1f9f848faSopenharmony_ci/*-
2f9f848faSopenharmony_ci * SPDX-License-Identifier: BSD-2-Clause
3f9f848faSopenharmony_ci *
4f9f848faSopenharmony_ci * Copyright (c) 2009-2013 Steven G. Kargl
5f9f848faSopenharmony_ci * All rights reserved.
6f9f848faSopenharmony_ci *
7f9f848faSopenharmony_ci * Redistribution and use in source and binary forms, with or without
8f9f848faSopenharmony_ci * modification, are permitted provided that the following conditions
9f9f848faSopenharmony_ci * are met:
10f9f848faSopenharmony_ci * 1. Redistributions of source code must retain the above copyright
11f9f848faSopenharmony_ci *    notice unmodified, this list of conditions, and the following
12f9f848faSopenharmony_ci *    disclaimer.
13f9f848faSopenharmony_ci * 2. Redistributions in binary form must reproduce the above copyright
14f9f848faSopenharmony_ci *    notice, this list of conditions and the following disclaimer in the
15f9f848faSopenharmony_ci *    documentation and/or other materials provided with the distribution.
16f9f848faSopenharmony_ci *
17f9f848faSopenharmony_ci * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18f9f848faSopenharmony_ci * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19f9f848faSopenharmony_ci * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20f9f848faSopenharmony_ci * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21f9f848faSopenharmony_ci * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22f9f848faSopenharmony_ci * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23f9f848faSopenharmony_ci * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24f9f848faSopenharmony_ci * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25f9f848faSopenharmony_ci * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26f9f848faSopenharmony_ci * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27f9f848faSopenharmony_ci *
28f9f848faSopenharmony_ci * Optimized by Bruce D. Evans.
29f9f848faSopenharmony_ci */
30f9f848faSopenharmony_ci
31f9f848faSopenharmony_ci#include <sys/cdefs.h>
32f9f848faSopenharmony_ci/*
33f9f848faSopenharmony_ci * ld128 version of s_expl.c.  See ../ld80/s_expl.c for most comments.
34f9f848faSopenharmony_ci */
35f9f848faSopenharmony_ci
36f9f848faSopenharmony_ci#include <float.h>
37f9f848faSopenharmony_ci
38f9f848faSopenharmony_ci#include "fpmath.h"
39f9f848faSopenharmony_ci#include "math.h"
40f9f848faSopenharmony_ci#include "math_private.h"
41f9f848faSopenharmony_ci#include "k_expl.h"
42f9f848faSopenharmony_ci
43f9f848faSopenharmony_ci/* XXX Prevent compilers from erroneously constant folding these: */
44f9f848faSopenharmony_cistatic const volatile long double
45f9f848faSopenharmony_cihuge = 0x1p10000L,
46f9f848faSopenharmony_citiny = 0x1p-10000L;
47f9f848faSopenharmony_ci
48f9f848faSopenharmony_cistatic const long double
49f9f848faSopenharmony_citwom10000 = 0x1p-10000L;
50f9f848faSopenharmony_ci
51f9f848faSopenharmony_cistatic const long double
52f9f848faSopenharmony_ci/* log(2**16384 - 0.5) rounded towards zero: */
53f9f848faSopenharmony_ci/* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
54f9f848faSopenharmony_cio_threshold =  11356.523406294143949491931077970763428L,
55f9f848faSopenharmony_ci/* log(2**(-16381-64-1)) rounded towards zero: */
56f9f848faSopenharmony_ciu_threshold = -11433.462743336297878837243843452621503L;
