1/*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007-2013 Bruce D. Evans 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29#include <sys/cdefs.h> 30/** 31 * Implementation of the natural logarithm of x for 128-bit format. 32 * 33 * First decompose x into its base 2 representation: 34 * 35 * log(x) = log(X * 2**k), where X is in [1, 2) 36 * = log(X) + k * log(2). 37 * 38 * Let X = X_i + e, where X_i is the center of one of the intervals 39 * [-1.0/256, 1.0/256), [1.0/256, 3.0/256), .... [2.0-1.0/256, 2.0+1.0/256) 40 * and X is in this interval. Then 41 * 42 * log(X) = log(X_i + e) 43 * = log(X_i * (1 + e / X_i)) 44 * = log(X_i) + log(1 + e / X_i). 45 * 46 * The values log(X_i) are tabulated below. Let d = e / X_i and use 47 * 48 * log(1 + d) = p(d) 49 * 50 * where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of 51 * suitably high degree. 52 * 53 * To get sufficiently small roundoff errors, k * log(2), log(X_i), and 54 * sometimes (if |k| is not large) the first term in p(d) must be evaluated 55 * and added up in extra precision. Extra precision is not needed for the 56 * rest of p(d). In the worst case when k = 0 and log(X_i) is 0, the final 57 * error is controlled mainly by the error in the second term in p(d). The 58 * error in this term itself is at most 0.5 ulps from the d*d operation in 59 * it. The error in this term relative to the first term is thus at most 60 * 0.5 * |-0.5| * |d| < 1.0/1024 ulps. We aim for an accumulated error of 61 * at most twice this at the point of the final rounding step. Thus the 62 * final error should be at most 0.5 + 1.0/512 = 0.5020 ulps. Exhaustive 63 * testing of a float variant of this function showed a maximum final error 64 * of 0.5008 ulps. Non-exhaustive testing of a double variant of this 65 * function showed a maximum final error of 0.5078 ulps (near 1+1.0/256). 66 * 67 * We made the maximum of |d| (and thus the total relative error and the 68 * degree of p(d)) small by using a large number of intervals. Using 69 * centers of intervals instead of endpoints reduces this maximum by a 70 * factor of 2 for a given number of intervals. p(d) is special only 71 * in beginning with the Taylor coefficients 0 + 1*d, which tends to happen 72 * naturally. The most accurate minimax polynomial of a given degree might 73 * be different, but then we wouldn't want it since we would have to do 74 * extra work to avoid roundoff error (especially for P0*d instead of d). 75 */ 76 77#ifdef DEBUG 78#include <assert.h> 79#include <fenv.h> 80#endif 81 82#include "fpmath.h" 83#include "math.h" 84#ifndef NO_STRUCT_RETURN 85#define STRUCT_RETURN 86#endif 87#include "math_private.h" 88 89#if !defined(NO_UTAB) && !defined(NO_UTABL) 90#define USE_UTAB 91#endif 92 93/* 94 * Domain [-0.005280, 0.004838], range ~[-1.1577e-37, 1.1582e-37]: 95 * |log(1 + d)/d - p(d)| < 2**-122.7 96 */ 97static const long double 98P2 = -0.5L, 99P3 = 3.33333333333333333333333333333233795e-1L, /* 0x15555555555555555555555554d42.0p-114L */ 100P4 = -2.49999999999999999999999999941139296e-1L, /* -0x1ffffffffffffffffffffffdab14e.0p-115L */ 101P5 = 2.00000000000000000000000085468039943e-1L, /* 0x19999999999999999999a6d3567f4.0p-115L */ 102P6 = -1.66666666666666666666696142372698408e-1L, /* -0x15555555555555555567267a58e13.0p-115L */ 103P7 = 1.42857142857142857119522943477166120e-1L, /* 0x1249249249249248ed79a0ae434de.0p-115L */ 104P8 = -1.24999999999999994863289015033581301e-1L; /* -0x1fffffffffffffa13e91765e46140.0p-116L */ 105/* Double precision gives ~ 53 + log2(P9 * max(|d|)**8) ~= 120 bits. */ 106static const double 107P9 = 1.1111111111111401e-1, /* 0x1c71c71c71c7ed.0p-56 */ 108P10 = -1.0000000000040135e-1, /* -0x199999999a0a92.0p-56 */ 109P11 = 9.0909090728136258e-2, /* 0x1745d173962111.0p-56 */ 110P12 = -8.3333318851855284e-2, /* -0x1555551722c7a3.0p-56 */ 111P13 = 7.6928634666404178e-2, /* 0x13b1985204a4ae.0p-56 */ 112P14 = -7.1626810078462499e-2; /* -0x12562276cdc5d0.0p-56 */ 113 114static volatile const double zero = 0; 115 116#define INTERVALS 128 117#define LOG2_INTERVALS 7 118#define TSIZE (INTERVALS + 1) 119#define G(i) (T[(i)].G) 120#define F_hi(i) (T[(i)].F_hi) 121#define F_lo(i) (T[(i)].F_lo) 122#define ln2_hi F_hi(TSIZE - 1) 123#define ln2_lo F_lo(TSIZE - 1) 124#define E(i) (U[(i)].E) 125#define H(i) (U[(i)].H) 126 127static const struct { 128 float G; /* 1/(1 + i/128) rounded to 8/9 bits */ 129 float F_hi; /* log(1 / G_i) rounded (see below) */ 130 /* The compiler will insert 8 bytes of padding here. */ 131 long double F_lo; /* next 113 bits for log(1 / G_i) */ 132} T[TSIZE] = { 133 /* 134 * ln2_hi and each F_hi(i) are rounded to a number of bits that 135 * makes F_hi(i) + dk*ln2_hi exact for all i and all dk. 136 * 137 * The last entry (for X just below 2) is used to define ln2_hi 138 * and ln2_lo, to ensure that F_hi(i) and F_lo(i) cancel exactly 139 * with dk*ln2_hi and dk*ln2_lo, respectively, when dk = -1. 140 * This is needed for accuracy when x is just below 1. (To avoid 141 * special cases, such x are "reduced" strangely to X just below 142 * 2 and dk = -1, and then the exact cancellation is needed 143 * because any the error from any non-exactness would be too 144 * large). 145 * 146 * The relevant range of dk is [-16445, 16383]. The maximum number 147 * of bits in F_hi(i) that works is very dependent on i but has 148 * a minimum of 93. We only need about 12 bits in F_hi(i) for 149 * it to provide enough extra precision. 150 * 151 * We round F_hi(i) to 24 bits so that it can have type float, 152 * mainly to minimize the size of the table. Using all 24 bits 153 * in a float for it automatically satisfies the above constraints. 154 */ 155 {0x800000.0p-23, 0, 0}, 156 {0xfe0000.0p-24, 0x8080ac.0p-30, -0x14ee431dae6674afa0c4bfe16e8fd.0p-144L}, 157 {0xfc0000.0p-24, 0x8102b3.0p-29, -0x1db29ee2d83717be918e1119642ab.0p-144L}, 158 {0xfa0000.0p-24, 0xc24929.0p-29, 0x1191957d173697cf302cc9476f561.0p-143L}, 159 {0xf80000.0p-24, 0x820aec.0p-28, 0x13ce8888e02e78eba9b1113bc1c18.0p-142L}, 160 {0xf60000.0p-24, 0xa33577.0p-28, -0x17a4382ce6eb7bfa509bec8da5f22.0p-142L}, 161 {0xf48000.0p-24, 0xbc42cb.0p-28, -0x172a21161a107674986dcdca6709c.0p-143L}, 162 {0xf30000.0p-24, 0xd57797.0p-28, -0x1e09de07cb958897a3ea46e84abb3.0p-142L}, 163 {0xf10000.0p-24, 0xf7518e.0p-28, 0x1ae1eec1b036c484993c549c4bf40.0p-151L}, 164 {0xef0000.0p-24, 0x8cb9df.0p-27, -0x1d7355325d560d9e9ab3d6ebab580.0p-141L}, 165 {0xed8000.0p-24, 0x999ec0.0p-27, -0x1f9f02d256d5037108f4ec21e48cd.0p-142L}, 166 {0xec0000.0p-24, 0xa6988b.0p-27, -0x16fc0a9d12c17a70f7a684c596b12.0p-143L}, 167 {0xea0000.0p-24, 0xb80698.0p-27, 0x15d581c1e8da99ded322fb08b8462.0p-141L}, 168 {0xe80000.0p-24, 0xc99af3.0p-27, -0x1535b3ba8f150ae09996d7bb4653e.0p-143L}, 169 {0xe70000.0p-24, 0xd273b2.0p-27, 0x163786f5251aefe0ded34c8318f52.0p-145L}, 170 {0xe50000.0p-24, 0xe442c0.0p-27, 0x1bc4b2368e32d56699c1799a244d4.0p-144L}, 171 {0xe38000.0p-24, 0xf1b83f.0p-27, 0x1c6090f684e6766abceccab1d7174.0p-141L}, 172 {0xe20000.0p-24, 0xff448a.0p-27, -0x1890aa69ac9f4215f93936b709efb.0p-142L}, 173 {0xe08000.0p-24, 0x8673f6.0p-26, 0x1b9985194b6affd511b534b72a28e.0p-140L}, 174 {0xdf0000.0p-24, 0x8d515c.0p-26, -0x1dc08d61c6ef1d9b2ef7e68680598.0p-143L}, 175 {0xdd8000.0p-24, 0x943a9e.0p-26, -0x1f72a2dac729b3f46662238a9425a.0p-142L}, 176 {0xdc0000.0p-24, 0x9b2fe6.0p-26, -0x1fd4dfd3a0afb9691aed4d5e3df94.0p-140L}, 177 {0xda8000.0p-24, 0xa2315d.0p-26, -0x11b26121629c46c186384993e1c93.0p-142L}, 178 {0xd90000.0p-24, 0xa93f2f.0p-26, 0x1286d633e8e5697dc6a402a56fce1.0p-141L}, 179 {0xd78000.0p-24, 0xb05988.0p-26, 0x16128eba9367707ebfa540e45350c.0p-144L}, 180 {0xd60000.0p-24, 0xb78094.0p-26, 0x16ead577390d31ef0f4c9d43f79b2.0p-140L}, 181 {0xd50000.0p-24, 0xbc4c6c.0p-26, 0x151131ccf7c7b75e7d900b521c48d.0p-141L}, 182 {0xd38000.0p-24, 0xc3890a.0p-26, -0x115e2cd714bd06508aeb00d2ae3e9.0p-140L}, 183 {0xd20000.0p-24, 0xcad2d7.0p-26, -0x1847f406ebd3af80485c2f409633c.0p-142L}, 184 {0xd10000.0p-24, 0xcfb620.0p-26, 0x1c2259904d686581799fbce0b5f19.0p-141L}, 185 {0xcf8000.0p-24, 0xd71653.0p-26, 0x1ece57a8d5ae54f550444ecf8b995.0p-140L}, 186 {0xce0000.0p-24, 0xde843a.0p-26, -0x1f109d4bc4595412b5d2517aaac13.0p-141L}, 187 {0xcd0000.0p-24, 0xe37fde.0p-26, 0x1bc03dc271a74d3a85b5b43c0e727.0p-141L}, 188 {0xcb8000.0p-24, 0xeb050c.0p-26, -0x1bf2badc0df841a71b79dd5645b46.0p-145L}, 189 {0xca0000.0p-24, 0xf29878.0p-26, -0x18efededd89fbe0bcfbe6d6db9f66.0p-147L}, 190 {0xc90000.0p-24, 0xf7ad6f.0p-26, 0x1373ff977baa6911c7bafcb4d84fb.0p-141L}, 191 {0xc80000.0p-24, 0xfcc8e3.0p-26, 0x196766f2fb328337cc050c6d83b22.0p-140L}, 192 {0xc68000.0p-24, 0x823f30.0p-25, 0x19bd076f7c434e5fcf1a212e2a91e.0p-139L}, 193 {0xc58000.0p-24, 0x84d52c.0p-25, -0x1a327257af0f465e5ecab5f2a6f81.0p-139L}, 194 {0xc40000.0p-24, 0x88bc74.0p-25, 0x113f23def19c5a0fe396f40f1dda9.0p-141L}, 195 {0xc30000.0p-24, 0x8b5ae6.0p-25, 0x1759f6e6b37de945a049a962e66c6.0p-139L}, 196 {0xc20000.0p-24, 0x8dfccb.0p-25, 0x1ad35ca6ed5147bdb6ddcaf59c425.0p-141L}, 197 {0xc10000.0p-24, 0x90a22b.0p-25, 0x1a1d71a87deba46bae9827221dc98.0p-139L}, 198 {0xbf8000.0p-24, 0x94a0d8.0p-25, -0x139e5210c2b730e28aba001a9b5e0.0p-140L}, 199 {0xbe8000.0p-24, 0x974f16.0p-25, -0x18f6ebcff3ed72e23e13431adc4a5.0p-141L}, 200 {0xbd8000.0p-24, 0x9a00f1.0p-25, -0x1aa268be39aab7148e8d80caa10b7.0p-139L}, 201 {0xbc8000.0p-24, 0x9cb672.0p-25, -0x14c8815839c5663663d15faed7771.0p-139L}, 202 {0xbb0000.0p-24, 0xa0cda1.0p-25, 0x1eaf46390dbb2438273918db7df5c.0p-141L}, 203 {0xba0000.0p-24, 0xa38c6e.0p-25, 0x138e20d831f698298adddd7f32686.0p-141L}, 204 {0xb90000.0p-24, 0xa64f05.0p-25, -0x1e8d3c41123615b147a5d47bc208f.0p-142L}, 205 {0xb80000.0p-24, 0xa91570.0p-25, 0x1ce28f5f3840b263acb4351104631.0p-140L}, 206 {0xb70000.0p-24, 0xabdfbb.0p-25, -0x186e5c0a42423457e22d8c650b355.0p-139L}, 207 {0xb60000.0p-24, 0xaeadef.0p-25, -0x14d41a0b2a08a465dc513b13f567d.0p-143L}, 208 {0xb50000.0p-24, 0xb18018.0p-25, 0x16755892770633947ffe651e7352f.0p-139L}, 209 {0xb40000.0p-24, 0xb45642.0p-25, -0x16395ebe59b15228bfe8798d10ff0.0p-142L}, 210 {0xb30000.0p-24, 0xb73077.0p-25, 0x1abc65c8595f088b61a335f5b688c.0p-140L}, 211 {0xb20000.0p-24, 0xba0ec4.0p-25, -0x1273089d3dad88e7d353e9967d548.0p-139L}, 212 {0xb10000.0p-24, 0xbcf133.0p-25, 0x10f9f67b1f4bbf45de06ecebfaf6d.0p-139L}, 213 {0xb00000.0p-24, 0xbfd7d2.0p-25, -0x109fab904864092b34edda19a831e.0p-140L}, 214 {0xaf0000.0p-24, 0xc2c2ac.0p-25, -0x1124680aa43333221d8a9b475a6ba.0p-139L}, 215 {0xae8000.0p-24, 0xc439b3.0p-25, -0x1f360cc4710fbfe24b633f4e8d84d.0p-140L}, 216 {0xad8000.0p-24, 0xc72afd.0p-25, -0x132d91f21d89c89c45003fc5d7807.0p-140L}, 217 {0xac8000.0p-24, 0xca20a2.0p-25, -0x16bf9b4d1f8da8002f2449e174504.0p-139L}, 218 {0xab8000.0p-24, 0xcd1aae.0p-25, 0x19deb5ce6a6a8717d5626e16acc7d.0p-141L}, 219 {0xaa8000.0p-24, 0xd0192f.0p-25, 0x1a29fb48f7d3ca87dabf351aa41f4.0p-139L}, 220 {0xaa0000.0p-24, 0xd19a20.0p-25, 0x1127d3c6457f9d79f51dcc73014c9.0p-141L}, 221 {0xa90000.0p-24, 0xd49f6a.0p-25, -0x1ba930e486a0ac42d1bf9199188e7.0p-141L}, 222 {0xa80000.0p-24, 0xd7a94b.0p-25, -0x1b6e645f31549dd1160bcc45c7e2c.0p-139L}, 223 {0xa70000.0p-24, 0xdab7d0.0p-25, 0x1118a425494b610665377f15625b6.0p-140L}, 224 {0xa68000.0p-24, 0xdc40d5.0p-25, 0x1966f24d29d3a2d1b2176010478be.0p-140L}, 225 {0xa58000.0p-24, 0xdf566d.0p-25, -0x1d8e52eb2248f0c95dd83626d7333.0p-142L}, 226 {0xa48000.0p-24, 0xe270ce.0p-25, -0x1ee370f96e6b67ccb006a5b9890ea.0p-140L}, 227 {0xa40000.0p-24, 0xe3ffce.0p-25, 0x1d155324911f56db28da4d629d00a.0p-140L}, 228 {0xa30000.0p-24, 0xe72179.0p-25, -0x1fe6e2f2f867d8f4d60c713346641.0p-140L}, 229 {0xa20000.0p-24, 0xea4812.0p-25, 0x1b7be9add7f4d3b3d406b6cbf3ce5.0p-140L}, 230 {0xa18000.0p-24, 0xebdd3d.0p-25, 0x1b3cfb3f7511dd73692609040ccc2.0p-139L}, 231 {0xa08000.0p-24, 0xef0b5b.0p-25, -0x1220de1f7301901b8ad85c25afd09.0p-139L}, 232 {0xa00000.0p-24, 0xf0a451.0p-25, -0x176364c9ac81cc8a4dfb804de6867.0p-140L}, 233 {0x9f0000.0p-24, 0xf3da16.0p-25, 0x1eed6b9aafac8d42f78d3e65d3727.0p-141L}, 234 {0x9e8000.0p-24, 0xf576e9.0p-25, 0x1d593218675af269647b783d88999.0p-139L}, 235 {0x9d8000.0p-24, 0xf8b47c.0p-25, -0x13e8eb7da053e063714615f7cc91d.0p-144L}, 236 {0x9d0000.0p-24, 0xfa553f.0p-25, 0x1c063259bcade02951686d5373aec.0p-139L}, 237 {0x9c0000.0p-24, 0xfd9ac5.0p-25, 0x1ef491085fa3c1649349630531502.0p-139L}, 238 {0x9b8000.0p-24, 0xff3f8c.0p-25, 0x1d607a7c2b8c5320619fb9433d841.0p-139L}, 239 {0x9a8000.0p-24, 0x814697.0p-24, -0x12ad3817004f3f0bdff99f932b273.0p-138L}, 240 {0x9a0000.0p-24, 0x821b06.0p-24, -0x189fc53117f9e54e78103a2bc1767.0p-141L}, 241 {0x990000.0p-24, 0x83c5f8.0p-24, 0x14cf15a048907b7d7f47ddb45c5a3.0p-139L}, 242 {0x988000.0p-24, 0x849c7d.0p-24, 0x1cbb1d35fb82873b04a9af1dd692c.0p-138L}, 243 {0x978000.0p-24, 0x864ba6.0p-24, 0x1128639b814f9b9770d8cb6573540.0p-138L}, 244 {0x970000.0p-24, 0x87244c.0p-24, 0x184733853300f002e836dfd47bd41.0p-139L}, 245 {0x968000.0p-24, 0x87fdaa.0p-24, 0x109d23aef77dd5cd7cc94306fb3ff.0p-140L}, 246 {0x958000.0p-24, 0x89b293.0p-24, -0x1a81ef367a59de2b41eeebd550702.0p-138L}, 247 {0x950000.0p-24, 0x8a8e20.0p-24, -0x121ad3dbb2f45275c917a30df4ac9.0p-138L}, 248 {0x948000.0p-24, 0x8b6a6a.0p-24, -0x1cfb981628af71a89df4e6df2e93b.0p-139L}, 249 {0x938000.0p-24, 0x8d253a.0p-24, -0x1d21730ea76cfdec367828734cae5.0p-139L}, 250 {0x930000.0p-24, 0x8e03c2.0p-24, 0x135cc00e566f76b87333891e0dec4.0p-138L}, 251 {0x928000.0p-24, 0x8ee30d.0p-24, -0x10fcb5df257a263e3bf446c6e3f69.0p-140L}, 252 {0x918000.0p-24, 0x90a3ee.0p-24, -0x16e171b15433d723a4c7380a448d8.0p-139L}, 253 {0x910000.0p-24, 0x918587.0p-24, -0x1d050da07f3236f330972da2a7a87.0p-139L}, 254 {0x908000.0p-24, 0x9267e7.0p-24, 0x1be03669a5268d21148c6002becd3.0p-139L}, 255 {0x8f8000.0p-24, 0x942f04.0p-24, 0x10b28e0e26c336af90e00533323ba.0p-139L}, 256 {0x8f0000.0p-24, 0x9513c3.0p-24, 0x1a1d820da57cf2f105a89060046aa.0p-138L}, 257 {0x8e8000.0p-24, 0x95f950.0p-24, -0x19ef8f13ae3cf162409d8ea99d4c0.0p-139L}, 258 {0x8e0000.0p-24, 0x96dfab.0p-24, -0x109e417a6e507b9dc10dac743ad7a.0p-138L}, 259 {0x8d0000.0p-24, 0x98aed2.0p-24, 0x10d01a2c5b0e97c4990b23d9ac1f5.0p-139L}, 260 {0x8c8000.0p-24, 0x9997a2.0p-24, -0x1d6a50d4b61ea74540bdd2aa99a42.0p-138L}, 261 {0x8c0000.0p-24, 0x9a8145.0p-24, 0x1b3b190b83f9527e6aba8f2d783c1.0p-138L}, 262 {0x8b8000.0p-24, 0x9b6bbf.0p-24, 0x13a69fad7e7abe7ba81c664c107e0.0p-138L}, 263 {0x8b0000.0p-24, 0x9c5711.0p-24, -0x11cd12316f576aad348ae79867223.0p-138L}, 264 {0x8a8000.0p-24, 0x9d433b.0p-24, 0x1c95c444b807a246726b304ccae56.0p-139L}, 265 {0x898000.0p-24, 0x9f1e22.0p-24, -0x1b9c224ea698c2f9b47466d6123fe.0p-139L}, 266 {0x890000.0p-24, 0xa00ce1.0p-24, 0x125ca93186cf0f38b4619a2483399.0p-141L}, 267 {0x888000.0p-24, 0xa0fc80.0p-24, -0x1ee38a7bc228b3597043be78eaf49.0p-139L}, 268 {0x880000.0p-24, 0xa1ed00.0p-24, -0x1a0db876613d204147dc69a07a649.0p-138L}, 269 {0x878000.0p-24, 0xa2de62.0p-24, 0x193224e8516c008d3602a7b41c6e8.0p-139L}, 270 {0x870000.0p-24, 0xa3d0a9.0p-24, 0x1fa28b4d2541aca7d5844606b2421.0p-139L}, 271 {0x868000.0p-24, 0xa4c3d6.0p-24, 0x1c1b5760fb4571acbcfb03f16daf4.0p-138L}, 272 {0x858000.0p-24, 0xa6acea.0p-24, 0x1fed5d0f65949c0a345ad743ae1ae.0p-140L}, 273 {0x850000.0p-24, 0xa7a2d4.0p-24, 0x1ad270c9d749362382a7688479e24.0p-140L}, 274 {0x848000.0p-24, 0xa899ab.0p-24, 0x199ff15ce532661ea9643a3a2d378.0p-139L}, 275 {0x840000.0p-24, 0xa99171.0p-24, 0x1a19e15ccc45d257530a682b80490.0p-139L}, 276 {0x838000.0p-24, 0xaa8a28.0p-24, -0x121a14ec532b35ba3e1f868fd0b5e.0p-140L}, 277 {0x830000.0p-24, 0xab83d1.0p-24, 0x1aee319980bff3303dd481779df69.0p-139L}, 278 {0x828000.0p-24, 0xac7e6f.0p-24, -0x18ffd9e3900345a85d2d86161742e.0p-140L}, 279 {0x820000.0p-24, 0xad7a03.0p-24, -0x1e4db102ce29f79b026b64b42caa1.0p-140L}, 280 {0x818000.0p-24, 0xae768f.0p-24, 0x17c35c55a04a82ab19f77652d977a.0p-141L}, 281 {0x810000.0p-24, 0xaf7415.0p-24, 0x1448324047019b48d7b98c1cf7234.0p-138L}, 282 {0x808000.0p-24, 0xb07298.0p-24, -0x1750ee3915a197e9c7359dd94152f.0p-138L}, 283 {0x800000.0p-24, 0xb17218.0p-24, -0x105c610ca86c3898cff81a12a17e2.0p-141L}, 284}; 285 286#ifdef USE_UTAB 287static const struct { 288 float H; /* 1 + i/INTERVALS (exact) */ 289 float E; /* H(i) * G(i) - 1 (exact) */ 290} U[TSIZE] = { 291 {0x800000.0p-23, 0}, 292 {0x810000.0p-23, -0x800000.0p-37}, 293 {0x820000.0p-23, -0x800000.0p-35}, 294 {0x830000.0p-23, -0x900000.0p-34}, 295 {0x840000.0p-23, -0x800000.0p-33}, 296 {0x850000.0p-23, -0xc80000.0p-33}, 297 {0x860000.0p-23, -0xa00000.0p-36}, 298 {0x870000.0p-23, 0x940000.0p-33}, 299 {0x880000.0p-23, 0x800000.0p-35}, 300 {0x890000.0p-23, -0xc80000.0p-34}, 301 {0x8a0000.0p-23, 0xe00000.0p-36}, 302 {0x8b0000.0p-23, 0x900000.0p-33}, 303 {0x8c0000.0p-23, -0x800000.0p-35}, 304 {0x8d0000.0p-23, -0xe00000.0p-33}, 305 {0x8e0000.0p-23, 0x880000.0p-33}, 306 {0x8f0000.0p-23, -0xa80000.0p-34}, 307 {0x900000.0p-23, -0x800000.0p-35}, 308 {0x910000.0p-23, 0x800000.0p-37}, 309 {0x920000.0p-23, 0x900000.0p-35}, 310 {0x930000.0p-23, 0xd00000.0p-35}, 311 {0x940000.0p-23, 0xe00000.0p-35}, 312 {0x950000.0p-23, 0xc00000.0p-35}, 313 {0x960000.0p-23, 0xe00000.0p-36}, 314 {0x970000.0p-23, -0x800000.0p-38}, 315 {0x980000.0p-23, -0xc00000.0p-35}, 316 {0x990000.0p-23, -0xd00000.0p-34}, 317 {0x9a0000.0p-23, 0x880000.0p-33}, 318 {0x9b0000.0p-23, 0xe80000.0p-35}, 319 {0x9c0000.0p-23, -0x800000.0p-35}, 320 {0x9d0000.0p-23, 0xb40000.0p-33}, 321 {0x9e0000.0p-23, 0x880000.0p-34}, 322 {0x9f0000.0p-23, -0xe00000.0p-35}, 323 {0xa00000.0p-23, 0x800000.0p-33}, 324 {0xa10000.0p-23, -0x900000.0p-36}, 325 {0xa20000.0p-23, -0xb00000.0p-33}, 326 {0xa30000.0p-23, -0xa00000.0p-36}, 327 {0xa40000.0p-23, 0x800000.0p-33}, 328 {0xa50000.0p-23, -0xf80000.0p-35}, 329 {0xa60000.0p-23, 0x880000.0p-34}, 330 {0xa70000.0p-23, -0x900000.0p-33}, 331 {0xa80000.0p-23, -0x800000.0p-35}, 332 {0xa90000.0p-23, 0x900000.0p-34}, 333 {0xaa0000.0p-23, 0xa80000.0p-33}, 334 {0xab0000.0p-23, -0xac0000.0p-34}, 335 {0xac0000.0p-23, -0x800000.0p-37}, 336 {0xad0000.0p-23, 0xf80000.0p-35}, 337 {0xae0000.0p-23, 0xf80000.0p-34}, 338 {0xaf0000.0p-23, -0xac0000.0p-33}, 339 {0xb00000.0p-23, -0x800000.0p-33}, 340 {0xb10000.0p-23, -0xb80000.0p-34}, 341 {0xb20000.0p-23, -0x800000.0p-34}, 342 {0xb30000.0p-23, -0xb00000.0p-35}, 343 {0xb40000.0p-23, -0x800000.0p-35}, 344 {0xb50000.0p-23, -0xe00000.0p-36}, 345 {0xb60000.0p-23, -0x800000.0p-35}, 346 {0xb70000.0p-23, -0xb00000.0p-35}, 347 {0xb80000.0p-23, -0x800000.0p-34}, 348 {0xb90000.0p-23, -0xb80000.0p-34}, 349 {0xba0000.0p-23, -0x800000.0p-33}, 350 {0xbb0000.0p-23, -0xac0000.0p-33}, 351 {0xbc0000.0p-23, 0x980000.0p-33}, 352 {0xbd0000.0p-23, 0xbc0000.0p-34}, 353 {0xbe0000.0p-23, 0xe00000.0p-36}, 354 {0xbf0000.0p-23, -0xb80000.0p-35}, 355 {0xc00000.0p-23, -0x800000.0p-33}, 356 {0xc10000.0p-23, 0xa80000.0p-33}, 357 {0xc20000.0p-23, 0x900000.0p-34}, 358 {0xc30000.0p-23, -0x800000.0p-35}, 359 {0xc40000.0p-23, -0x900000.0p-33}, 360 {0xc50000.0p-23, 0x820000.0p-33}, 361 {0xc60000.0p-23, 0x800000.0p-38}, 362 {0xc70000.0p-23, -0x820000.0p-33}, 363 {0xc80000.0p-23, 0x800000.0p-33}, 364 {0xc90000.0p-23, -0xa00000.0p-36}, 365 {0xca0000.0p-23, -0xb00000.0p-33}, 366 {0xcb0000.0p-23, 0x840000.0p-34}, 367 {0xcc0000.0p-23, -0xd00000.0p-34}, 368 {0xcd0000.0p-23, 0x800000.0p-33}, 369 {0xce0000.0p-23, -0xe00000.0p-35}, 