configuration.
589	 */
590	for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
591		if (dmic->dmic_prm[di].pdm[i].enable_mic_a ||
592		    dmic->dmic_prm[di].pdm[i].enable_mic_b) {
593			pdm[i] = 1;
594			source[n] = i;
595			n++;
596		} else {
597			pdm[i] = 0;
598		}
599	}
600
601	/* IPM bit field is set to count of active pdm controllers. */
602	*ipm = pdm[0];
603	for (i = 1; i < DMIC_HW_CONTROLLERS; i++)
604		*ipm += pdm[i];
605}
606
607/* Loop number of PDM controllers in the configuration. The function checks if the controller should
608 * operate as stereo or mono left (A) or mono right (B) mode. Mono right mode is setup as channel
609 * swapped mono left.
610 */
611static int stereo_helper(struct intel_dmic_params *dmic, int stereo[], int swap[])
612{
613	int cnt;
614	int i;
615	int swap_check;
616	int ret = 0;
617
618	for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
619		cnt = 0;
620		if (dmic->dmic_prm[0].pdm[i].enable_mic_a ||
621		    dmic->dmic_prm[1].pdm[i].enable_mic_a)
622			cnt++;
623
624		if (dmic->dmic_prm[0].pdm[i].enable_mic_b ||
625		    dmic->dmic_prm[1].pdm[i].enable_mic_b)
626			cnt++;
627
628		/* Set stereo mode if both mic A anc B are enabled. */
629		cnt >>= 1;
630		stereo[i] = cnt;
631
632		/* Swap channels if only mic B is used for mono processing. */
633		swap[i] = (dmic->dmic_prm[0].pdm[i].enable_mic_b ||
634			   dmic->dmic_prm[1].pdm[i].enable_mic_b) && !cnt;
635
636		/* Check that swap does not conflict with other DAI request */
637		swap_check = (dmic->dmic_prm[1].pdm[i].enable_mic_a ||
638			      dmic->dmic_prm[0].pdm[i].enable_mic_a);
639
640		if (swap_check && swap[i]) {
641			ret = -EINVAL;
642			break;
643		}
644	}
645	return ret;
646}
647
648static int configure_registers(struct intel_dmic_params *dmic, struct dmic_calc_configuration *cfg)
649{
650	int stereo[DMIC_HW_CONTROLLERS];
651	int swap[DMIC_HW_CONTROLLERS];
652	uint32_t val = 0;
653	int32_t ci;
654	uint32_t cu;
655	int ipm;
656	int of0;
657	int of1;
658	int fir_decim;
659	int fir_length;
660	int length;
661	int edge;
662	int soft_reset;
663	int cic_mute;
664	int fir_mute;
665	unsigned int i;
666	int j;
667	int ret;
668	int mic;
669	int chmap_bits;
670	int di = dmic->dmic_dai_index;
671	int dccomp = 1;
672	int array_a = 0;
673	int array_b = 0;
674	int bfth = 3; /* Should be 3 for 8 entries, 1 is 2 entries */
675	int th = 3; /* Used with TIE=1 */
676	int source[OUTCONTROLX_IPM_NUMSOURCES];
677
678	/*
679	 * ts_group value describes which audio channels in the hw fifo are enabled. A 32 bit
680	 * value is divided into 8 x 4 bit nibbles corresponding to 8 audio channels. Hex value 0xF
681	 * means "not in use", any other value means the channel is enabled. For example 0xFFFFFFFF
682	 * means no channels are enabled, 0xFFFFFF10 means channels 1 and 2 are enabled.
683	 *
684	 * ts_group array index corresponds to dmic hw fifos, that gather audio samples from pdm
685	 * controllers. 1 pdm controller can host 2 mono dmics and usually pdm controllers are
686	 * connected to 2 hw fifos -> we can for example run the dmics simultaneously with different
687	 * sampling rates.
688	 *
689	 * Currently there is no evidence we would ever have more than 2 hw fifos, so ts_group[2]
690	 * and ts_group[3] are not used for anything. Also the nibbles could be used for channel
691	 * mapping the pdm channels arbitrarely into hw fifos, however currently it is used as
692	 * binary not_enabled/enabled setting.
693	 *
694	 * if we have 2 dmics (stereo) it means we are using 1 pdm controller with possibly 2 hw
695	 * fifos:
696	 *        mic1      fifo0(2ch)
697	 *            \    /
698	 *             pdm0
699	 *            /    \
700	 *        mic2      fifo1(2ch)
701	 *
702	 * So in this case it makes only sense to control ts_group indexes 0 and 1 and their last 2
703	 * nibbles (as we have only 2 channels).
