1/****************************************************************
2
3The author of this software is David M. Gay.
4
5Copyright (C) 1998-2000 by Lucent Technologies
6All Rights Reserved
7
8Permission to use, copy, modify, and distribute this software and
9its documentation for any purpose and without fee is hereby
10granted, provided that the above copyright notice appear in all
11copies and that both that the copyright notice and this
12permission notice and warranty disclaimer appear in supporting
13documentation, and that the name of Lucent or any of its entities
14not be used in advertising or publicity pertaining to
15distribution of the software without specific, written prior
16permission.
17
18LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25THIS SOFTWARE.
26
27****************************************************************/
28
29/* $FreeBSD$ */
30
31/* This is a variation on dtoa.c that converts arbitary binary
32   floating-point formats to and from decimal notation.  It uses
33   double-precision arithmetic internally, so there are still
34   various #ifdefs that adapt the calculations to the native
35   double-precision arithmetic (any of IEEE, VAX D_floating,
36   or IBM mainframe arithmetic).
37
38   Please send bug reports to David M. Gay (dmg at acm dot org,
39   with " at " changed at "@" and " dot " changed to ".").
40 */
41
42/* On a machine with IEEE extended-precision registers, it is
43 * necessary to specify double-precision (53-bit) rounding precision
44 * before invoking strtod or dtoa.  If the machine uses (the equivalent
45 * of) Intel 80x87 arithmetic, the call
46 *	_control87(PC_53, MCW_PC);
47 * does this with many compilers.  Whether this or another call is
48 * appropriate depends on the compiler; for this to work, it may be
49 * necessary to #include "float.h" or another system-dependent header
50 * file.
51 */
52
53/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
54 *
55 * This strtod returns a nearest machine number to the input decimal
56 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
57 * broken by the IEEE round-even rule.  Otherwise ties are broken by
58 * biased rounding (add half and chop).
59 *
60 * Inspired loosely by William D. Clinger's paper "How to Read Floating
61 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
62 *
63 * Modifications:
64 *
65 *	1. We only require IEEE, IBM, or VAX double-precision
66 *		arithmetic (not IEEE double-extended).
67 *	2. We get by with floating-point arithmetic in a case that
68 *		Clinger missed -- when we're computing d * 10^n
69 *		for a small integer d and the integer n is not too
70 *		much larger than 22 (the maximum integer k for which
71 *		we can represent 10^k exactly), we may be able to
72 *		compute (d*10^k) * 10^(e-k) with just one roundoff.
73 *	3. Rather than a bit-at-a-time adjustment of the binary
74 *		result in the hard case, we use floating-point
75 *		arithmetic to determine the adjustment to within
76 *		one bit; only in really hard cases do we need to
77 *		compute a second residual.
78 *	4. Because of 3., we don't need a large table of powers of 10
79 *		for ten-to-e (just some small tables, e.g. of 10^k
80 *		for 0 <= k <= 22).
81 */
82
83/*
84 * #define IEEE_8087 for IEEE-arithmetic machines where the least
85 *	significant byte has the lowest address.
86 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
87 *	significant byte has the lowest address.
88 * #define Long int on machines with 32-bit ints and 64-bit longs.
89 * #define Sudden_Underflow for IEEE-format machines without gradual
90 *	underflow (i.e., that flush to zero on underflow).
91 * #define IBM for IBM mainframe-style floating-point arithmetic.
92 * #define VAX for VAX-style floating-point arithmetic (D_floating).
93 * #define No_leftright to omit left-right logic in fast floating-point
94 *	computation of dtoa.
95 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
96 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
97 *	that use extended-precision instructions to compute rounded
98 *	products and quotients) with IBM.
99 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
100 *	that rounds toward +Infinity.
101 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
102 *	rounding when the underlying floating-point arithmetic uses
103 *	unbiased rounding.  This prevent using ordinary floating-point
104 *	arithmetic when the result could be computed with one rounding error.
105 * #define Inaccurate_Divide for IEEE-format with correctly rounded
106 *	products but inaccurate quotients, e.g., for Intel i860.
107 * #define NO_LONG_LONG on machines that do not have a "long long"
108 *	integer type (of >= 64 bits).  On such machines, you can
109 *	#define Just_16 to store 16 bits per 32-bit Long when doing
110 *	high-precision integer arithmetic.  Whether this speeds things
111 *	up or slows things down depends on the machine and the number
112 *	being converted.  If long long is available and the name is
113 *	something other than "long long", #define Llong to be the name,
114 *	and if "unsigned Llong" does not work as an unsigned version of
115 *	Llong, #define #ULLong to be the corresponding unsigned type.
116 * #define KR_headers for old-style C function headers.