370 {0xcf0000.0p-23, 0xa60000.0p-33}, 371 {0xd00000.0p-23, -0x800000.0p-35}, 372 {0xd10000.0p-23, 0xb40000.0p-33}, 373 {0xd20000.0p-23, -0x800000.0p-35}, 374 {0xd30000.0p-23, 0xaa0000.0p-33}, 375 {0xd40000.0p-23, -0xe00000.0p-35}, 376 {0xd50000.0p-23, 0x880000.0p-33}, 377 {0xd60000.0p-23, -0xd00000.0p-34}, 378 {0xd70000.0p-23, 0x9c0000.0p-34}, 379 {0xd80000.0p-23, -0xb00000.0p-33}, 380 {0xd90000.0p-23, -0x800000.0p-38}, 381 {0xda0000.0p-23, 0xa40000.0p-33}, 382 {0xdb0000.0p-23, -0xdc0000.0p-34}, 383 {0xdc0000.0p-23, 0xc00000.0p-35}, 384 {0xdd0000.0p-23, 0xca0000.0p-33}, 385 {0xde0000.0p-23, -0xb80000.0p-34}, 386 {0xdf0000.0p-23, 0xd00000.0p-35}, 387 {0xe00000.0p-23, 0xc00000.0p-33}, 388 {0xe10000.0p-23, -0xf40000.0p-34}, 389 {0xe20000.0p-23, 0x800000.0p-37}, 390 {0xe30000.0p-23, 0x860000.0p-33}, 391 {0xe40000.0p-23, -0xc80000.0p-33}, 392 {0xe50000.0p-23, -0xa80000.0p-34}, 393 {0xe60000.0p-23, 0xe00000.0p-36}, 394 {0xe70000.0p-23, 0x880000.0p-33}, 395 {0xe80000.0p-23, -0xe00000.0p-33}, 396 {0xe90000.0p-23, -0xfc0000.0p-34}, 397 {0xea0000.0p-23, -0x800000.0p-35}, 398 {0xeb0000.0p-23, 0xe80000.0p-35}, 399 {0xec0000.0p-23, 0x900000.0p-33}, 400 {0xed0000.0p-23, 0xe20000.0p-33}, 401 {0xee0000.0p-23, -0xac0000.0p-33}, 402 {0xef0000.0p-23, -0xc80000.0p-34}, 403 {0xf00000.0p-23, -0x800000.0p-35}, 404 {0xf10000.0p-23, 0x800000.0p-35}, 405 {0xf20000.0p-23, 0xb80000.0p-34}, 406 {0xf30000.0p-23, 0x940000.0p-33}, 407 {0xf40000.0p-23, 0xc80000.0p-33}, 408 {0xf50000.0p-23, -0xf20000.0p-33}, 409 {0xf60000.0p-23, -0xc80000.0p-33}, 410 {0xf70000.0p-23, -0xa20000.0p-33}, 411 {0xf80000.0p-23, -0x800000.0p-33}, 412 {0xf90000.0p-23, -0xc40000.0p-34}, 413 {0xfa0000.0p-23, -0x900000.0p-34}, 414 {0xfb0000.0p-23, -0xc80000.0p-35}, 415 {0xfc0000.0p-23, -0x800000.0p-35}, 416 {0xfd0000.0p-23, -0x900000.0p-36}, 417 {0xfe0000.0p-23, -0x800000.0p-37}, 418 {0xff0000.0p-23, -0x800000.0p-39}, 419 {0x800000.0p-22, 0}, 420}; 421#endif /* USE_UTAB */ 422 423#ifdef STRUCT_RETURN 424#define RETURN1(rp, v) do { \ 425 (rp)->hi = (v); \ 426 (rp)->lo_set = 0; \ 427 return; \ 428} while (0) 429 430#define RETURN2(rp, h, l) do { \ 431 (rp)->hi = (h); \ 432 (rp)->lo = (l); \ 433 (rp)->lo_set = 1; \ 434 return; \ 435} while (0) 436 437struct ld { 438 long double hi; 439 long double lo; 440 int lo_set; 441}; 442#else 443#define RETURN1(rp, v) RETURNF(v) 444#define RETURN2(rp, h, l) RETURNI((h) + (l)) 445#endif 446 447#ifdef STRUCT_RETURN 448static inline __always_inline void 449k_logl(long double x, struct ld *rp) 450#else 451long double 452logl(long double x) 453#endif 454{ 455 long double d, val_hi, val_lo; 456 double dd, dk; 457 uint64_t lx, llx; 458 int i, k; 459 uint16_t hx; 460 461 EXTRACT_LDBL128_WORDS(hx, lx, llx, x); 462 k = -16383; 463#if 0 /* Hard to do efficiently. Don't do it until we support all modes. */ 464 if (x == 1) 465 RETURN1(rp, 0); /* log(1) = +0 in all rounding modes */ 466#endif 467 if (hx == 0 || hx >= 0x8000) { /* zero, negative or subnormal? */ 468 if (((hx & 0x7fff) | lx | llx) == 0) 469 RETURN1(rp, -1 / zero); /* log(+-0) = -Inf */ 470 if (hx != 0) 471 /* log(neg or NaN) = qNaN: */ 472 RETURN1(rp, (x - x) / zero); 473 x *= 0x1.0p113; /* subnormal; scale up x */ 474 EXTRACT_LDBL128_WORDS(hx, lx, llx, x); 475 k = -16383 - 113; 476 } else if (hx >= 0x7fff) 477 RETURN1(rp, x + x); /* log(Inf or NaN) = Inf or qNaN */ 478#ifndef STRUCT_RETURN 479 ENTERI(); 480#endif 481 k += hx; 482 dk = k; 483 484 /* Scale x to be in [1, 2). */ 485 SET_LDBL_EXPSIGN(x, 0x3fff); 486 487 /* 0 <= i <= INTERVALS: */ 488#define L2I (49 - LOG2_INTERVALS) 489 i = (lx + (1LL << (L2I - 2))) >> (L2I - 1); 490 491 /* 492 * -0.005280 < d < 0.004838. In particular, the infinite- 493 * precision |d| is <= 2**-7. Rounding of G(i) to 8 bits 494 * ensures that d is representable without extra precision for 495 * this bound on |d| (since when this calculation is expressed 496 * as x*G(i)-1, the multiplication needs as many extra bits as 497 * G(i) has and the subtraction cancels 8 bits). But for 498 * most i (107 cases out of 129), the infinite-precision |d| 499 * is <= 2**-8. G(i) is rounded to 9 bits for such i to give 500 * better accuracy (this works by improving the bound on |d|, 501 * which in turn allows rounding to 9 bits in more cases). 