704	 *
705	 * if we have 4 dmics, it means we are using 2 pdm controller with possibly 2 x 4 channel hw
706	 * fifos:
707	 *
708	 *        mic1      fifo0(4ch)
709	 *            \    /    /
710	 *             pdm0    /
711	 *            /    \  /
712	 *        mic2      \/
713	 *	  mic3      /\
714	 *            \    /  \
715	 *             pdm1    \
716	 *            /    \    \
717	 *        mic4      fifo1(4ch)
718	 *
719	 * So it makes sense to control ts_group indexes 0 and 1 and their last 4 nibbles.
720	 *
721	 * channel_pdm_mask defines which existing pdm controllers will be taken into use. So if
722	 * either of mic a or b is enabled -> that particular pdm controller is in use. For example
723	 * pdm0 in use/not_in_use is defined by setting bit 0 in channel_pdm_mask to 1/0.
724	 *
725	 * channel_ctrl_mask defines what mic channels are available in hw for a pdm controller. in
726	 * theory pdm controller could have only 1 channel enabled, in practice there's always 2
727	 * channels which are both enabled -> set bits 0 and 1.
728	 */
729
730	for (i = 0, mic = 0, chmap_bits = 4; i < DMIC_HW_CONTROLLERS; i++) {
731		/* enable fifo channels (ts_group) based on mic_enable in dai definition */
732		if (dmic->dmic_prm[di].pdm[i].enable_mic_a) {
733			dmic->dmic_blob.ts_group[di] &= ~(0xF << (chmap_bits * mic));
734			dmic->dmic_blob.ts_group[di] |= 0x0 << (chmap_bits * mic);
735		}
736		mic++;
737		if (dmic->dmic_prm[di].pdm[i].enable_mic_b) {
738			dmic->dmic_blob.ts_group[di] &= ~(0xF << (chmap_bits * mic));
739			dmic->dmic_blob.ts_group[di] |= 0x1 << (chmap_bits * mic);
740		}
741		mic++;
742	}
743
744	/* set channel_pdm_mask to describe what pdm controllers are in use */
745	for (i = 0; i < dmic->dmic_prm[di].num_pdm_active; i++)
746		dmic->dmic_blob.channel_pdm_mask |= 1 << i;
747
748	/* set always both mic channels enabled */
749	dmic->dmic_blob.channel_ctrl_mask = 0x3;
750
751	/* Normal start sequence */
752	soft_reset = 0;
753	cic_mute = 0;
754	fir_mute = 0;
755
756	/* OUTCONTROL0 and OUTCONTROL1 */
757	of0 = (dmic->dmic_prm[0].fifo_bits == 32) ? 2 : 0;
758	of1 = (dmic->dmic_prm[1].fifo_bits == 32) ? 2 : 0;
759
760	if (dmic->dmic_prm[di].driver_version == 1) {
761		if (di == 0) {
762			ipm_helper1(dmic, &ipm);
763			val = OUTCONTROL0_TIE(0) |
764				OUTCONTROL0_SIP(0) |
765				OUTCONTROL0_FINIT(0) |
766				OUTCONTROL0_FCI(0) |
767				OUTCONTROL0_BFTH(bfth) |
768				OUTCONTROL0_OF(of0) |
769				OUTCONTROL0_IPM_VER1(ipm) |
770				OUTCONTROL0_TH(th);
771		} else {
772			ipm_helper1(dmic, &ipm);
773			val = OUTCONTROL1_TIE(0) |
774				OUTCONTROL1_SIP(0) |
775				OUTCONTROL1_FINIT(0) |
776				OUTCONTROL1_FCI(0) |
777				OUTCONTROL1_BFTH(bfth) |
778				OUTCONTROL1_OF(of1) |
779				OUTCONTROL1_IPM_VER1(ipm) |
780				OUTCONTROL1_TH(th);