117 * #define Bad_float_h if your system lacks a float.h or if it does not
118 *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
119 *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
120 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
121 *	if memory is available and otherwise does something you deem
122 *	appropriate.  If MALLOC is undefined, malloc will be invoked
123 *	directly -- and assumed always to succeed.  Similarly, if you
124 *	want something other than the system's free() to be called to
125 *	recycle memory acquired from MALLOC, #define FREE to be the
126 *	name of the alternate routine.  (FREE or free is only called in
127 *	pathological cases, e.g., in a gdtoa call after a gdtoa return in
128 *	mode 3 with thousands of digits requested.)
129 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
130 *	memory allocations from a private pool of memory when possible.
131 *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
132 *	unless #defined to be a different length.  This default length
133 *	suffices to get rid of MALLOC calls except for unusual cases,
134 *	such as decimal-to-binary conversion of a very long string of
135 *	digits.  When converting IEEE double precision values, the
136 *	longest string gdtoa can return is about 751 bytes long.  For
137 *	conversions by strtod of strings of 800 digits and all gdtoa
138 *	conversions of IEEE doubles in single-threaded executions with
139 *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
140 *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
141 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
142 *	#defined automatically on IEEE systems.  On such systems,
143 *	when INFNAN_CHECK is #defined, strtod checks
144 *	for Infinity and NaN (case insensitively).
145 *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
146 *	strtodg also accepts (case insensitively) strings of the form
147 *	NaN(x), where x is a string of hexadecimal digits (optionally
148 *	preceded by 0x or 0X) and spaces; if there is only one string
149 *	of hexadecimal digits, it is taken for the fraction bits of the
150 *	resulting NaN; if there are two or more strings of hexadecimal
151 *	digits, each string is assigned to the next available sequence
152 *	of 32-bit words of fractions bits (starting with the most
153 *	significant), right-aligned in each sequence.
154 *	Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
155 *	is consumed even when ... has the wrong form (in which case the
156 *	"(...)" is consumed but ignored).
157 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
158 *	multiple threads.  In this case, you must provide (or suitably
159 *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
160 *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
161 *	in pow5mult, ensures lazy evaluation of only one copy of high
162 *	powers of 5; omitting this lock would introduce a small
163 *	probability of wasting memory, but would otherwise be harmless.)
164 *	You must also invoke freedtoa(s) to free the value s returned by
165 *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
166 * #define IMPRECISE_INEXACT if you do not care about the setting of
167 *	the STRTOG_Inexact bits in the special case of doing IEEE double
168 *	precision conversions (which could also be done by the strtod in
169 *	dtoa.c).
170 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
171 *	floating-point constants.
172 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
173 *	strtodg.c).
174 * #define NO_STRING_H to use private versions of memcpy.
175 *	On some K&R systems, it may also be necessary to
176 *	#define DECLARE_SIZE_T in this case.
177 * #define USE_LOCALE to use the current locale's decimal_point value.
178 */
179
180#ifndef GDTOAIMP_H_INCLUDED
181#define GDTOAIMP_H_INCLUDED
182
183#define	Long	int
184
185#include "gdtoa.h"
186#include "gd_qnan.h"
187#ifdef Honor_FLT_ROUNDS
188#include <fenv.h>
189#endif
190
191#ifdef DEBUG
192#include "stdio.h"
193#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
194#endif
195
196#define __isthreaded 1
197#define _pthread_mutex_lock pthread_mutex_lock
198#define _pthread_mutex_unlock pthread_mutex_unlock
199
200#include "stdlib.h"
201#include "string.h"
202#include <pthread.h>
203
204#ifdef KR_headers
205#define Char char
206#else
207#define Char void
208#endif
209
210#ifdef MALLOC
211extern Char *MALLOC ANSI((size_t));
212#else
213#define MALLOC malloc
214#endif
215
216#define INFNAN_CHECK
217#define NO_LOCALE_CACHE
218#define Honor_FLT_ROUNDS
219#define Trust_FLT_ROUNDS
220
221#undef IEEE_Arith
222#undef Avoid_Underflow
223#ifdef IEEE_MC68k
224#define IEEE_Arith
225#endif
226#ifdef IEEE_8087
227#define IEEE_Arith
228#endif
229
230#include "errno.h"
231#ifdef Bad_float_h
232
233#ifdef IEEE_Arith
234#define DBL_DIG 15
235#define DBL_MAX_10_EXP 308
236#define DBL_MAX_EXP 1024
237#define FLT_RADIX 2
238#define DBL_MAX 1.7976931348623157e+308
239#endif
240
241#ifdef IBM
242#define DBL_DIG 16
243#define DBL_MAX_10_EXP 75
244#define DBL_MAX_EXP 63
245#define FLT_RADIX 16
246#define DBL_MAX 7.2370055773322621e+75
247#endif
248
249#ifdef VAX
250#define DBL_DIG 16
251#define DBL_MAX_10_EXP 38
252#define DBL_MAX_EXP 127
253#define FLT_RADIX 2
254#define DBL_MAX 1.7014118346046923e+38
255#define n_bigtens 2
256#endif
257
258#ifndef LONG_MAX
259#define LONG_MAX 2147483647
260#endif
261
262#else /* ifndef Bad_float_h */
263#include "float.h"
264#endif /* Bad_float_h */
265
266#ifdef IEEE_Arith
267#define Scale_Bit 0x10
268#define n_bigtens 5
269#endif
270
271#ifdef IBM
272#define n_bigtens 3
273#endif
274
275#ifdef VAX
276#define n_bigtens 2
277#endif
278
279#ifndef __MATH_H__
280#include "math.h"
281#endif
282
283#ifdef __cplusplus
284extern "C" {
285#endif
286
287#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
288Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
289#endif
290
291typedef union { double d; ULong L[2]; } U;
292
293#ifdef IEEE_8087
294#define word0(x) (x)->L[1]
295#define word1(x) (x)->L[0]
296#else
297#define word0(x) (x)->L[0]
298#define word1(x) (x)->L[1]
299#endif
300#define dval(x) (x)->d
301
302/* The following definition of Storeinc is appropriate for MIPS processors.