502 * This is only important when the original x is near 1 -- it 503 * lets us avoid using a special method to give the desired 504 * accuracy for such x. 505 */ 506 if (0) 507 d = x * G(i) - 1; 508 else { 509#ifdef USE_UTAB 510 d = (x - H(i)) * G(i) + E(i); 511#else 512 long double x_hi; 513 double x_lo; 514 515 /* 516 * Split x into x_hi + x_lo to calculate x*G(i)-1 exactly. 517 * G(i) has at most 9 bits, so the splitting point is not 518 * critical. 519 */ 520 INSERT_LDBL128_WORDS(x_hi, 0x3fff, lx, 521 llx & 0xffffffffff000000ULL); 522 x_lo = x - x_hi; 523 d = x_hi * G(i) - 1 + x_lo * G(i); 524#endif 525 } 526 527 /* 528 * Our algorithm depends on exact cancellation of F_lo(i) and 529 * F_hi(i) with dk*ln_2_lo and dk*ln2_hi when k is -1 and i is 530 * at the end of the table. This and other technical complications 531 * make it difficult to avoid the double scaling in (dk*ln2) * 532 * log(base) for base != e without losing more accuracy and/or 533 * efficiency than is gained. 534 */ 535 /* 536 * Use double precision operations wherever possible, since 537 * long double operations are emulated and were very slow on 538 * the old sparc64 and unknown on the newer aarch64 and riscv 539 * machines. Also, don't try to improve parallelism by 540 * increasing the number of operations, since any parallelism 541 * on such machines is needed for the emulation. Horner's 542 * method is good for this, and is also good for accuracy. 543 * Horner's method doesn't handle the `lo' term well, either 544 * for efficiency or accuracy. However, for accuracy we 545 * evaluate d * d * P2 separately to take advantage of by P2 546 * being exact, and this gives a good place to sum the 'lo' 547 * term too. 548 */ 549 dd = (double)d; 550 val_lo = d * d * d * (P3 + 551 d * (P4 + d * (P5 + d * (P6 + d * (P7 + d * (P8 + 552 dd * (P9 + dd * (P10 + dd * (P11 + dd * (P12 + dd * (P13 + 553 dd * P14))))))))))) + (F_lo(i) + dk * ln2_lo) + d * d * P2; 554 val_hi = d; 555#ifdef DEBUG 556 if (fetestexcept(FE_UNDERFLOW)) 557 breakpoint(); 558#endif 559 560 _3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi); 561 RETURN2(rp, val_hi, val_lo); 562} 563 564long double 565log1pl(long double x) 566{ 567 long double d, d_hi, f_lo, val_hi, val_lo; 568 long double f_hi, twopminusk; 569 double d_lo, dd, dk; 570 uint64_t lx, llx; 571 int i, k; 572 int16_t ax, hx; 573 574 DOPRINT_START(&x); 575 EXTRACT_LDBL128_WORDS(hx, lx, llx, x); 576 if (hx < 0x3fff) { /* x < 1, or x neg NaN */ 577 ax = hx & 0x7fff; 578 if (ax >= 0x3fff) { /* x <= -1, or x neg NaN */ 579 if (ax == 0x3fff && (lx | llx) == 0) 580 RETURNP(-1 / zero); /* log1p(-1) = -Inf */ 581 /* log1p(x < 1, or x NaN) = qNaN: */ 582 RETURNP((x - x) / (x - x)); 583 } 584 if (ax <= 0x3f8d) { /* |x| < 2**-113 */ 585 if ((int)x == 0) 586 RETURNP(x); /* x with inexact if x != 0 */ 587 } 588 f_hi = 1; 589 f_lo = x; 590 } else if (hx >= 0x7fff) { /* x +Inf or non-neg NaN */ 591 RETURNP(x + x); /* log1p(Inf or NaN) = Inf or qNaN */ 592 } else if (hx < 0x40e1) { /* 1 <= x < 2**226 */ 593 f_hi = x; 594 f_lo = 1; 595 } else { /* 2**226 <= x < +Inf */ 596 f_hi = x; 597 f_lo = 0; /* avoid underflow of the P3 term */ 598 } 599 ENTERI(); 600 x = f_hi + f_lo; 601 f_lo = (f_hi - x) + f_lo; 602 603 EXTRACT_LDBL128_WORDS(hx, lx, llx, x); 604 k = -16383; 605 606 k += hx; 607 dk = k; 608 609 SET_LDBL_EXPSIGN(x, 0x3fff); 610 twopminusk = 1; 611 SET_LDBL_EXPSIGN(twopminusk, 0x7ffe - (hx & 0x7fff)); 612 f_lo *= twopminusk; 613 614 i = (lx + (1LL << (L2I - 2))) >> (L2I - 1); 615 616 /* 617 * x*G(i)-1 (with a reduced x) can be represented exactly, as 618 * above, but now we need to evaluate the polynomial on d = 619 * (x+f_lo)*G(i)-1 and extra precision is needed for that. 620 * Since x+x_lo is a hi+lo decomposition and subtracting 1 621 * doesn't lose too many bits, an inexact calculation for 622 * f_lo*G(i) is good enough. 