781		}
782	}
783
784	if (dmic->dmic_prm[di].driver_version == 2 || dmic->dmic_prm[di].driver_version == 3) {
785		if (di == 0) {
786			ipm_helper2(dmic, source, &ipm);
787			val = OUTCONTROL0_TIE(0) |
788				OUTCONTROL0_SIP(0) |
789				OUTCONTROL0_FINIT(0) |
790				OUTCONTROL0_FCI(0) |
791				OUTCONTROL0_BFTH(bfth) |
792				OUTCONTROL0_OF(of0) |
793				OUTCONTROL0_IPM_VER2(ipm) |
794				OUTCONTROL0_IPM_SOURCE_1(source[0]) |
795				OUTCONTROL0_IPM_SOURCE_2(source[1]) |
796				OUTCONTROL0_IPM_SOURCE_3(source[2]) |
797				OUTCONTROL0_IPM_SOURCE_4(source[3]) |
798				OUTCONTROL0_IPM_SOURCE_MODE(1) |
799				OUTCONTROL0_TH(th);
800		} else {
801			ipm_helper2(dmic, source, &ipm);
802			val = OUTCONTROL1_TIE(0) |
803				OUTCONTROL1_SIP(0) |
804				OUTCONTROL1_FINIT(0) |
805				OUTCONTROL1_FCI(0) |
806				OUTCONTROL1_BFTH(bfth) |
807				OUTCONTROL1_OF(of1) |
808				OUTCONTROL1_IPM_VER2(ipm) |
809				OUTCONTROL1_IPM_SOURCE_1(source[0]) |
810				OUTCONTROL1_IPM_SOURCE_2(source[1]) |
811				OUTCONTROL1_IPM_SOURCE_3(source[2]) |
812				OUTCONTROL1_IPM_SOURCE_4(source[3]) |
813				OUTCONTROL1_IPM_SOURCE_MODE(1) |
814				OUTCONTROL1_TH(th);
815		}
816	}
817
818	dmic->dmic_blob.chan_ctrl_cfg[di] = val;
819
820	ret = stereo_helper(dmic, stereo, swap);
821	if (ret < 0) {
822		fprintf(stderr, "configure_registers(): enable conflict\n");
823		return ret;
824	}
825
826	for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
827		/* CIC */
828		val = CIC_CONTROL_SOFT_RESET(soft_reset) |
829			CIC_CONTROL_CIC_START_B(1) |
830			CIC_CONTROL_CIC_START_A(1) |
831			CIC_CONTROL_MIC_B_POLARITY(dmic->dmic_prm[di].pdm[i].polarity_mic_b) |
832			CIC_CONTROL_MIC_A_POLARITY(dmic->dmic_prm[di].pdm[i].polarity_mic_a) |
833			CIC_CONTROL_MIC_MUTE(cic_mute);
834
835		if (dmic->dmic_prm[di].driver_version == 1)
836			val |= CIC_CONTROL_STEREO_MODE(stereo[i]);
837
838		dmic->dmic_blob_pdm[i].cic_control = val;
839
840		val = CIC_CONFIG_CIC_SHIFT(cfg->cic_shift + 8) |
841			CIC_CONFIG_COMB_COUNT(cfg->mcic - 1);
842		dmic->dmic_blob_pdm[i].cic_config = val;
843
844		/* Mono right channel mic usage requires swap of PDM channels
845		 * since the mono decimation is done with only left channel
846		 * processing active.
847		 */
848		edge = dmic->dmic_prm[di].pdm[i].clk_edge;
849		if (swap[i])
850			edge = !edge;
851
852		val = MIC_CONTROL_PDM_CLKDIV(cfg->clkdiv - 2) |
853			MIC_CONTROL_PDM_SKEW(dmic->dmic_prm[di].pdm[i].skew) |
854			MIC_CONTROL_CLK_EDGE(edge) |
855			MIC_CONTROL_PDM_EN_B(1) |
856			MIC_CONTROL_PDM_EN_A(1);
857		dmic->dmic_blob_pdm[i].mic_control = val;
858
859		/*
860		 * Here we have to check the both FIRs if they are
861		 * configured as the later configured DAI may have changed
862		 * the configuration of the DAI configured earlier.
