xref: /third_party/FreeBSD/lib/msun/ld128/e_powl.c (revision f9f848fa)
1/*-
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4 *
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12/*
13 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
14 *
15 * Permission to use, copy, modify, and distribute this software for any
16 * purpose with or without fee is hereby granted, provided that the above
17 * copyright notice and this permission notice appear in all copies.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
20 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
22 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
23 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
24 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
25 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
26 */
27
28/* powl(x,y) return x**y
29 *
30 *		      n
31 * Method:  Let x =  2   * (1+f)
32 *	1. Compute and return log2(x) in two pieces:
33 *		log2(x) = w1 + w2,
34 *	   where w1 has 113-53 = 60 bit trailing zeros.
35 *	2. Perform y*log2(x) = n+y' by simulating multi-precision
36 *	   arithmetic, where |y'|<=0.5.
37 *	3. Return x**y = 2**n*exp(y'*log2)
38 *
39 * Special cases:
40 *	1.  (anything) ** 0  is 1
41 *	2.  (anything) ** 1  is itself
42 *	3.  (anything) ** NAN is NAN
43 *	4.  NAN ** (anything except 0) is NAN
44 *	5.  +-(|x| > 1) **  +INF is +INF
45 *	6.  +-(|x| > 1) **  -INF is +0
46 *	7.  +-(|x| < 1) **  +INF is +0
47 *	8.  +-(|x| < 1) **  -INF is +INF
48 *	9.  +-1         ** +-INF is NAN
49 *	10. +0 ** (+anything except 0, NAN)               is +0
50 *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
51 *	12. +0 ** (-anything except 0, NAN)               is +INF
52 *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
53 *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
54 *	15. +INF ** (+anything except 0,NAN) is +INF
55 *	16. +INF ** (-anything except 0,NAN) is +0
56 *	17. -INF ** (anything)  = -0 ** (-anything)
57 *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
58 *	19. (-anything except 0 and inf) ** (non-integer) is NAN
59 *
60 */
61
62#include <sys/cdefs.h>
63#include <float.h>
64#include <math.h>
65
66#include "math_private.h"
67
68static const long double bp[] = {
69  1.0L,
70  1.5L,
71};
72
73/* log_2(1.5) */
74static const long double dp_h[] = {
75  0.0,
76  5.8496250072115607565592654282227158546448E-1L
77};
78
79/* Low part of log_2(1.5) */
80static const long double dp_l[] = {
81  0.0,
82  1.0579781240112554492329533686862998106046E-16L
83};
84
85static const long double zero = 0.0L,
86  one = 1.0L,
87  two = 2.0L,
88  two113 = 1.0384593717069655257060992658440192E34L,
89  huge = 1.0e3000L,
90  tiny = 1.0e-3000L;
91
92/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
93   z = (x-1)/(x+1)
94   1 <= x <= 1.25
95   Peak relative error 2.3e-37 */
96static const long double LN[] =
97{
98 -3.0779177200290054398792536829702930623200E1L,
99  6.5135778082209159921251824580292116201640E1L,
100 -4.6312921812152436921591152809994014413540E1L,
101  1.2510208195629420304615674658258363295208E1L,
102 -9.9266909031921425609179910128531667336670E-1L
103};
104static const long double LD[] =
105{
106 -5.129862866715009066465422805058933131960E1L,
107  1.452015077564081884387441590064272782044E2L,
108 -1.524043275549860505277434040464085593165E2L,
109  7.236063513651544224319663428634139768808E1L,
110 -1.494198912340228235853027849917095580053E1L
111  /* 1.0E0 */
112};
113
114/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
115   0 <= x <= 0.5
116   Peak relative error 5.7e-38  */
117static const long double PN[] =
118{
119  5.081801691915377692446852383385968225675E8L,
120  9.360895299872484512023336636427675327355E6L,
121  4.213701282274196030811629773097579432957E4L,
122  5.201006511142748908655720086041570288182E1L,
123  9.088368420359444263703202925095675982530E-3L,
124};
125static const long double PD[] =