57f9f848faSopenharmony_ci
58f9f848faSopenharmony_cilong double
59f9f848faSopenharmony_ciexpl(long double x)
60f9f848faSopenharmony_ci{
61f9f848faSopenharmony_ci	union IEEEl2bits u;
62f9f848faSopenharmony_ci	long double hi, lo, t, twopk;
63f9f848faSopenharmony_ci	int k;
64f9f848faSopenharmony_ci	uint16_t hx, ix;
65f9f848faSopenharmony_ci
66f9f848faSopenharmony_ci	DOPRINT_START(&x);
67f9f848faSopenharmony_ci
68f9f848faSopenharmony_ci	/* Filter out exceptional cases. */
69f9f848faSopenharmony_ci	u.e = x;
70f9f848faSopenharmony_ci	hx = u.xbits.expsign;
71f9f848faSopenharmony_ci	ix = hx & 0x7fff;
72f9f848faSopenharmony_ci	if (ix >= BIAS + 13) {		/* |x| >= 8192 or x is NaN */
73f9f848faSopenharmony_ci		if (ix == BIAS + LDBL_MAX_EXP) {
74f9f848faSopenharmony_ci			if (hx & 0x8000)  /* x is -Inf or -NaN */
75f9f848faSopenharmony_ci				RETURNP(-1 / x);
76f9f848faSopenharmony_ci			RETURNP(x + x);	/* x is +Inf or +NaN */
77f9f848faSopenharmony_ci		}
78f9f848faSopenharmony_ci		if (x > o_threshold)
79f9f848faSopenharmony_ci			RETURNP(huge * huge);
80f9f848faSopenharmony_ci		if (x < u_threshold)
81f9f848faSopenharmony_ci			RETURNP(tiny * tiny);
82f9f848faSopenharmony_ci	} else if (ix < BIAS - 114) {	/* |x| < 0x1p-114 */
83f9f848faSopenharmony_ci		RETURN2P(1, x);		/* 1 with inexact iff x != 0 */
84f9f848faSopenharmony_ci	}
85f9f848faSopenharmony_ci
86f9f848faSopenharmony_ci	ENTERI();
87f9f848faSopenharmony_ci
88f9f848faSopenharmony_ci	twopk = 1;
89f9f848faSopenharmony_ci	__k_expl(x, &hi, &lo, &k);
90f9f848faSopenharmony_ci	t = SUM2P(hi, lo);
91f9f848faSopenharmony_ci
92f9f848faSopenharmony_ci	/* Scale by 2**k. */
93f9f848faSopenharmony_ci	/*
94f9f848faSopenharmony_ci	 * XXX sparc64 multiplication was so slow that scalbnl() is faster,
95f9f848faSopenharmony_ci	 * but performance on aarch64 and riscv hasn't yet been quantified.
96f9f848faSopenharmony_ci	 */
97f9f848faSopenharmony_ci	if (k >= LDBL_MIN_EXP) {
98f9f848faSopenharmony_ci		if (k == LDBL_MAX_EXP)
99f9f848faSopenharmony_ci			RETURNI(t * 2 * 0x1p16383L);
100f9f848faSopenharmony_ci		SET_LDBL_EXPSIGN(twopk, BIAS + k);
101f9f848faSopenharmony_ci		RETURNI(t * twopk);
102f9f848faSopenharmony_ci	} else {
103f9f848faSopenharmony_ci		SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
104f9f848faSopenharmony_ci		RETURNI(t * twopk * twom10000);
105f9f848faSopenharmony_ci	}
106f9f848faSopenharmony_ci}
107f9f848faSopenharmony_ci
108f9f848faSopenharmony_ci/*
109f9f848faSopenharmony_ci * Our T1 and T2 are chosen to be approximately the points where method
110f9f848faSopenharmony_ci * A and method B have the same accuracy.  Tang's T1 and T2 are the
111f9f848faSopenharmony_ci * points where method A's accuracy changes by a full bit.  For Tang,
112f9f848faSopenharmony_ci * this drop in accuracy makes method A immediately less accurate than
113f9f848faSopenharmony_ci * method B, but our larger INTERVALS makes method A 2 bits more
114f9f848faSopenharmony_ci * accurate so it remains the most accurate method significantly
115f9f848faSopenharmony_ci * closer to the origin despite losing the full bit in our extended
116f9f848faSopenharmony_ci * range for it.
117f9f848faSopenharmony_ci *
118f9f848faSopenharmony_ci * Split the interval [T1, T2] into two intervals [T1, T3] and [T3, T2].