863		 */
864		if (cfg->mfir_a) {
865			/* FIR A */
866			fir_decim = MAX(cfg->mfir_a - 1, 0);
867			fir_length = MAX(cfg->fir_a_length - 1, 0);
868			val = FIR_CONTROL_A_START(1) |
869				FIR_CONTROL_A_ARRAY_START_EN(array_a) |
870				FIR_CONTROL_A_DCCOMP(dccomp) |
871				FIR_CONTROL_A_MUTE(fir_mute) |
872				FIR_CONTROL_A_STEREO(stereo[i]);
873			dmic->dmic_blob_fir[i][0].fir_control = val;
874
875			val = FIR_CONFIG_A_FIR_DECIMATION(fir_decim) |
876				FIR_CONFIG_A_FIR_SHIFT(cfg->fir_a_shift) |
877				FIR_CONFIG_A_FIR_LENGTH(fir_length);
878			dmic->dmic_blob_fir[i][0].fir_config = val;
879
880			val = DC_OFFSET_LEFT_A_DC_OFFS(DCCOMP_TC0);
881			dmic->dmic_blob_fir[i][0].dc_offset_left = val;
882
883			val = DC_OFFSET_RIGHT_A_DC_OFFS(DCCOMP_TC0);
884			dmic->dmic_blob_fir[i][0].dc_offset_right = val;
885
886			val = OUT_GAIN_LEFT_A_GAIN(0);
887			dmic->dmic_blob_fir[i][0].out_gain_left = val;
888
889			val = OUT_GAIN_RIGHT_A_GAIN(0);
890			dmic->dmic_blob_fir[i][0].out_gain_right = val;
891
892			/* Write coef RAM A with scaled coefficient in reverse order */
893			length = cfg->fir_a_length;
894			for (j = 0; j < length; j++) {
895				ci = (int32_t)Q_MULTSR_32X32((int64_t)cfg->fir_a->coef[j],
896							     cfg->fir_a_scale, 31,
897							     DMIC_FIR_SCALE_Q, DMIC_HW_FIR_COEF_Q);
898				cu = FIR_COEF_A(ci);
899				/* blob_pdm[i].fir_coeffs[0][j] = cu; */
900				dmic->dmic_fir_array.fir_coeffs[i][0][j] = cu;
901			}
902			dmic->dmic_fir_array.fir_len[0] = length;
903		} else {
904			dmic->dmic_fir_array.fir_len[0] = 0;
905		}
906
907		if (cfg->mfir_b) {
908			/* FIR B */
909			fir_decim = MAX(cfg->mfir_b - 1, 0);
910			fir_length = MAX(cfg->fir_b_length - 1, 0);
911			val = FIR_CONTROL_B_START(1) |
912				FIR_CONTROL_B_ARRAY_START_EN(array_b) |
913				FIR_CONTROL_B_DCCOMP(dccomp) |
914				FIR_CONTROL_B_MUTE(fir_mute) |
915				FIR_CONTROL_B_STEREO(stereo[i]);
916			dmic->dmic_blob_fir[i][1].fir_control = val;
917
918			val = FIR_CONFIG_B_FIR_DECIMATION(fir_decim) |
919				FIR_CONFIG_B_FIR_SHIFT(cfg->fir_b_shift) |
920				FIR_CONFIG_B_FIR_LENGTH(fir_length);
921			dmic->dmic_blob_fir[i][1].fir_config = val;
922			val = DC_OFFSET_LEFT_B_DC_OFFS(DCCOMP_TC0);
923			dmic->dmic_blob_fir[i][1].dc_offset_left = val;
924
925			val = DC_OFFSET_RIGHT_B_DC_OFFS(DCCOMP_TC0);
926			dmic->dmic_blob_fir[i][1].dc_offset_right = val;
927
928			val = OUT_GAIN_LEFT_B_GAIN(0);
929			dmic->dmic_blob_fir[i][1].out_gain_left = val;
930
931			val = OUT_GAIN_RIGHT_B_GAIN(0);
932			dmic->dmic_blob_fir[i][1].out_gain_right = val;
933
934			/* Write coef RAM B with scaled coefficient in reverse order */
935			length = cfg->fir_b_length;
936			for (j = 0; j < length; j++) {
937				ci = (int32_t)Q_MULTSR_32X32((int64_t)cfg->fir_b->coef[j],
938							     cfg->fir_b_scale, 31,
939							     DMIC_FIR_SCALE_Q, DMIC_HW_FIR_COEF_Q);
940				cu = FIR_COEF_B(ci);
941				/* blob_pdm[i].fir_coeffs[1][j] = cu; */
942				dmic->dmic_fir_array.fir_coeffs[i][1][j] = cu;
943			}
944			dmic->dmic_fir_array.fir_len[1] = length;
945		} else {
946			dmic->dmic_fir_array.fir_len[1] = 0;
947		}
948	}
949
950	return 0;
951}
952
953/* The decimation for PDM (pulse density modulation) stream is done in a programmable HW filter
954 * engine. The input to configuration algorithm is needed sample rate, channels/enabled microphones,
955 * microphone clock range, microphone clock duty cycle range, and system clock rate.
956 *
957 * The PDM bus clock divider, CIC and FIR decimation ratios are searched and configuration for
958 * optimal power consumption, filtering requirements, and HW constraints is chosen. The FIR filter
959 * for the chosen decimation is looked up from table and scaled to match the other decimation path
960 * sensitivity.