303 * An alternative that might be better on some machines is
304 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
305 */
306#if defined(IEEE_8087) + defined(VAX)
307#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
308((unsigned short *)a)[0] = (unsigned short)c, a++)
309#else
310#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
311((unsigned short *)a)[1] = (unsigned short)c, a++)
312#endif
313
314/* #define P DBL_MANT_DIG */
315/* Ten_pmax = floor(P*log(2)/log(5)) */
316/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
317/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
318/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
319
320#ifdef IEEE_Arith
321#define Exp_shift  20
322#define Exp_shift1 20
323#define Exp_msk1    0x100000
324#define Exp_msk11   0x100000
325#define Exp_mask  0x7ff00000
326#define P 53
327#define Bias 1023
328#define Emin (-1022)
329#define Exp_1  0x3ff00000
330#define Exp_11 0x3ff00000
331#define Ebits 11
332#define Frac_mask  0xfffff
333#define Frac_mask1 0xfffff
334#define Ten_pmax 22
335#define Bletch 0x10
336#define Bndry_mask  0xfffff
337#define Bndry_mask1 0xfffff
338#define LSB 1
339#define Sign_bit 0x80000000
340#define Log2P 1
341#define Tiny0 0
342#define Tiny1 1
343#define Quick_max 14
344#define Int_max 14
345
346#ifndef Flt_Rounds
347#ifdef FLT_ROUNDS
348#define Flt_Rounds FLT_ROUNDS
349#else
350#define Flt_Rounds 1
351#endif
352#endif /*Flt_Rounds*/
353
354#else /* ifndef IEEE_Arith */
355#undef  Sudden_Underflow
356#define Sudden_Underflow
357#ifdef IBM
358#undef Flt_Rounds
359#define Flt_Rounds 0
360#define Exp_shift  24
361#define Exp_shift1 24
362#define Exp_msk1   0x1000000
363#define Exp_msk11  0x1000000
364#define Exp_mask  0x7f000000
365#define P 14
366#define Bias 65
367#define Exp_1  0x41000000
368#define Exp_11 0x41000000
369#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
370#define Frac_mask  0xffffff
371#define Frac_mask1 0xffffff
372#define Bletch 4
373#define Ten_pmax 22
374#define Bndry_mask  0xefffff
375#define Bndry_mask1 0xffffff
376#define LSB 1
377#define Sign_bit 0x80000000
378#define Log2P 4
379#define Tiny0 0x100000
380#define Tiny1 0
381#define Quick_max 14
382#define Int_max 15
383#else /* VAX */
384#undef Flt_Rounds
385#define Flt_Rounds 1
386#define Exp_shift  23
387#define Exp_shift1 7
388#define Exp_msk1    0x80
389#define Exp_msk11   0x800000
390#define Exp_mask  0x7f80
391#define P 56
392#define Bias 129
393#define Exp_1  0x40800000
394#define Exp_11 0x4080
395#define Ebits 8
396#define Frac_mask  0x7fffff
397#define Frac_mask1 0xffff007f
398#define Ten_pmax 24
399#define Bletch 2
400#define Bndry_mask  0xffff007f
401#define Bndry_mask1 0xffff007f
402#define LSB 0x10000
403#define Sign_bit 0x8000
404#define Log2P 1
405#define Tiny0 0x80
406#define Tiny1 0
407#define Quick_max 15
408#define Int_max 15
409#endif /* IBM, VAX */
410#endif /* IEEE_Arith */
411
412#ifndef IEEE_Arith
413#define ROUND_BIASED
414#else
415#ifdef ROUND_BIASED_without_Round_Up
416#undef  ROUND_BIASED
417#define ROUND_BIASED
418#endif
419#endif
420
421#ifdef RND_PRODQUOT
422#define rounded_product(a,b) a = rnd_prod(a, b)
423#define rounded_quotient(a,b) a = rnd_quot(a, b)
424#ifdef KR_headers
425extern double rnd_prod(), rnd_quot();
426#else
427extern double rnd_prod(double, double), rnd_quot(double, double);
428#endif
429#else
430#define rounded_product(a,b) a *= b
431#define rounded_quotient(a,b) a /= b
432#endif
433
434#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
435#define Big1 0xffffffff
436
437#undef  Pack_16
438#ifndef Pack_32
439#define Pack_32
440#endif
441
442#ifdef NO_LONG_LONG
443#undef ULLong
444#ifdef Just_16
445#undef Pack_32
446#define Pack_16
447/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
448 * This makes some inner loops simpler and sometimes saves work
449 * during multiplications, but it often seems to make things slightly
450 * slower.  Hence the default is now to store 32 bits per Long.