119f9f848faSopenharmony_ci * Setting T3 to 0 would require the |x| < 0x1p-113 condition to appear
120f9f848faSopenharmony_ci * in both subintervals, so set T3 = 2**-5, which places the condition
121f9f848faSopenharmony_ci * into the [T1, T3] interval.
122f9f848faSopenharmony_ci *
123f9f848faSopenharmony_ci * XXX we now do this more to (partially) balance the number of terms
124f9f848faSopenharmony_ci * in the C and D polys than to avoid checking the condition in both
125f9f848faSopenharmony_ci * intervals.
126f9f848faSopenharmony_ci *
127f9f848faSopenharmony_ci * XXX these micro-optimizations are excessive.
128f9f848faSopenharmony_ci */
129f9f848faSopenharmony_cistatic const double
130f9f848faSopenharmony_ciT1 = -0.1659,				/* ~-30.625/128 * log(2) */
131f9f848faSopenharmony_ciT2 =  0.1659,				/* ~30.625/128 * log(2) */
132f9f848faSopenharmony_ciT3 =  0.03125;
133f9f848faSopenharmony_ci
134f9f848faSopenharmony_ci/*
135f9f848faSopenharmony_ci * Domain [-0.1659, 0.03125], range ~[2.9134e-44, 1.8404e-37]:
136f9f848faSopenharmony_ci * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-122.03
137f9f848faSopenharmony_ci *
138f9f848faSopenharmony_ci * XXX none of the long double C or D coeffs except C10 is correctly printed.
139f9f848faSopenharmony_ci * If you re-print their values in %.35Le format, the result is always
140f9f848faSopenharmony_ci * different.  For example, the last 2 digits in C3 should be 59, not 67.
141f9f848faSopenharmony_ci * 67 is apparently from rounding an extra-precision value to 36 decimal
142f9f848faSopenharmony_ci * places.
143f9f848faSopenharmony_ci */
144f9f848faSopenharmony_cistatic const long double
145f9f848faSopenharmony_ciC3  =  1.66666666666666666666666666666666667e-1L,
146f9f848faSopenharmony_ciC4  =  4.16666666666666666666666666666666645e-2L,
147f9f848faSopenharmony_ciC5  =  8.33333333333333333333333333333371638e-3L,
148f9f848faSopenharmony_ciC6  =  1.38888888888888888888888888891188658e-3L,
149f9f848faSopenharmony_ciC7  =  1.98412698412698412698412697235950394e-4L,
150f9f848faSopenharmony_ciC8  =  2.48015873015873015873015112487849040e-5L,
151f9f848faSopenharmony_ciC9  =  2.75573192239858906525606685484412005e-6L,
152f9f848faSopenharmony_ciC10 =  2.75573192239858906612966093057020362e-7L,
153f9f848faSopenharmony_ciC11 =  2.50521083854417203619031960151253944e-8L,
154f9f848faSopenharmony_ciC12 =  2.08767569878679576457272282566520649e-9L,
155f9f848faSopenharmony_ciC13 =  1.60590438367252471783548748824255707e-10L;
156f9f848faSopenharmony_ci
157f9f848faSopenharmony_ci/*
158f9f848faSopenharmony_ci * XXX this has 1 more coeff than needed.
159f9f848faSopenharmony_ci * XXX can start the double coeffs but not the double mults at C10.
