1f9f848faSopenharmony_ci/*-
2f9f848faSopenharmony_ci * ====================================================
3f9f848faSopenharmony_ci * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4f9f848faSopenharmony_ci *
5f9f848faSopenharmony_ci * Developed at SunPro, a Sun Microsystems, Inc. business.
6f9f848faSopenharmony_ci * Permission to use, copy, modify, and distribute this
7f9f848faSopenharmony_ci * software is freely granted, provided that this notice
8f9f848faSopenharmony_ci * is preserved.
9f9f848faSopenharmony_ci * ====================================================
10f9f848faSopenharmony_ci */
11f9f848faSopenharmony_ci
12f9f848faSopenharmony_ci/*
13f9f848faSopenharmony_ci * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
14f9f848faSopenharmony_ci *
15f9f848faSopenharmony_ci * Permission to use, copy, modify, and distribute this software for any
16f9f848faSopenharmony_ci * purpose with or without fee is hereby granted, provided that the above
17f9f848faSopenharmony_ci * copyright notice and this permission notice appear in all copies.
18f9f848faSopenharmony_ci *
19f9f848faSopenharmony_ci * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
20f9f848faSopenharmony_ci * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
21f9f848faSopenharmony_ci * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
22f9f848faSopenharmony_ci * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
23f9f848faSopenharmony_ci * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
24f9f848faSopenharmony_ci * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
25f9f848faSopenharmony_ci * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
26f9f848faSopenharmony_ci */
27f9f848faSopenharmony_ci
28f9f848faSopenharmony_ci/* powl(x,y) return x**y
29f9f848faSopenharmony_ci *
30f9f848faSopenharmony_ci *		      n
31f9f848faSopenharmony_ci * Method:  Let x =  2   * (1+f)
32f9f848faSopenharmony_ci *	1. Compute and return log2(x) in two pieces:
33f9f848faSopenharmony_ci *		log2(x) = w1 + w2,
34f9f848faSopenharmony_ci *	   where w1 has 113-53 = 60 bit trailing zeros.
35f9f848faSopenharmony_ci *	2. Perform y*log2(x) = n+y' by simulating multi-precision
36f9f848faSopenharmony_ci *	   arithmetic, where |y'|<=0.5.
37f9f848faSopenharmony_ci *	3. Return x**y = 2**n*exp(y'*log2)
38f9f848faSopenharmony_ci *
39f9f848faSopenharmony_ci * Special cases:
40f9f848faSopenharmony_ci *	1.  (anything) ** 0  is 1
41f9f848faSopenharmony_ci *	2.  (anything) ** 1  is itself
42f9f848faSopenharmony_ci *	3.  (anything) ** NAN is NAN
43f9f848faSopenharmony_ci *	4.  NAN ** (anything except 0) is NAN
44f9f848faSopenharmony_ci *	5.  +-(|x| > 1) **  +INF is +INF
45f9f848faSopenharmony_ci *	6.  +-(|x| > 1) **  -INF is +0
46f9f848faSopenharmony_ci *	7.  +-(|x| < 1) **  +INF is +0
47f9f848faSopenharmony_ci *	8.  +-(|x| < 1) **  -INF is +INF
48f9f848faSopenharmony_ci *	9.  +-1         ** +-INF is NAN
49f9f848faSopenharmony_ci *	10. +0 ** (+anything except 0, NAN)               is +0
50f9f848faSopenharmony_ci *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
51f9f848faSopenharmony_ci *	12. +0 ** (-anything except 0, NAN)               is +INF
52f9f848faSopenharmony_ci *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
53f9f848faSopenharmony_ci *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
54f9f848faSopenharmony_ci *	15. +INF ** (+anything except 0,NAN) is +INF
55f9f848faSopenharmony_ci *	16. +INF ** (-anything except 0,NAN) is +0
56f9f848faSopenharmony_ci *	17. -INF ** (anything)  = -0 ** (-anything)
