1/* 2 st2095.c 3 4 Generate Bandlimited Pink Noise (-18.5dB AES FS) 5 Using the SMPTE ST 2095:1-2015 standard 6 7 Based on pseudo-code from the above SMPTE standard, which bore the credit 8 "Revised 2015-01-04 by Calvert Dayton" 9 10 Copyleft 2023 Rick Sayre - No rights reserved. 11*/ 12 13#include "aconfig.h" 14#include <stdio.h> 15#include <math.h> 16#include "st2095.h" 17 18/************************************************************/ 19 20 21void reset_st2095_noise_measurement( st2095_noise_t *st2095 ) { 22 st2095->accum = 0.; 23} 24 25float compute_st2095_noise_measurement( st2095_noise_t *st2095, int period ) { 26 return(10. * log10f(st2095->accum / (float)period) + 3.01); 27} 28 29void initialize_st2095_noise( st2095_noise_t *st2095, int sample_rate) { 30 // Periodicity in samples must be a power of two, <= 2^31 31 // Typical values are 524288, 1048576, 2097152 or 4194304 32 if (sample_rate > 48000) { 33 // Special case LCG step for 1024K samples @ 88.2K or 96k 34 st2095->samplesPerPeriod = 1048576; 35 st2095->randStep = 163841; 36 } else { 37 st2095->samplesPerPeriod = 524288; 38 st2095->randStep = 52737; 39 } 40 41 // set up LCG PRNG 42 st2095->randMax = st2095->samplesPerPeriod - 1; 43 st2095->seed = 0; 44 st2095->scaleFactor = 2.0 / (float)st2095->randMax; 45 46 st2095->maxAmp = powf(10.0, ST2095_MAX_PEAK / 20.0); 47 48 // Calculate omegaT for matched Z transform highpass filters 49 st2095->w0t = 2.0 * M_PI * ST2095_HPFC / (float)sample_rate; 50 51 // Limit LpFc <= Nyquist (actually lower, based on 48 vs 22.4 KHz spec cutoff) 52 // The spec says the filter begins at 22.4KHz, if we ask for a Nyquist-impossible 53 // sampling rate, compute something with the same relationship 54 st2095->LpFc = ST2095_LPFC; 55 float rateratio = 48000. / ST2095_LPFC; 56 if (st2095->LpFc > sample_rate/rateratio) 57 st2095->LpFc = sample_rate/rateratio; 58 59 // Calculate k and k^2 for bilinear transform lowpass filters 60 st2095->k = tanf(( 2.0 * M_PI * st2095->LpFc / (float)sample_rate ) / 2.0); 61 st2095->k2 = st2095->k * st2095->k; 62 63 // Calculate biquad coefficients for bandpass filter components 64 st2095->hp1_a1 = -2.0 * expf(-0.3826835 * st2095->w0t) * cosf(0.9238795 * st2095->w0t); 65 st2095->hp1_a2 = expf(2.0 * -0.3826835 * st2095->w0t); 66 st2095->hp1_b0 = (1.0 - st2095->hp1_a1 + st2095->hp1_a2) / 4.0; 67 st2095->hp1_b1 = -2.0 * st2095->hp1_b0; 68 st2095->hp1_b2 = st2095->hp1_b0; 69 70 st2095->hp2_a1 = -2.0 * expf(-0.9238795 * st2095->w0t) * cosf(0.3826835 * st2095->w0t); 71 st2095->hp2_a2 = expf(2.0 * -0.9238795 * st2095->w0t); 72 st2095->hp2_b0 = (1.0 - st2095->hp2_a1 + st2095->hp2_a2) / 4.0; 73 st2095->hp2_b1 = -2.0 * st2095->hp2_b0; 74 st2095->hp2_b2 = st2095->hp2_b0; 75 76 st2095->lp1_a1 = (2.0 * (st2095->k2 - 1.0)) / (st2095->k2 + (st2095->k / 1.306563) + 1.0); 77 st2095->lp1_a2 = (st2095->k2 - (st2095->k / 1.306563) + 1.0) / (st2095->k2 + (st2095->k / 1.306563) + 1.0); 78 st2095->lp1_b0 = st2095->k2 / (st2095->k2 + (st2095->k / 1.306563) + 1.0); 79 st2095->lp1_b1 = 2.0 * st2095->lp1_b0; 80 st2095->lp1_b2 = st2095->lp1_b0; 81 82 st2095->lp2_a1 = (2.0 * (st2095->k2 - 1.0)) / (st2095->k2 + (st2095->k / 0.541196) + 1.0); 83 st2095->lp2_a2 = (st2095->k2 - (st2095->k / 0.541196) + 1.0) / (st2095->k2 + (st2095->k / 0.541196) + 1.0); 84 st2095->lp2_b0 = st2095->k2 / (st2095->k2 + (st2095->k / 0.541196) + 1.0); 85 st2095->lp2_b1 = 2.0 * st2095->lp2_b0; 86 st2095->lp2_b2 = st2095->lp2_b0; 87 88 // initialize delay lines for bandpass filter 89 st2095->hp1w1 = 0.0; 90 st2095->hp1w2 = 0.0; 91 st2095->hp2w1 = 0.0; 92 st2095->hp2w2 = 0.0; 93 st2095->lp1w1 = 0.0; 94 st2095->lp1w2 = 0.0; 95 st2095->lp2w1 = 0.0; 96 st2095->lp2w2 = 0.0; 97 98 // initialize delay lines for pink filter network 99 st2095->lp1 = 0.0; 100 st2095->lp2 = 0.0; 101 st2095->lp3 = 0.0; 102 st2095->lp4 = 0.0; 103 st2095->lp5 = 0.0; 104 st2095->lp6 = 0.0; 105 106 // cycle the generator for one complete time series to populate filter-bank delay lines 107 for (int i=0; i<st2095->samplesPerPeriod; i++) 108 generate_st2095_noise_sample(st2095); 109 st2095->accum = 0.0; 110} 111 112float generate_st2095_noise_sample( st2095_noise_t *st2095 ) { 113 float white, w, pink; 114 115 // Generate a pseudorandom integer in the range 0 <= seed <= randMax. 116 //# Bitwise AND with randMax zeroes out any unwanted high order bits. 117 st2095->seed = (1664525 * st2095->seed + st2095->randStep) & st2095->randMax; 118 // Scale to a real number in the range -1.0 <= white <= 1.0 119 white = (float)st2095->seed * st2095->scaleFactor - 1.0; 120 121 // Run pink filter; a parallel network of first-order LP filters, scaled to 122 // produce an output signal with target RMS = -21.5 dB FS (-18.5 dB AES FS) 123 // when bandpass filter cutoff frequencies are 10 Hz and 22.4 kHz. 124 st2095->lp1 = 0.9994551 * st2095->lp1 + 0.00198166688621989 * white; 125 st2095->lp2 = 0.9969859 * st2095->lp2 + 0.00263702334184061 * white; 126 st2095->lp3 = 0.9844470 * st2095->lp3 + 0.00643213710202331 * white; 127 st2095->lp4 = 0.9161757 * st2095->lp4 + 0.01438952538362820 * white; 128 st2095->lp5 = 0.6563399 * st2095->lp5 + 0.02698408541064610 * white; 129 pink = st2095->lp1 + st2095->lp2 + st2095->lp3 + 130 st2095->lp4 + st2095->lp5 + st2095->lp6 + white * 0.0342675832159306; 131 st2095->lp6 = white * 0.0088766118009356; 132 133 // Run bandpass filter; a series network of 4 biquad filters 134 // Biquad filters implemented in Direct Form II 135 w = pink - st2095->hp1_a1 * st2095->hp1w1 - st2095->hp1_a2 * st2095->hp1w2; 136 pink = st2095->hp1_b0 * w + st2095->hp1_b1 * st2095->hp1w1 + st2095->hp1_b2 * st2095->hp1w2; 137 st2095->hp1w2 = st2095->hp1w1; 138 st2095->hp1w1 = w; 139 140 w = pink - st2095->hp2_a1 * st2095->hp2w1 - st2095->hp2_a2 * st2095->hp2w2; 141 pink = st2095->hp2_b0 * w + st2095->hp2_b1 * st2095->hp2w1 + st2095->hp2_b2 * st2095->hp2w2; 142 st2095->hp2w2 = st2095->hp2w1; 143 st2095->hp2w1 = w; 144 145 w = pink - st2095->lp1_a1 * st2095->lp1w1 - st2095->lp1_a2 * st2095->lp1w2; 146 pink = st2095->lp1_b0 * w + st2095->lp1_b1 * st2095->lp1w1 + st2095->lp1_b2 * st2095->lp1w2; 147 st2095->lp1w2 = st2095->lp1w1; 148 st2095->lp1w1 = w; 149 150 w = pink - st2095->lp2_a1 * st2095->lp2w1 - st2095->lp2_a2 * st2095->lp2w2; 151 pink = st2095->lp2_b0 * w + st2095->lp2_b1 * st2095->lp2w1 + st2095->lp2_b2 * st2095->lp2w2; 152 st2095->lp2w2 = st2095->lp2w1; 153 st2095->lp2w1 = w; 154 155 // Limit peaks to +/-MaxAmp 156 if (pink > st2095->maxAmp) 157 pink = st2095->maxAmp; 158 else if (pink < -st2095->maxAmp) 159 pink = -st2095->maxAmp; 160 161 // accumulate squared amplitude for RMS computation 162 st2095->accum += (pink * pink); 163 return(pink); 164} 165