160f9f848faSopenharmony_ci * With my coeffs (C10-C17 double; s = best_s):
161f9f848faSopenharmony_ci * Domain [-0.1659, 0.03125], range ~[-1.1976e-37, 1.1976e-37]:
162f9f848faSopenharmony_ci * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
163f9f848faSopenharmony_ci */
164f9f848faSopenharmony_cistatic const double
165f9f848faSopenharmony_ciC14 =  1.1470745580491932e-11,		/*  0x1.93974a81dae30p-37 */
166f9f848faSopenharmony_ciC15 =  7.6471620181090468e-13,		/*  0x1.ae7f3820adab1p-41 */
167f9f848faSopenharmony_ciC16 =  4.7793721460260450e-14,		/*  0x1.ae7cd18a18eacp-45 */
168f9f848faSopenharmony_ciC17 =  2.8074757356658877e-15,		/*  0x1.949992a1937d9p-49 */
169f9f848faSopenharmony_ciC18 =  1.4760610323699476e-16;		/*  0x1.545b43aabfbcdp-53 */
170f9f848faSopenharmony_ci
171f9f848faSopenharmony_ci/*
172f9f848faSopenharmony_ci * Domain [0.03125, 0.1659], range ~[-2.7676e-37, -1.0367e-38]:
173f9f848faSopenharmony_ci * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-121.44
174f9f848faSopenharmony_ci */
175f9f848faSopenharmony_cistatic const long double
176f9f848faSopenharmony_ciD3  =  1.66666666666666666666666666666682245e-1L,
177f9f848faSopenharmony_ciD4  =  4.16666666666666666666666666634228324e-2L,
178f9f848faSopenharmony_ciD5  =  8.33333333333333333333333364022244481e-3L,
179f9f848faSopenharmony_ciD6  =  1.38888888888888888888887138722762072e-3L,
180f9f848faSopenharmony_ciD7  =  1.98412698412698412699085805424661471e-4L,
181f9f848faSopenharmony_ciD8  =  2.48015873015873015687993712101479612e-5L,
182f9f848faSopenharmony_ciD9  =  2.75573192239858944101036288338208042e-6L,
183f9f848faSopenharmony_ciD10 =  2.75573192239853161148064676533754048e-7L,
184f9f848faSopenharmony_ciD11 =  2.50521083855084570046480450935267433e-8L,
185f9f848faSopenharmony_ciD12 =  2.08767569819738524488686318024854942e-9L,
186f9f848faSopenharmony_ciD13 =  1.60590442297008495301927448122499313e-10L;
187f9f848faSopenharmony_ci
188f9f848faSopenharmony_ci/*
189f9f848faSopenharmony_ci * XXX this has 1 more coeff than needed.
190f9f848faSopenharmony_ci * XXX can start the double coeffs but not the double mults at D11.
191f9f848faSopenharmony_ci * With my coeffs (D11-D16 double):
192f9f848faSopenharmony_ci * Domain [0.03125, 0.1659], range ~[-1.1980e-37, 1.1980e-37]:
193f9f848faSopenharmony_ci * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
194f9f848faSopenharmony_ci */
195f9f848faSopenharmony_cistatic const double
196f9f848faSopenharmony_ciD14 =  1.1470726176204336e-11,		/*  0x1.93971dc395d9ep-37 */
197f9f848faSopenharmony_ciD15 =  7.6478532249581686e-13,		/*  0x1.ae892e3D16fcep-41 */
198f9f848faSopenharmony_ciD16 =  4.7628892832607741e-14,		/*  0x1.ad00Dfe41feccp-45 */
199f9f848faSopenharmony_ciD17 =  3.0524857220358650e-15;		/*  0x1.D7e8d886Df921p-49 */
200f9f848faSopenharmony_ci
201f9f848faSopenharmony_cilong double
202f9f848faSopenharmony_ciexpm1l(long double x)
203f9f848faSopenharmony_ci{
204f9f848faSopenharmony_ci	union IEEEl2bits u, v;
205f9f848faSopenharmony_ci	long double hx2_hi, hx2_lo, q, r, r1, t, twomk, twopk, x_hi;