57f9f848faSopenharmony_ci *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
58f9f848faSopenharmony_ci *	19. (-anything except 0 and inf) ** (non-integer) is NAN
59f9f848faSopenharmony_ci *
60f9f848faSopenharmony_ci */
61f9f848faSopenharmony_ci
62f9f848faSopenharmony_ci#include <sys/cdefs.h>
63f9f848faSopenharmony_ci#include <float.h>
64f9f848faSopenharmony_ci#include <math.h>
65f9f848faSopenharmony_ci
66f9f848faSopenharmony_ci#include "math_private.h"
67f9f848faSopenharmony_ci
68f9f848faSopenharmony_cistatic const long double bp[] = {
69f9f848faSopenharmony_ci  1.0L,
70f9f848faSopenharmony_ci  1.5L,
71f9f848faSopenharmony_ci};
72f9f848faSopenharmony_ci
73f9f848faSopenharmony_ci/* log_2(1.5) */
74f9f848faSopenharmony_cistatic const long double dp_h[] = {
75f9f848faSopenharmony_ci  0.0,
76f9f848faSopenharmony_ci  5.8496250072115607565592654282227158546448E-1L
77f9f848faSopenharmony_ci};
78f9f848faSopenharmony_ci
79f9f848faSopenharmony_ci/* Low part of log_2(1.5) */
80f9f848faSopenharmony_cistatic const long double dp_l[] = {
81f9f848faSopenharmony_ci  0.0,
82f9f848faSopenharmony_ci  1.0579781240112554492329533686862998106046E-16L
83f9f848faSopenharmony_ci};
84f9f848faSopenharmony_ci
85f9f848faSopenharmony_cistatic const long double zero = 0.0L,
86f9f848faSopenharmony_ci  one = 1.0L,
87f9f848faSopenharmony_ci  two = 2.0L,
88f9f848faSopenharmony_ci  two113 = 1.0384593717069655257060992658440192E34L,
89f9f848faSopenharmony_ci  huge = 1.0e3000L,
90f9f848faSopenharmony_ci  tiny = 1.0e-3000L;
91f9f848faSopenharmony_ci
92f9f848faSopenharmony_ci/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
93f9f848faSopenharmony_ci   z = (x-1)/(x+1)
94f9f848faSopenharmony_ci   1 <= x <= 1.25
95f9f848faSopenharmony_ci   Peak relative error 2.3e-37 */
96f9f848faSopenharmony_cistatic const long double LN[] =
97f9f848faSopenharmony_ci{
98f9f848faSopenharmony_ci -3.0779177200290054398792536829702930623200E1L,
99f9f848faSopenharmony_ci  6.5135778082209159921251824580292116201640E1L,
100f9f848faSopenharmony_ci -4.6312921812152436921591152809994014413540E1L,
101f9f848faSopenharmony_ci  1.2510208195629420304615674658258363295208E1L,
102f9f848faSopenharmony_ci -9.9266909031921425609179910128531667336670E-1L
103f9f848faSopenharmony_ci};
104f9f848faSopenharmony_cistatic const long double LD[] =
105f9f848faSopenharmony_ci{
106f9f848faSopenharmony_ci -5.129862866715009066465422805058933131960E1L,
107f9f848faSopenharmony_ci  1.452015077564081884387441590064272782044E2L,
108f9f848faSopenharmony_ci -1.524043275549860505277434040464085593165E2L,
109f9f848faSopenharmony_ci  7.236063513651544224319663428634139768808E1L,
110f9f848faSopenharmony_ci -1.494198912340228235853027849917095580053E1L
111f9f848faSopenharmony_ci  /* 1.0E0 */
112f9f848faSopenharmony_ci};
113f9f848faSopenharmony_ci
114f9f848faSopenharmony_ci/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
115f9f848faSopenharmony_ci   0 <= x <= 0.5
116f9f848faSopenharmony_ci   Peak relative error 5.7e-38  */
117f9f848faSopenharmony_cistatic const long double PN[] =
118f9f848faSopenharmony_ci{
119f9f848faSopenharmony_ci  5.081801691915377692446852383385968225675E8L,
120f9f848faSopenharmony_ci  9.360895299872484512023336636427675327355E6L,
121f9f848faSopenharmony_ci  4.213701282274196030811629773097579432957E4L,
122f9f848faSopenharmony_ci  5.201006511142748908655720086041570288182E1L,
123f9f848faSopenharmony_ci  9.088368420359444263703202925095675982530E-3L,
124f9f848faSopenharmony_ci};
125f9f848faSopenharmony_cistatic const long double PD[] =