961 */
962int dmic_calculate(struct intel_nhlt_params *nhlt)
963{
964	struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
965	struct dmic_calc_matched_modes modes_ab;
966	struct dmic_calc_decim_modes modes_a;
967	struct dmic_calc_decim_modes modes_b;
968	struct dmic_calc_configuration cfg;
969	int ret = 0;
970	int di;
971
972	if (!dmic)
973		return -EINVAL;
974
975	di = dmic->dmic_dai_index;
976
977	if (di >= DMIC_HW_FIFOS) {
978		fprintf(stderr, "dmic_set_config(): dai->index exceeds number of FIFOs\n");
979		ret = -EINVAL;
980		goto out;
981	}
982
983	if (dmic->dmic_prm[di].num_pdm_active > DMIC_HW_CONTROLLERS) {
984		fprintf(stderr, "dmic_set_config():controller count exceeds platform capability\n");
985		ret = -EINVAL;
986		goto out;
987	}
988
989	/* fifo bits 0 means fifo disabled */
990	switch (dmic->dmic_prm[di].fifo_bits) {
991	case 0:
992	case 16:
993	case 32:
994		break;
995	default:
996		fprintf(stderr, "dmic_set_config(): fifo_bits EINVAL\n");
997		ret = -EINVAL;
998		goto out;
999	}
1000
1001	/* Match and select optimal decimators configuration for FIFOs A and B paths. This setup
1002	 * phase is still abstract. Successful completion points struct cfg to FIR coefficients and
1003	 * contains the scale value to use for FIR coefficient RAM write as well as the CIC and FIR
1004	 * shift values.
1005	 */
1006	find_modes(dmic, &modes_a, dmic->dmic_prm[0].fifo_fs);
1007	if (modes_a.num_of_modes == 0 && dmic->dmic_prm[0].fifo_fs > 0) {
1008		fprintf(stderr, "dmic_set_config(): No modes found for FIFO A\n");
1009		ret = -EINVAL;
1010		goto out;
1011	}
1012
1013	find_modes(dmic, &modes_b, dmic->dmic_prm[1].fifo_fs);
1014	if (modes_b.num_of_modes == 0 && dmic->dmic_prm[1].fifo_fs > 0) {
1015		fprintf(stderr, "dmic_set_config(): No modes found for FIFO B\n");
1016		ret = -EINVAL;
1017		goto out;
1018	}
1019
1020	match_modes(&modes_ab, &modes_a, &modes_b);
1021	ret = select_mode(dmic, &cfg, &modes_ab);
1022	if (ret < 0) {
1023		fprintf(stderr, "dmic_set_config(): select_mode() failed\n");
1024		ret = -EINVAL;
1025		goto out;
1026	}
1027
1028	/* Struct reg contains a mirror of actual HW registers. Determine register bits
1029	 * configuration from decimator configuration and the requested parameters.
1030	 */
1031	ret = configure_registers(dmic, &cfg);
1032	if (ret < 0) {
1033		fprintf(stderr, "dmic_set_config(): cannot configure registers\n");
1034		ret = -EINVAL;
1035		goto out;
1036	}
1037
1038	dmic_print_internal(dmic);
1039
1040	dmic->dmic_count++;
1041
1042out:
1043	return ret;
1044}
1045
1046int dmic_get_params(struct intel_nhlt_params *nhlt, int index, uint32_t *sample_rate,
1047		    uint16_t *channel_count, uint32_t *bits_per_sample, uint8_t *array_type,
1048		    uint8_t *num_mics, uint8_t *extension, uint32_t *snr, uint32_t *sensitivity)
1049{
1050	struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1051	uint32_t channels = 0;
1052
1053	if (!dmic)
1054		return -EINVAL;
1055
1056	/* check all pdm's for enabled mics */
1057	*channel_count = 0;
1058	if (dmic->dmic_prm[index].pdm[0].enable_mic_a)
1059		channels++;
1060
1061	if (dmic->dmic_prm[index].pdm[0].enable_mic_b)
1062		channels++;
1063
1064	if (dmic->dmic_prm[index].pdm[1].enable_mic_a)
1065		channels++;
1066
1067	if (dmic->dmic_prm[index].pdm[1].enable_mic_b)
1068		channels++;
1069
1070	*sample_rate = dmic->dmic_prm[index].fifo_fs;
1071	*channel_count = channels;
1072	*bits_per_sample = dmic->dmic_prm[index].fifo_bits;
1073	*num_mics = dmic->dmic_mic_config.num_mics;
1074	*extension = dmic->dmic_mic_config.extension;
1075	*array_type = dmic->dmic_mic_config.array_type;