623 */ 624 if (0) 625 d_hi = x * G(i) - 1; 626 else { 627#ifdef USE_UTAB 628 d_hi = (x - H(i)) * G(i) + E(i); 629#else 630 long double x_hi; 631 double x_lo; 632 633 INSERT_LDBL128_WORDS(x_hi, 0x3fff, lx, 634 llx & 0xffffffffff000000ULL); 635 x_lo = x - x_hi; 636 d_hi = x_hi * G(i) - 1 + x_lo * G(i); 637#endif 638 } 639 d_lo = f_lo * G(i); 640 641 /* 642 * This is _2sumF(d_hi, d_lo) inlined. The condition 643 * (d_hi == 0 || |d_hi| >= |d_lo|) for using _2sumF() is not 644 * always satisifed, so it is not clear that this works, but 645 * it works in practice. It works even if it gives a wrong 646 * normalized d_lo, since |d_lo| > |d_hi| implies that i is 647 * nonzero and d is tiny, so the F(i) term dominates d_lo. 648 * In float precision: 649 * (By exhaustive testing, the worst case is d_hi = 0x1.bp-25. 650 * And if d is only a little tinier than that, we would have 651 * another underflow problem for the P3 term; this is also ruled 652 * out by exhaustive testing.) 653 */ 654 d = d_hi + d_lo; 655 d_lo = d_hi - d + d_lo; 656 d_hi = d; 657 658 dd = (double)d; 659 val_lo = d * d * d * (P3 + 660 d * (P4 + d * (P5 + d * (P6 + d * (P7 + d * (P8 + 661 dd * (P9 + dd * (P10 + dd * (P11 + dd * (P12 + dd * (P13 + 662 dd * P14))))))))))) + (F_lo(i) + dk * ln2_lo + d_lo) + d * d * P2; 663 val_hi = d_hi; 664#ifdef DEBUG 665 if (fetestexcept(FE_UNDERFLOW)) 666 breakpoint(); 667#endif 668 669 _3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi); 670 RETURN2PI(val_hi, val_lo); 671} 672 673#ifdef STRUCT_RETURN 674 675long double 676logl(long double x) 677{ 678 struct ld r; 679 680 ENTERI(); 681 DOPRINT_START(&x); 682 k_logl(x, &r); 683 RETURNSPI(&r); 684} 685 686/* 687 * 29+113 bit decompositions. The bits are distributed so that the products 688 * of the hi terms are exact in double precision. The types are chosen so 689 * that the products of the hi terms are done in at least double precision, 690 * without any explicit conversions. More natural choices would require a 691 * slow long double precision multiplication. 692 */ 693static const double 694invln10_hi = 4.3429448176175356e-1, /* 0x1bcb7b15000000.0p-54 */ 695invln2_hi = 1.4426950402557850e0; /* 0x17154765000000.0p-52 */ 696static const long double 697invln10_lo = 1.41498268538580090791605082294397000e-10L, /* 0x137287195355baaafad33dc323ee3.0p-145L */ 698invln2_lo = 6.33178418956604368501892137426645911e-10L, /* 0x15c17f0bbbe87fed0691d3e88eb57.0p-143L */ 699invln10_lo_plus_hi = invln10_lo + invln10_hi, 700invln2_lo_plus_hi = invln2_lo + invln2_hi; 701 702long double 703log10l(long double x) 704{ 705 struct ld r; 706 long double hi, lo; 707 708 ENTERI(); 709 DOPRINT_START(&x); 710 k_logl(x, &r); 711 if (!r.lo_set) 712 RETURNPI(r.hi); 713 _2sumF(r.hi, r.lo); 714 hi = (float)r.hi; 715 lo = r.lo + (r.hi - hi); 716 RETURN2PI(invln10_hi * hi, 717 invln10_lo_plus_hi * lo + invln10_lo * hi); 718} 719 720long double 721log2l(long double x) 722{ 723 struct ld r; 724 long double hi, lo; 725 726 ENTERI(); 727 DOPRINT_START(&x); 728 k_logl(x, &r); 729 if (!r.lo_set) 730 RETURNPI(r.hi); 731 _2sumF(r.hi, r.lo); 732 hi = (float)r.hi; 733 lo = r.lo + (r.hi - hi); 734 RETURN2PI(invln2_hi * hi, 735 invln2_lo_plus_hi * lo + invln2_lo * hi); 736} 737 738#endif /* STRUCT_RETURN */ 739