126f9f848faSopenharmony_ci{
127f9f848faSopenharmony_ci  3.049081015149226615468111430031590411682E9L,
128f9f848faSopenharmony_ci  1.069833887183886839966085436512368982758E8L,
129f9f848faSopenharmony_ci  8.259257717868875207333991924545445705394E5L,
130f9f848faSopenharmony_ci  1.872583833284143212651746812884298360922E3L,
131f9f848faSopenharmony_ci  /* 1.0E0 */
132f9f848faSopenharmony_ci};
133f9f848faSopenharmony_ci
134f9f848faSopenharmony_cistatic const long double
135f9f848faSopenharmony_ci  /* ln 2 */
136f9f848faSopenharmony_ci  lg2 = 6.9314718055994530941723212145817656807550E-1L,
137f9f848faSopenharmony_ci  lg2_h = 6.9314718055994528622676398299518041312695E-1L,
138f9f848faSopenharmony_ci  lg2_l = 2.3190468138462996154948554638754786504121E-17L,
139f9f848faSopenharmony_ci  ovt = 8.0085662595372944372e-0017L,
140f9f848faSopenharmony_ci  /* 2/(3*log(2)) */
141f9f848faSopenharmony_ci  cp = 9.6179669392597560490661645400126142495110E-1L,
142f9f848faSopenharmony_ci  cp_h = 9.6179669392597555432899980587535537779331E-1L,
143f9f848faSopenharmony_ci  cp_l = 5.0577616648125906047157785230014751039424E-17L;
144f9f848faSopenharmony_ci
145f9f848faSopenharmony_cilong double
146f9f848faSopenharmony_cipowl(long double x, long double y)
147f9f848faSopenharmony_ci{
148f9f848faSopenharmony_ci  long double z, ax, z_h, z_l, p_h, p_l;
149f9f848faSopenharmony_ci  long double yy1, t1, t2, r, s, t, u, v, w;
150f9f848faSopenharmony_ci  long double s2, s_h, s_l, t_h, t_l;
151f9f848faSopenharmony_ci  int32_t i, j, k, yisint, n;
152f9f848faSopenharmony_ci  u_int32_t ix, iy;
153f9f848faSopenharmony_ci  int32_t hx, hy;
154f9f848faSopenharmony_ci  ieee_quad_shape_type o, p, q;
155f9f848faSopenharmony_ci
156f9f848faSopenharmony_ci  p.value = x;
157f9f848faSopenharmony_ci  hx = p.parts32.mswhi;
158f9f848faSopenharmony_ci  ix = hx & 0x7fffffff;
159f9f848faSopenharmony_ci
160f9f848faSopenharmony_ci  q.value = y;
161f9f848faSopenharmony_ci  hy = q.parts32.mswhi;
162f9f848faSopenharmony_ci  iy = hy & 0x7fffffff;
163f9f848faSopenharmony_ci
164f9f848faSopenharmony_ci
165f9f848faSopenharmony_ci  /* y==zero: x**0 = 1 */
166f9f848faSopenharmony_ci  if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
167f9f848faSopenharmony_ci    return one;
168f9f848faSopenharmony_ci
169f9f848faSopenharmony_ci  /* 1.0**y = 1; -1.0**+-Inf = 1 */
170f9f848faSopenharmony_ci  if (x == one)
171f9f848faSopenharmony_ci    return one;
172f9f848faSopenharmony_ci  if (x == -1.0L && iy == 0x7fff0000
173f9f848faSopenharmony_ci      && (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
174f9f848faSopenharmony_ci    return one;
175f9f848faSopenharmony_ci
176f9f848faSopenharmony_ci  /* +-NaN return x+y */
177f9f848faSopenharmony_ci  if ((ix > 0x7fff0000)
178f9f848faSopenharmony_ci      || ((ix == 0x7fff0000)
179f9f848faSopenharmony_ci	  && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
180f9f848faSopenharmony_ci      || (iy > 0x7fff0000)
181f9f848faSopenharmony_ci      || ((iy == 0x7fff0000)
182f9f848faSopenharmony_ci	  && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
183f9f848faSopenharmony_ci    return nan_mix(x, y);
184f9f848faSopenharmony_ci
185f9f848faSopenharmony_ci  /* determine if y is an odd int when x < 0
186f9f848faSopenharmony_ci   * yisint = 0       ... y is not an integer
187f9f848faSopenharmony_ci   * yisint = 1       ... y is an odd int
188f9f848faSopenharmony_ci   * yisint = 2       ... y is an even int
189f9f848faSopenharmony_ci   */
190f9f848faSopenharmony_ci  yisint = 0;