1076	*snr = dmic->dmic_mic_config.snr;
1077	*sensitivity = dmic->dmic_mic_config.sensitivity;
1078
1079	return 0;
1080}
1081
1082int dmic_get_mic_params(struct intel_nhlt_params *nhlt, int index,
1083			uint8_t *type, uint8_t *panel, uint32_t *speaker_position_distance,
1084			uint32_t *horizontal_offset, uint32_t *vertical_offset,
1085			uint8_t *frequency_low_band, uint8_t *frequency_high_band,
1086			uint16_t *direction_angle, uint16_t *elevation_angle,
1087			uint16_t *vertical_angle_begin, uint16_t *vertical_angle_end,
1088			uint16_t *horizontal_angle_begin, uint16_t *horizontal_angle_end)
1089{
1090	struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1091
1092	if (!dmic)
1093		return -EINVAL;
1094
1095	*type = dmic->dmic_mic_config.vendor[index].type;
1096	*panel = dmic->dmic_mic_config.vendor[index].panel;
1097	*speaker_position_distance = dmic->dmic_mic_config.vendor[index].speaker_position_distance;
1098	*horizontal_offset = dmic->dmic_mic_config.vendor[index].horizontal_offset;
1099	*vertical_offset = dmic->dmic_mic_config.vendor[index].vertical_offset;
1100	*frequency_low_band = dmic->dmic_mic_config.vendor[index].frequency_low_band;
1101	*frequency_high_band = dmic->dmic_mic_config.vendor[index].frequency_high_band;
1102	*direction_angle = dmic->dmic_mic_config.vendor[index].direction_angle;
1103	*elevation_angle = dmic->dmic_mic_config.vendor[index].elevation_angle;
1104	*vertical_angle_begin = dmic->dmic_mic_config.vendor[index].vertical_angle_begin;
1105	*vertical_angle_end = dmic->dmic_mic_config.vendor[index].vertical_angle_end;
1106	*horizontal_angle_begin = dmic->dmic_mic_config.vendor[index].horizontal_angle_begin;
1107	*horizontal_angle_end = dmic->dmic_mic_config.vendor[index].horizontal_angle_end;
1108
1109	return 0;
1110}
1111
1112int dmic_get_vendor_blob_size(struct intel_nhlt_params *nhlt, size_t *size)
1113{
1114	struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1115	int i, fir_index_0, fir_index_1;
1116
1117	if (!dmic || !dmic->dmic_count)
1118		return -EINVAL;
1119
1120	*size = sizeof(struct dmic_intel_config_data);
1121
1122	/* if either of the fir is 0 length, copy the existing fir twice */
1123	fir_index_0 = 0;
1124	fir_index_1 = 1;
1125	if (dmic->dmic_fir_array.fir_len[0] == 0) {
1126		fir_index_0 = 1;
1127		fir_index_1 = 1;
1128	}
1129	if (dmic->dmic_fir_array.fir_len[1] == 0) {
1130		fir_index_0 = 0;
1131		fir_index_1 = 0;
1132	}
1133
1134	/* variable amount of pdm's */
1135	for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
1136		/* only copy the pdm data if it is enabled */
1137		if ((dmic->dmic_blob.channel_pdm_mask & BIT(i)) == 0)
1138			continue;
1139
1140		*size += sizeof(struct dmic_intel_pdm_ctrl_cfg);
1141		*size += sizeof(struct dmic_intel_fir_config) * DMIC_HW_FIFOS;
1142
1143		*size += dmic->dmic_fir_array.fir_len[fir_index_0] * sizeof(uint32_t);
1144		*size += dmic->dmic_fir_array.fir_len[fir_index_1] * sizeof(uint32_t);
1145	}
1146
1147	return 0;
1148}
1149
1150int dmic_get_vendor_blob_count(struct intel_nhlt_params *nhlt)
1151{
1152	struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1153
1154	if (!dmic || !dmic->dmic_count)
1155		return 0;
1156
1157	return dmic->dmic_count;
1158}
1159
1160int dmic_get_vendor_blob(struct intel_nhlt_params *nhlt, uint8_t *vendor_blob)
1161{
1162	struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1163	int i, fir_index_0, fir_index_1;
1164	uint8_t *orig_blob = vendor_blob;
1165	size_t blob_size;
1166
1167	if (!dmic || !dmic->dmic_count)
1168		return -EINVAL;
1169
1170	/* top level struct */