206f9f848faSopenharmony_ci	long double x_lo, x2;
207f9f848faSopenharmony_ci	double dr, dx, fn, r2;
208f9f848faSopenharmony_ci	int k, n, n2;
209f9f848faSopenharmony_ci	uint16_t hx, ix;
210f9f848faSopenharmony_ci
211f9f848faSopenharmony_ci	DOPRINT_START(&x);
212f9f848faSopenharmony_ci
213f9f848faSopenharmony_ci	/* Filter out exceptional cases. */
214f9f848faSopenharmony_ci	u.e = x;
215f9f848faSopenharmony_ci	hx = u.xbits.expsign;
216f9f848faSopenharmony_ci	ix = hx & 0x7fff;
217f9f848faSopenharmony_ci	if (ix >= BIAS + 7) {		/* |x| >= 128 or x is NaN */
218f9f848faSopenharmony_ci		if (ix == BIAS + LDBL_MAX_EXP) {
219f9f848faSopenharmony_ci			if (hx & 0x8000)  /* x is -Inf or -NaN */
220f9f848faSopenharmony_ci				RETURNP(-1 / x - 1);
221f9f848faSopenharmony_ci			RETURNP(x + x);	/* x is +Inf or +NaN */
222f9f848faSopenharmony_ci		}
223f9f848faSopenharmony_ci		if (x > o_threshold)
224f9f848faSopenharmony_ci			RETURNP(huge * huge);
225f9f848faSopenharmony_ci		/*
226f9f848faSopenharmony_ci		 * expm1l() never underflows, but it must avoid
227f9f848faSopenharmony_ci		 * unrepresentable large negative exponents.  We used a
228f9f848faSopenharmony_ci		 * much smaller threshold for large |x| above than in
229f9f848faSopenharmony_ci		 * expl() so as to handle not so large negative exponents
230f9f848faSopenharmony_ci		 * in the same way as large ones here.
231f9f848faSopenharmony_ci		 */
232f9f848faSopenharmony_ci		if (hx & 0x8000)	/* x <= -128 */
233f9f848faSopenharmony_ci			RETURN2P(tiny, -1);	/* good for x < -114ln2 - eps */
234f9f848faSopenharmony_ci	}
235f9f848faSopenharmony_ci
236f9f848faSopenharmony_ci	ENTERI();
237f9f848faSopenharmony_ci
238f9f848faSopenharmony_ci	if (T1 < x && x < T2) {
239f9f848faSopenharmony_ci		x2 = x * x;
240f9f848faSopenharmony_ci		dx = x;
241f9f848faSopenharmony_ci
242f9f848faSopenharmony_ci		if (x < T3) {
243f9f848faSopenharmony_ci			if (ix < BIAS - 113) {	/* |x| < 0x1p-113 */
244f9f848faSopenharmony_ci				/* x (rounded) with inexact if x != 0: */
245f9f848faSopenharmony_ci				RETURNPI(x == 0 ? x :
246f9f848faSopenharmony_ci				    (0x1p200 * x + fabsl(x)) * 0x1p-200);
247f9f848faSopenharmony_ci			}
248f9f848faSopenharmony_ci			q = x * x2 * C3 + x2 * x2 * (C4 + x * (C5 + x * (C6 +
249f9f848faSopenharmony_ci			    x * (C7 + x * (C8 + x * (C9 + x * (C10 +
250f9f848faSopenharmony_ci			    x * (C11 + x * (C12 + x * (C13 +
251f9f848faSopenharmony_ci			    dx * (C14 + dx * (C15 + dx * (C16 +
252f9f848faSopenharmony_ci			    dx * (C17 + dx * C18))))))))))))));
253f9f848faSopenharmony_ci		} else {
254f9f848faSopenharmony_ci			q = x * x2 * D3 + x2 * x2 * (D4 + x * (D5 + x * (D6 +
255f9f848faSopenharmony_ci			    x * (D7 + x * (D8 + x * (D9 + x * (D10 +
256f9f848faSopenharmony_ci			    x * (D11 + x * (D12 + x * (D13 +
257f9f848faSopenharmony_ci			    dx * (D14 + dx * (D15 + dx * (D16 +
258f9f848faSopenharmony_ci			    dx * D17)))))))))))));
259f9f848faSopenharmony_ci		}
260f9f848faSopenharmony_ci
261f9f848faSopenharmony_ci		x_hi = (float)x;
262f9f848faSopenharmony_ci		x_lo = x - x_hi;