191f9f848faSopenharmony_ci  if (hx < 0)
192f9f848faSopenharmony_ci    {
193f9f848faSopenharmony_ci      if (iy >= 0x40700000)	/* 2^113 */
194f9f848faSopenharmony_ci	yisint = 2;		/* even integer y */
195f9f848faSopenharmony_ci      else if (iy >= 0x3fff0000)	/* 1.0 */
196f9f848faSopenharmony_ci	{
197f9f848faSopenharmony_ci	  if (floorl (y) == y)
198f9f848faSopenharmony_ci	    {
199f9f848faSopenharmony_ci	      z = 0.5 * y;
200f9f848faSopenharmony_ci	      if (floorl (z) == z)
201f9f848faSopenharmony_ci		yisint = 2;
202f9f848faSopenharmony_ci	      else
203f9f848faSopenharmony_ci		yisint = 1;
204f9f848faSopenharmony_ci	    }
205f9f848faSopenharmony_ci	}
206f9f848faSopenharmony_ci    }
207f9f848faSopenharmony_ci
208f9f848faSopenharmony_ci  /* special value of y */
209f9f848faSopenharmony_ci  if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
210f9f848faSopenharmony_ci    {
211f9f848faSopenharmony_ci      if (iy == 0x7fff0000)	/* y is +-inf */
212f9f848faSopenharmony_ci	{
213f9f848faSopenharmony_ci	  if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
214f9f848faSopenharmony_ci	    p.parts32.lswlo) == 0)
215f9f848faSopenharmony_ci	    return y - y;	/* +-1**inf is NaN */
216f9f848faSopenharmony_ci	  else if (ix >= 0x3fff0000)	/* (|x|>1)**+-inf = inf,0 */
217f9f848faSopenharmony_ci	    return (hy >= 0) ? y : zero;
218f9f848faSopenharmony_ci	  else			/* (|x|<1)**-,+inf = inf,0 */
219f9f848faSopenharmony_ci	    return (hy < 0) ? -y : zero;
220f9f848faSopenharmony_ci	}
221f9f848faSopenharmony_ci      if (iy == 0x3fff0000)
222f9f848faSopenharmony_ci	{			/* y is  +-1 */
223f9f848faSopenharmony_ci	  if (hy < 0)
224f9f848faSopenharmony_ci	    return one / x;
225f9f848faSopenharmony_ci	  else
226f9f848faSopenharmony_ci	    return x;
227f9f848faSopenharmony_ci	}
228f9f848faSopenharmony_ci      if (hy == 0x40000000)
229f9f848faSopenharmony_ci	return x * x;		/* y is  2 */
230f9f848faSopenharmony_ci      if (hy == 0x3ffe0000)
231f9f848faSopenharmony_ci	{			/* y is  0.5 */
232f9f848faSopenharmony_ci	  if (hx >= 0)		/* x >= +0 */
233f9f848faSopenharmony_ci	    return sqrtl (x);
234f9f848faSopenharmony_ci	}
235f9f848faSopenharmony_ci    }
236f9f848faSopenharmony_ci
237f9f848faSopenharmony_ci  ax = fabsl (x);
238f9f848faSopenharmony_ci  /* special value of x */
239f9f848faSopenharmony_ci  if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
240f9f848faSopenharmony_ci    {
241f9f848faSopenharmony_ci      if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
242f9f848faSopenharmony_ci	{
243f9f848faSopenharmony_ci	  z = ax;		/*x is +-0,+-inf,+-1 */
244f9f848faSopenharmony_ci	  if (hy < 0)
245f9f848faSopenharmony_ci	    z = one / z;	/* z = (1/|x|) */
246f9f848faSopenharmony_ci	  if (hx < 0)
247f9f848faSopenharmony_ci	    {
248f9f848faSopenharmony_ci	      if (((ix - 0x3fff0000) | yisint) == 0)
249f9f848faSopenharmony_ci		{
250f9f848faSopenharmony_ci		  z = (z - z) / (z - z);	/* (-1)**non-int is NaN */
251f9f848faSopenharmony_ci		}
252f9f848faSopenharmony_ci	      else if (yisint == 1)
253f9f848faSopenharmony_ci		z = -z;		/* (x<0)**odd = -(|x|**odd) */
254f9f848faSopenharmony_ci	    }
255f9f848faSopenharmony_ci	  return z;
256f9f848faSopenharmony_ci	}
257f9f848faSopenharmony_ci    }
258f9f848faSopenharmony_ci
259f9f848faSopenharmony_ci  /* (x<0)**(non-int) is NaN */
260f9f848faSopenharmony_ci  if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
261f9f848faSopenharmony_ci    return (x - x) / (x - x);
262f9f848faSopenharmony_ci
263f9f848faSopenharmony_ci  /* |y| is huge.