1171	memcpy(vendor_blob, &dmic->dmic_blob, sizeof(struct dmic_intel_config_data));
1172	vendor_blob += sizeof(struct dmic_intel_config_data);
1173
1174	/* if either of the fir is 0 length, copy the existing fir twice */
1175	fir_index_0 = 0;
1176	fir_index_1 = 1;
1177	if (dmic->dmic_fir_array.fir_len[0] == 0) {
1178		fir_index_0 = 1;
1179		fir_index_1 = 1;
1180	}
1181	if (dmic->dmic_fir_array.fir_len[1] == 0) {
1182		fir_index_0 = 0;
1183		fir_index_1 = 0;
1184	}
1185
1186	/* variable amount of pdm's */
1187	for (i = 0; i < DMIC_HW_CONTROLLERS; i++) {
1188		/* only copy the pdm data if it is enabled */
1189		if ((dmic->dmic_blob.channel_pdm_mask & BIT(i)) == 0)
1190			continue;
1191
1192		/* top level struct first pdm data */
1193		memcpy(vendor_blob, (uint8_t *)&dmic->dmic_blob_pdm[i],
1194		       sizeof(struct dmic_intel_pdm_ctrl_cfg));
1195		vendor_blob += sizeof(struct dmic_intel_pdm_ctrl_cfg);
1196
1197		/* top level struct first pdm data first fir */
1198		memcpy(vendor_blob, (uint8_t *)&dmic->dmic_blob_fir[i][fir_index_0],
1199		       sizeof(struct dmic_intel_fir_config));
1200		vendor_blob += sizeof(struct dmic_intel_fir_config);
1201
1202		/* top level struct first pdm data second fir */
1203		memcpy(vendor_blob, (uint8_t *)&dmic->dmic_blob_fir[i][fir_index_1],
1204		       sizeof(struct dmic_intel_fir_config));
1205		vendor_blob += sizeof(struct dmic_intel_fir_config);
1206
1207		/* fir coeffs a */
1208		memcpy(vendor_blob, (uint8_t *)&dmic->dmic_fir_array.fir_coeffs[i][fir_index_0][0],
1209		       dmic->dmic_fir_array.fir_len[fir_index_0] * sizeof(uint32_t));
1210		vendor_blob += dmic->dmic_fir_array.fir_len[fir_index_0] * sizeof(uint32_t);
1211
1212		/* fir coeffs b */
1213		memcpy(vendor_blob, (uint8_t *)&dmic->dmic_fir_array.fir_coeffs[i][fir_index_1][0],
1214		       dmic->dmic_fir_array.fir_len[fir_index_1] * sizeof(uint32_t));
1215		vendor_blob += dmic->dmic_fir_array.fir_len[fir_index_1] * sizeof(uint32_t);
1216	}
1217
1218	dmic_get_vendor_blob_size(nhlt, &blob_size);
1219	dmic_print_bytes_as_hex((uint8_t *)orig_blob, blob_size);
1220	dmic_print_integers_as_hex((uint32_t *)orig_blob, blob_size / 4);
1221
1222	return 0;
1223}
1224
1225int dmic_set_params(struct intel_nhlt_params *nhlt, int dai_index, int driver_version,
1226		    int io_clk, int num_pdm_active, int fifo_word_length, int clk_min, int clk_max,
1227		    int duty_min, int duty_max, int sample_rate, int unmute_ramp_time)
1228{
1229	struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1230
1231	if (!dmic)
1232		return -EINVAL;
1233
1234	if (dai_index >= DMIC_HW_FIFOS) {
1235		fprintf(stderr, "set_dmic_data illegal dai index\n");
1236		return -EINVAL;
1237	}
1238
1239	dmic->dmic_dai_index = dai_index;
1240	dmic->dmic_prm[dai_index].driver_version = driver_version;
1241	dmic->dmic_prm[dai_index].io_clk = io_clk;
1242	dmic->dmic_prm[dai_index].num_pdm_active = num_pdm_active;
1243	dmic->dmic_prm[dai_index].fifo_bits = fifo_word_length;
1244	dmic->dmic_prm[dai_index].pdmclk_min = clk_min;
1245	dmic->dmic_prm[dai_index].pdmclk_max = clk_max;
1246	dmic->dmic_prm[dai_index].duty_min = duty_min;
1247	dmic->dmic_prm[dai_index].duty_max = duty_max;
1248	dmic->dmic_prm[dai_index].fifo_fs = sample_rate;
1249	dmic->dmic_prm[dai_index].unmute_ramp_time = unmute_ramp_time;
1250
1251	return 0;
1252}
1253
1254int dmic_set_pdm_params(struct intel_nhlt_params *nhlt, int pdm_index, int enable_a,
1255			int enable_b, int polarity_a, int polarity_b, int clk_edge, int skew)
1256{
1257	struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1258	int di;
1259
1260	if (!dmic)
1261		return -EINVAL;