126{
127  3.049081015149226615468111430031590411682E9L,
128  1.069833887183886839966085436512368982758E8L,
129  8.259257717868875207333991924545445705394E5L,
130  1.872583833284143212651746812884298360922E3L,
131  /* 1.0E0 */
132};
133
134static const long double
135  /* ln 2 */
136  lg2 = 6.9314718055994530941723212145817656807550E-1L,
137  lg2_h = 6.9314718055994528622676398299518041312695E-1L,
138  lg2_l = 2.3190468138462996154948554638754786504121E-17L,
139  ovt = 8.0085662595372944372e-0017L,
140  /* 2/(3*log(2)) */
141  cp = 9.6179669392597560490661645400126142495110E-1L,
142  cp_h = 9.6179669392597555432899980587535537779331E-1L,
143  cp_l = 5.0577616648125906047157785230014751039424E-17L;
144
145long double
146powl(long double x, long double y)
147{
148  long double z, ax, z_h, z_l, p_h, p_l;
149  long double yy1, t1, t2, r, s, t, u, v, w;
150  long double s2, s_h, s_l, t_h, t_l;
151  int32_t i, j, k, yisint, n;
152  u_int32_t ix, iy;
153  int32_t hx, hy;
154  ieee_quad_shape_type o, p, q;
155
156  p.value = x;
157  hx = p.parts32.mswhi;
158  ix = hx & 0x7fffffff;
159
160  q.value = y;
161  hy = q.parts32.mswhi;
162  iy = hy & 0x7fffffff;
163
164
165  /* y==zero: x**0 = 1 */
166  if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
167    return one;
168
169  /* 1.0**y = 1; -1.0**+-Inf = 1 */
170  if (x == one)
171    return one;
172  if (x == -1.0L && iy == 0x7fff0000
173      && (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
174    return one;
175
176  /* +-NaN return x+y */
177  if ((ix > 0x7fff0000)
178      || ((ix == 0x7fff0000)
179	  && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
180      || (iy > 0x7fff0000)
181      || ((iy == 0x7fff0000)
182	  && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
183    return nan_mix(x, y);
184
185  /* determine if y is an odd int when x < 0
186   * yisint = 0       ... y is not an integer
187   * yisint = 1       ... y is an odd int
188   * yisint = 2       ... y is an even int
189   */
190  yisint = 0;
191  if (hx < 0)
192    {
193      if (iy >= 0x40700000)	/* 2^113 */
194	yisint = 2;		/* even integer y */
195      else if (iy >= 0x3fff0000)	/* 1.0 */
196	{
197	  if (floorl (y) == y)
198	    {
199	      z = 0.5 * y;
200	      if (floorl (z) == z)
201		yisint = 2;
202	      else
203		yisint = 1;
204	    }
205	}
206    }
207
208  /* special value of y */
209  if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
210    {
211      if (iy == 0x7fff0000)	/* y is +-inf */
212	{
213	  if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
214	    p.parts32.lswlo) == 0)
215	    return y - y;	/* +-1**inf is NaN */
216	  else if (ix >= 0x3fff0000)	/* (|x|>1)**+-inf = inf,0 */
217	    return (hy >= 0) ? y : zero;
218	  else			/* (|x|<1)**-,+inf = inf,0 */
219	    return (hy < 0) ? -y : zero;
220	}
221      if (iy == 0x3fff0000)
222	{			/* y is  +-1 */
223	  if (hy < 0)
224	    return one / x;
225	  else
226	    return x;
227	}
228      if (hy == 0x40000000)
229	return x * x;		/* y is  2 */
230      if (hy == 0x3ffe0000)
231	{			/* y is  0.5 */
232	  if (hx >= 0)		/* x >= +0 */
233	    return sqrtl (x);
234	}
235    }
236
237  ax = fabsl (x);
238  /* special value of x */
239  if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
240    {
241      if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
242	{
243	  z = ax;		/*x is +-0,+-inf,+-1 */
244	  if (hy < 0)
245	    z = one / z;	/* z = (1/|x|) */
246	  if (hx < 0)
247	    {
248	      if (((ix - 0x3fff0000) | yisint) == 0)
249		{
250		  z = (z - z) / (z - z);	/* (-1)**non-int is NaN */
251		}
252	      else if (yisint == 1)
253		z = -z;		/* (x<0)**odd = -(|x|**odd) */
254	    }
255	  return z;
256	}
257    }
258
259  /* (x<0)**(non-int) is NaN */
260  if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
261    return (x - x) / (x - x);
262
263  /* |y| is huge.
264     2^-16495 = 1/2 of smallest representable value.