264f9f848faSopenharmony_ci     2^-16495 = 1/2 of smallest representable value.
265f9f848faSopenharmony_ci     If (1 - 1/131072)^y underflows, y > 1.4986e9 */
266f9f848faSopenharmony_ci  if (iy > 0x401d654b)
267f9f848faSopenharmony_ci    {
268f9f848faSopenharmony_ci      /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
269f9f848faSopenharmony_ci      if (iy > 0x407d654b)
270f9f848faSopenharmony_ci	{
271f9f848faSopenharmony_ci	  if (ix <= 0x3ffeffff)
272f9f848faSopenharmony_ci	    return (hy < 0) ? huge * huge : tiny * tiny;
273f9f848faSopenharmony_ci	  if (ix >= 0x3fff0000)
274f9f848faSopenharmony_ci	    return (hy > 0) ? huge * huge : tiny * tiny;
275f9f848faSopenharmony_ci	}
276f9f848faSopenharmony_ci      /* over/underflow if x is not close to one */
277f9f848faSopenharmony_ci      if (ix < 0x3ffeffff)
278f9f848faSopenharmony_ci	return (hy < 0) ? huge * huge : tiny * tiny;
279f9f848faSopenharmony_ci      if (ix > 0x3fff0000)
280f9f848faSopenharmony_ci	return (hy > 0) ? huge * huge : tiny * tiny;
281f9f848faSopenharmony_ci    }
282f9f848faSopenharmony_ci
283f9f848faSopenharmony_ci  n = 0;
284f9f848faSopenharmony_ci  /* take care subnormal number */
285f9f848faSopenharmony_ci  if (ix < 0x00010000)
286f9f848faSopenharmony_ci    {
287f9f848faSopenharmony_ci      ax *= two113;
288f9f848faSopenharmony_ci      n -= 113;
289f9f848faSopenharmony_ci      o.value = ax;
290f9f848faSopenharmony_ci      ix = o.parts32.mswhi;
291f9f848faSopenharmony_ci    }
292f9f848faSopenharmony_ci  n += ((ix) >> 16) - 0x3fff;
293f9f848faSopenharmony_ci  j = ix & 0x0000ffff;
294f9f848faSopenharmony_ci  /* determine interval */
295f9f848faSopenharmony_ci  ix = j | 0x3fff0000;		/* normalize ix */
296f9f848faSopenharmony_ci  if (j <= 0x3988)
297f9f848faSopenharmony_ci    k = 0;			/* |x|<sqrt(3/2) */
298f9f848faSopenharmony_ci  else if (j < 0xbb67)
299f9f848faSopenharmony_ci    k = 1;			/* |x|<sqrt(3)   */
300f9f848faSopenharmony_ci  else
301f9f848faSopenharmony_ci    {
302f9f848faSopenharmony_ci      k = 0;
303f9f848faSopenharmony_ci      n += 1;
304f9f848faSopenharmony_ci      ix -= 0x00010000;
305f9f848faSopenharmony_ci    }
306f9f848faSopenharmony_ci
307f9f848faSopenharmony_ci  o.value = ax;
308f9f848faSopenharmony_ci  o.parts32.mswhi = ix;
309f9f848faSopenharmony_ci  ax = o.value;
310f9f848faSopenharmony_ci
311f9f848faSopenharmony_ci  /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
312f9f848faSopenharmony_ci  u = ax - bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
313f9f848faSopenharmony_ci  v = one / (ax + bp[k]);
314f9f848faSopenharmony_ci  s = u * v;
315f9f848faSopenharmony_ci  s_h = s;
316f9f848faSopenharmony_ci
317f9f848faSopenharmony_ci  o.value = s_h;
318f9f848faSopenharmony_ci  o.parts32.lswlo = 0;
319f9f848faSopenharmony_ci  o.parts32.lswhi &= 0xf8000000;
320f9f848faSopenharmony_ci  s_h = o.value;
321f9f848faSopenharmony_ci  /* t_h=ax+bp[k] High */
322f9f848faSopenharmony_ci  t_h = ax + bp[k];
323f9f848faSopenharmony_ci  o.value = t_h;