263f9f848faSopenharmony_ci		hx2_hi = x_hi * x_hi / 2;
264f9f848faSopenharmony_ci		hx2_lo = x_lo * (x + x_hi) / 2;
265f9f848faSopenharmony_ci		if (ix >= BIAS - 7)
266f9f848faSopenharmony_ci			RETURN2PI(hx2_hi + x_hi, hx2_lo + x_lo + q);
267f9f848faSopenharmony_ci		else
268f9f848faSopenharmony_ci			RETURN2PI(x, hx2_lo + q + hx2_hi);
269f9f848faSopenharmony_ci	}
270f9f848faSopenharmony_ci
271f9f848faSopenharmony_ci	/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
272f9f848faSopenharmony_ci	fn = rnint((double)x * INV_L);
273f9f848faSopenharmony_ci	n = irint(fn);
274f9f848faSopenharmony_ci	n2 = (unsigned)n % INTERVALS;
275f9f848faSopenharmony_ci	k = n >> LOG2_INTERVALS;
276f9f848faSopenharmony_ci	r1 = x - fn * L1;
277f9f848faSopenharmony_ci	r2 = fn * -L2;
278f9f848faSopenharmony_ci	r = r1 + r2;
279f9f848faSopenharmony_ci
280f9f848faSopenharmony_ci	/* Prepare scale factor. */
281f9f848faSopenharmony_ci	v.e = 1;
282f9f848faSopenharmony_ci	v.xbits.expsign = BIAS + k;
283f9f848faSopenharmony_ci	twopk = v.e;
284f9f848faSopenharmony_ci
285f9f848faSopenharmony_ci	/*
286f9f848faSopenharmony_ci	 * Evaluate lower terms of
287f9f848faSopenharmony_ci	 * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
288f9f848faSopenharmony_ci	 */
289f9f848faSopenharmony_ci	dr = r;
290f9f848faSopenharmony_ci	q = r2 + r * r * (A2 + r * (A3 + r * (A4 + r * (A5 + r * (A6 +
291f9f848faSopenharmony_ci	    dr * (A7 + dr * (A8 + dr * (A9 + dr * A10))))))));
292f9f848faSopenharmony_ci
293f9f848faSopenharmony_ci	t = tbl[n2].lo + tbl[n2].hi;
294f9f848faSopenharmony_ci
295f9f848faSopenharmony_ci	if (k == 0) {
296f9f848faSopenharmony_ci		t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
297f9f848faSopenharmony_ci		    tbl[n2].hi * r1);
298f9f848faSopenharmony_ci		RETURNI(t);
299f9f848faSopenharmony_ci	}
300f9f848faSopenharmony_ci	if (k == -1) {
301f9f848faSopenharmony_ci		t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
302f9f848faSopenharmony_ci		    tbl[n2].hi * r1);
303f9f848faSopenharmony_ci		RETURNI(t / 2);
304f9f848faSopenharmony_ci	}
305f9f848faSopenharmony_ci	if (k < -7) {
306f9f848faSopenharmony_ci		t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
307f9f848faSopenharmony_ci		RETURNI(t * twopk - 1);
308f9f848faSopenharmony_ci	}
309f9f848faSopenharmony_ci	if (k > 2 * LDBL_MANT_DIG - 1) {
310f9f848faSopenharmony_ci		t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
311f9f848faSopenharmony_ci		if (k == LDBL_MAX_EXP)
312f9f848faSopenharmony_ci			RETURNI(t * 2 * 0x1p16383L - 1);
313f9f848faSopenharmony_ci		RETURNI(t * twopk - 1);
314f9f848faSopenharmony_ci	}
315f9f848faSopenharmony_ci
316f9f848faSopenharmony_ci	v.xbits.expsign = BIAS - k;
317f9f848faSopenharmony_ci	twomk = v.e;
318f9f848faSopenharmony_ci
319f9f848faSopenharmony_ci	if (k > LDBL_MANT_DIG - 1)
320f9f848faSopenharmony_ci		t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
321f9f848faSopenharmony_ci	else
322f9f848faSopenharmony_ci		t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
323f9f848faSopenharmony_ci	RETURNI(t * twopk);
324f9f848faSopenharmony_ci}
325