265     If (1 - 1/131072)^y underflows, y > 1.4986e9 */
266  if (iy > 0x401d654b)
267    {
268      /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
269      if (iy > 0x407d654b)
270	{
271	  if (ix <= 0x3ffeffff)
272	    return (hy < 0) ? huge * huge : tiny * tiny;
273	  if (ix >= 0x3fff0000)
274	    return (hy > 0) ? huge * huge : tiny * tiny;
275	}
276      /* over/underflow if x is not close to one */
277      if (ix < 0x3ffeffff)
278	return (hy < 0) ? huge * huge : tiny * tiny;
279      if (ix > 0x3fff0000)
280	return (hy > 0) ? huge * huge : tiny * tiny;
281    }
282
283  n = 0;
284  /* take care subnormal number */
285  if (ix < 0x00010000)
286    {
287      ax *= two113;
288      n -= 113;
289      o.value = ax;
290      ix = o.parts32.mswhi;
291    }
292  n += ((ix) >> 16) - 0x3fff;
293  j = ix & 0x0000ffff;
294  /* determine interval */
295  ix = j | 0x3fff0000;		/* normalize ix */
296  if (j <= 0x3988)
297    k = 0;			/* |x|<sqrt(3/2) */
298  else if (j < 0xbb67)
299    k = 1;			/* |x|<sqrt(3)   */
300  else
301    {
302      k = 0;
303      n += 1;
304      ix -= 0x00010000;
305    }
306
307  o.value = ax;
308  o.parts32.mswhi = ix;
309  ax = o.value;
310
311  /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
312  u = ax - bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
313  v = one / (ax + bp[k]);
314  s = u * v;
315  s_h = s;
316
317  o.value = s_h;
318  o.parts32.lswlo = 0;
319  o.parts32.lswhi &= 0xf8000000;
320  s_h = o.value;
321  /* t_h=ax+bp[k] High */
322  t_h = ax + bp[k];
323  o.value = t_h;
324  o.parts32.lswlo = 0;
325  o.parts32.lswhi &= 0xf8000000;
326  t_h = o.value;
327  t_l = ax - (t_h - bp[k]);
328  s_l = v * ((u - s_h * t_h) - s_h * t_l);
329  /* compute log(ax) */
330  s2 = s * s;
331  u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
332  v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
333  r = s2 * s2 * u / v;
334  r += s_l * (s_h + s);
335  s2 = s_h * s_h;
336  t_h = 3.0 + s2 + r;
337  o.value = t_h;
338  o.parts32.lswlo = 0;
339  o.parts32.lswhi &= 0xf8000000;
340  t_h = o.value;
341  t_l = r - ((t_h - 3.0) - s2);
342  /* u+v = s*(1+...) */
343  u = s_h * t_h;
344  v = s_l * t_h + t_l * s;
345  /* 2/(3log2)*(s+...) */
346  p_h = u + v;
347  o.value = p_h;
348  o.parts32.lswlo = 0;
349  o.parts32.lswhi &= 0xf8000000;
350  p_h = o.value;
351  p_l = v - (p_h - u);
352  z_h = cp_h * p_h;		/* cp_h+cp_l = 2/(3*log2) */
353  z_l = cp_l * p_h + p_l * cp + dp_l[k];
354  /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
355  t = (long double) n;
356  t1 = (((z_h + z_l) + dp_h[k]) + t);
357  o.value = t1;
358  o.parts32.lswlo = 0;
359  o.parts32.lswhi &= 0xf8000000;
360  t1 = o.value;
361  t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
362
363  /* s (sign of result -ve**odd) = -1 else = 1 */
364  s = one;
365  if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
366    s = -one;			/* (-ve)**(odd int) */
367
368  /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
369  yy1 = y;
370  o.value = yy1;
371  o.parts32.lswlo = 0;
372  o.parts32.lswhi &= 0xf8000000;
373  yy1 = o.value;
374  p_l = (y - yy1) * t1 + y * t2;
375  p_h = yy1 * t1;
376  z = p_l + p_h;
377  o.value = z;
378  j = o.parts32.mswhi;
379  if (j >= 0x400d0000) /* z >= 16384 */
380    {
381      /* if z > 16384 */
382      if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
383	o.parts32.lswlo) != 0)
384	return s * huge * huge;	/* overflow */
385      else
386	{
387	  if (p_l + ovt > z - p_h)
388	    return s * huge * huge;	/* overflow */
389	}
390    }
391  else if ((j & 0x7fffffff) >= 0x400d01b9)	/* z <= -16495 */
392    {
393      /* z < -16495 */
394      if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
395	o.parts32.lswlo)
396	  != 0)
397	return s * tiny * tiny;	/* underflow */
398      else
399	{
400	  if (p_l <= z - p_h)
401	    return s * tiny * tiny;	/* underflow */
402	}
403    }
404  /* compute 2**(p_h+p_l) */
405  i = j & 0x7fffffff;
406  k = (i >> 16) - 0x3fff;
407  n = 0;
408  if (i > 0x3ffe0000)
409    {				/* if |z| > 0.5, set n = [z+0.5] */
410      n = floorl (z + 0.5L);
411      t = n;
412      p_h -= t;
413    }
414  t = p_l + p_h;
415  o.value = t;
416  o.parts32.lswlo = 0;
417  o.parts32.lswhi &= 0xf8000000;
418  t = o.value;
419  u = t * lg2_h;
420  v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
421  z = u + v;
422  w = v - (z - u);
423  /*  exp(z) */
424  t = z * z;
425  u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
426  v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
427  t1 = z - t * u / v;
428  r = (z * t1) / (t1 - two) - (w + z * w);
429  z = one - (r - z);
430  o.value = z;
431  j = o.parts32.mswhi;
432  j += (n << 16);
433  if ((j >> 16) <= 0)
434    z = scalbnl (z, n);	/* subnormal output */
435  else
436    {
437      o.parts32.mswhi = j;
438      z = o.value;
439    }
440  return s * z;
441}
442