324f9f848faSopenharmony_ci  o.parts32.lswlo = 0;
325f9f848faSopenharmony_ci  o.parts32.lswhi &= 0xf8000000;
326f9f848faSopenharmony_ci  t_h = o.value;
327f9f848faSopenharmony_ci  t_l = ax - (t_h - bp[k]);
328f9f848faSopenharmony_ci  s_l = v * ((u - s_h * t_h) - s_h * t_l);
329f9f848faSopenharmony_ci  /* compute log(ax) */
330f9f848faSopenharmony_ci  s2 = s * s;
331f9f848faSopenharmony_ci  u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
332f9f848faSopenharmony_ci  v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
333f9f848faSopenharmony_ci  r = s2 * s2 * u / v;
334f9f848faSopenharmony_ci  r += s_l * (s_h + s);
335f9f848faSopenharmony_ci  s2 = s_h * s_h;
336f9f848faSopenharmony_ci  t_h = 3.0 + s2 + r;
337f9f848faSopenharmony_ci  o.value = t_h;
338f9f848faSopenharmony_ci  o.parts32.lswlo = 0;
339f9f848faSopenharmony_ci  o.parts32.lswhi &= 0xf8000000;
340f9f848faSopenharmony_ci  t_h = o.value;
341f9f848faSopenharmony_ci  t_l = r - ((t_h - 3.0) - s2);
342f9f848faSopenharmony_ci  /* u+v = s*(1+...) */
343f9f848faSopenharmony_ci  u = s_h * t_h;
344f9f848faSopenharmony_ci  v = s_l * t_h + t_l * s;
345f9f848faSopenharmony_ci  /* 2/(3log2)*(s+...) */
346f9f848faSopenharmony_ci  p_h = u + v;
347f9f848faSopenharmony_ci  o.value = p_h;
348f9f848faSopenharmony_ci  o.parts32.lswlo = 0;
349f9f848faSopenharmony_ci  o.parts32.lswhi &= 0xf8000000;
350f9f848faSopenharmony_ci  p_h = o.value;
351f9f848faSopenharmony_ci  p_l = v - (p_h - u);
352f9f848faSopenharmony_ci  z_h = cp_h * p_h;		/* cp_h+cp_l = 2/(3*log2) */
353f9f848faSopenharmony_ci  z_l = cp_l * p_h + p_l * cp + dp_l[k];
354f9f848faSopenharmony_ci  /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
355f9f848faSopenharmony_ci  t = (long double) n;
356f9f848faSopenharmony_ci  t1 = (((z_h + z_l) + dp_h[k]) + t);
357f9f848faSopenharmony_ci  o.value = t1;
358f9f848faSopenharmony_ci  o.parts32.lswlo = 0;
359f9f848faSopenharmony_ci  o.parts32.lswhi &= 0xf8000000;
360f9f848faSopenharmony_ci  t1 = o.value;
361f9f848faSopenharmony_ci  t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
362f9f848faSopenharmony_ci
363f9f848faSopenharmony_ci  /* s (sign of result -ve**odd) = -1 else = 1 */
364f9f848faSopenharmony_ci  s = one;
365f9f848faSopenharmony_ci  if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
366f9f848faSopenharmony_ci    s = -one;			/* (-ve)**(odd int) */
367f9f848faSopenharmony_ci
368f9f848faSopenharmony_ci  /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
369f9f848faSopenharmony_ci  yy1 = y;
370f9f848faSopenharmony_ci  o.value = yy1;
371f9f848faSopenharmony_ci  o.parts32.lswlo = 0;
372f9f848faSopenharmony_ci  o.parts32.lswhi &= 0xf8000000;
373f9f848faSopenharmony_ci  yy1 = o.value;
374f9f848faSopenharmony_ci  p_l = (y - yy1) * t1 + y * t2;
375f9f848faSopenharmony_ci  p_h = yy1 * t1;
376f9f848faSopenharmony_ci  z = p_l + p_h;
377f9f848faSopenharmony_ci  o.value = z;
378f9f848faSopenharmony_ci  j = o.parts32.mswhi;
379f9f848faSopenharmony_ci  if (j >= 0x400d0000) /* z >= 16384 */
380f9f848faSopenharmony_ci    {