1262
1263	if (pdm_index >= DMIC_HW_CONTROLLERS) {
1264		fprintf(stderr, "set_pdm_data illegal pdm_index\n");
1265		return -EINVAL;
1266	}
1267
1268	di = dmic->dmic_dai_index;
1269
1270	dmic->dmic_prm[di].pdm[pdm_index].enable_mic_a = enable_a;
1271	dmic->dmic_prm[di].pdm[pdm_index].enable_mic_b = enable_b;
1272	dmic->dmic_prm[di].pdm[pdm_index].polarity_mic_a = polarity_a;
1273	dmic->dmic_prm[di].pdm[pdm_index].polarity_mic_b = polarity_b;
1274	dmic->dmic_prm[di].pdm[pdm_index].clk_edge = clk_edge;
1275	dmic->dmic_prm[di].pdm[pdm_index].skew = skew;
1276
1277	return 0;
1278}
1279
1280int dmic_set_ext_params(struct intel_nhlt_params *nhlt, uint32_t snr, uint32_t sensitivity)
1281{
1282	struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1283
1284	if (!dmic)
1285		return -EINVAL;
1286
1287	dmic->dmic_mic_config.extension = 1;
1288	dmic->dmic_mic_config.snr = snr;
1289	dmic->dmic_mic_config.sensitivity = sensitivity;
1290
1291	return 0;
1292}
1293
1294int dmic_set_mic_params(struct intel_nhlt_params *nhlt, int index,
1295			uint8_t type, uint8_t panel, uint32_t speaker_position_distance,
1296			uint32_t horizontal_offset, uint32_t vertical_offset,
1297			uint8_t frequency_low_band, uint8_t frequency_high_band,
1298			uint16_t direction_angle, uint16_t elevation_angle,
1299			uint16_t vertical_angle_begin, uint16_t vertical_angle_end,
1300			uint16_t horizontal_angle_begin, uint16_t horizontal_angle_end)
1301{
1302	struct intel_dmic_params *dmic = (struct intel_dmic_params *)nhlt->dmic_params;
1303
1304	if (!dmic)
1305		return -EINVAL;
1306
1307	dmic->dmic_mic_config.vendor[index].type = type;
1308	dmic->dmic_mic_config.vendor[index].panel = panel;
1309	dmic->dmic_mic_config.vendor[index].speaker_position_distance = speaker_position_distance;
1310	dmic->dmic_mic_config.vendor[index].horizontal_offset = horizontal_offset;
1311	dmic->dmic_mic_config.vendor[index].vertical_offset = vertical_offset;
1312	dmic->dmic_mic_config.vendor[index].frequency_low_band = frequency_low_band;
1313	dmic->dmic_mic_config.vendor[index].frequency_high_band = frequency_high_band;
1314	dmic->dmic_mic_config.vendor[index].direction_angle = direction_angle;
1315	dmic->dmic_mic_config.vendor[index].elevation_angle = elevation_angle;
1316	dmic->dmic_mic_config.vendor[index].vertical_angle_begin = vertical_angle_begin;
1317	dmic->dmic_mic_config.vendor[index].vertical_angle_end = vertical_angle_end;
1318	dmic->dmic_mic_config.vendor[index].horizontal_angle_begin = horizontal_angle_begin;
1319	dmic->dmic_mic_config.vendor[index].horizontal_angle_end = horizontal_angle_end;
1320
1321	dmic->dmic_mic_config.num_mics++;
1322
1323	return 0;
1324}
1325
1326/* init dmic parameters, should be called before parsing dais */
1327int dmic_init_params(struct intel_nhlt_params *nhlt)
1328{
1329	struct intel_dmic_params *dmic;
1330	int i;
1331
1332	dmic = calloc(1, sizeof(struct intel_dmic_params));
1333	if (!dmic)
1334		return -ENOMEM;
1335
1336	nhlt->dmic_params = dmic;
1337	/* set always to 1, some fw variants use this for choosing memory type */
1338	dmic->dmic_blob.gateway_attributes = 1;
1339	/* delay in ms to unmute mics after clock is started */
1340	dmic->dmic_blob.clock_on_delay = 16;
1341
1342	for (i = 0; i < DMIC_TS_GROUP_SIZE; i++)
1343		dmic->dmic_blob.ts_group[i] = 0xFFFFFFFF; /* not enabled */
1344
1345	dmic->dmic_count = 0;
1346
1347	dmic->dmic_mic_config.num_mics = 0;
1348	dmic->dmic_mic_config.extension = 0;
1349	dmic->dmic_mic_config.array_type = 0;
1350	dmic->dmic_mic_config.snr = 0;
1351	dmic->dmic_mic_config.sensitivity = 0;
1352
1353	return 0;
1354}
1355