381f9f848faSopenharmony_ci      /* if z > 16384 */
382f9f848faSopenharmony_ci      if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
383f9f848faSopenharmony_ci	o.parts32.lswlo) != 0)
384f9f848faSopenharmony_ci	return s * huge * huge;	/* overflow */
385f9f848faSopenharmony_ci      else
386f9f848faSopenharmony_ci	{
387f9f848faSopenharmony_ci	  if (p_l + ovt > z - p_h)
388f9f848faSopenharmony_ci	    return s * huge * huge;	/* overflow */
389f9f848faSopenharmony_ci	}
390f9f848faSopenharmony_ci    }
391f9f848faSopenharmony_ci  else if ((j & 0x7fffffff) >= 0x400d01b9)	/* z <= -16495 */
392f9f848faSopenharmony_ci    {
393f9f848faSopenharmony_ci      /* z < -16495 */
394f9f848faSopenharmony_ci      if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
395f9f848faSopenharmony_ci	o.parts32.lswlo)
396f9f848faSopenharmony_ci	  != 0)
397f9f848faSopenharmony_ci	return s * tiny * tiny;	/* underflow */
398f9f848faSopenharmony_ci      else
399f9f848faSopenharmony_ci	{
400f9f848faSopenharmony_ci	  if (p_l <= z - p_h)
401f9f848faSopenharmony_ci	    return s * tiny * tiny;	/* underflow */
402f9f848faSopenharmony_ci	}
403f9f848faSopenharmony_ci    }
404f9f848faSopenharmony_ci  /* compute 2**(p_h+p_l) */
405f9f848faSopenharmony_ci  i = j & 0x7fffffff;
406f9f848faSopenharmony_ci  k = (i >> 16) - 0x3fff;
407f9f848faSopenharmony_ci  n = 0;
408f9f848faSopenharmony_ci  if (i > 0x3ffe0000)
409f9f848faSopenharmony_ci    {				/* if |z| > 0.5, set n = [z+0.5] */
410f9f848faSopenharmony_ci      n = floorl (z + 0.5L);
411f9f848faSopenharmony_ci      t = n;
412f9f848faSopenharmony_ci      p_h -= t;
413f9f848faSopenharmony_ci    }
414f9f848faSopenharmony_ci  t = p_l + p_h;
415f9f848faSopenharmony_ci  o.value = t;
416f9f848faSopenharmony_ci  o.parts32.lswlo = 0;
417f9f848faSopenharmony_ci  o.parts32.lswhi &= 0xf8000000;
418f9f848faSopenharmony_ci  t = o.value;
419f9f848faSopenharmony_ci  u = t * lg2_h;
420f9f848faSopenharmony_ci  v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
421f9f848faSopenharmony_ci  z = u + v;
422f9f848faSopenharmony_ci  w = v - (z - u);
423f9f848faSopenharmony_ci  /*  exp(z) */
424f9f848faSopenharmony_ci  t = z * z;
425f9f848faSopenharmony_ci  u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
426f9f848faSopenharmony_ci  v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
427f9f848faSopenharmony_ci  t1 = z - t * u / v;
428f9f848faSopenharmony_ci  r = (z * t1) / (t1 - two) - (w + z * w);
429f9f848faSopenharmony_ci  z = one - (r - z);
430f9f848faSopenharmony_ci  o.value = z;
431f9f848faSopenharmony_ci  j = o.parts32.mswhi;
432f9f848faSopenharmony_ci  j += (n << 16);
433f9f848faSopenharmony_ci  if ((j >> 16) <= 0)
434f9f848faSopenharmony_ci    z = scalbnl (z, n);	/* subnormal output */
435f9f848faSopenharmony_ci  else
436f9f848faSopenharmony_ci    {
437f9f848faSopenharmony_ci      o.parts32.mswhi = j;
438f9f848faSopenharmony_ci      z = o.value;
439f9f848faSopenharmony_ci    }
440f9f848faSopenharmony_ci  return s * z;
441f9f848faSopenharmony_ci}
442