451 */
452#endif
453#else	/* long long available */
454#ifndef Llong
455#define Llong long long
456#endif
457#ifndef ULLong
458#define ULLong unsigned Llong
459#endif
460#endif /* NO_LONG_LONG */
461
462#ifdef Pack_32
463#define ULbits 32
464#define kshift 5
465#define kmask 31
466#define ALL_ON 0xffffffff
467#else
468#define ULbits 16
469#define kshift 4
470#define kmask 15
471#define ALL_ON 0xffff
472#endif
473
474#define MULTIPLE_THREADS
475extern pthread_mutex_t __gdtoa_locks[2];
476#define ACQUIRE_DTOA_LOCK(n)	do {				\
477	if (__isthreaded)					\
478		_pthread_mutex_lock(&__gdtoa_locks[n]);		\
479} while(0)
480#define FREE_DTOA_LOCK(n)	do {				\
481	if (__isthreaded)					\
482		_pthread_mutex_unlock(&__gdtoa_locks[n]);	\
483} while(0)
484
485#define Kmax 9
486
487 struct
488Bigint {
489	struct Bigint *next;
490	int k, maxwds, sign, wds;
491	ULong x[1];
492	};
493
494 typedef struct Bigint Bigint;
495
496#ifdef NO_STRING_H
497#ifdef DECLARE_SIZE_T
498typedef unsigned int size_t;
499#endif
500extern void memcpy_D2A ANSI((void*, const void*, size_t));
501#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
502#else /* !NO_STRING_H */
503#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
504#endif /* NO_STRING_H */
505
506/*
507 * Paranoia: Protect exported symbols, including ones in files we don't
508 * compile right now.  The standard strtof and strtod survive.
509 */
510#define	dtoa		__dtoa
511#define	gdtoa		__gdtoa
512#define	freedtoa	__freedtoa
513#define	strtodg		__strtodg
514#define	g_ddfmt		__g_ddfmt
515#define	g_dfmt		__g_dfmt
516#define	g_ffmt		__g_ffmt
517#define	g_Qfmt		__g_Qfmt
518#define	g_xfmt		__g_xfmt
519#define	g_xLfmt		__g_xLfmt
520#define	strtoId		__strtoId
521#define	strtoIdd	__strtoIdd
522#define	strtoIf		__strtoIf
523#define	strtoIQ		__strtoIQ
524#define	strtoIx		__strtoIx
525#define	strtoIxL	__strtoIxL
526#define	strtord_l		__strtord_l
527#define	strtordd	__strtordd
528#define	strtorf		__strtorf
529#define	strtorQ_l		__strtorQ_l
530#define	strtorx_l		__strtorx_l
531#define	strtorxL	__strtorxL
532#define	strtodI		__strtodI
533#define	strtopd		__strtopd
534#define	strtopdd	__strtopdd
535#define	strtopf		__strtopf
536#define	strtopQ		__strtopQ
537#define	strtopx		__strtopx
538#define	strtopxL	__strtopxL
539
540/* Protect gdtoa-internal symbols */
541#define	Balloc		__Balloc_D2A
542#define	Bfree		__Bfree_D2A
543#define	ULtoQ		__ULtoQ_D2A
544#define	ULtof		__ULtof_D2A
545#define	ULtod		__ULtod_D2A
546#define	ULtodd		__ULtodd_D2A
547#define	ULtox		__ULtox_D2A
548#define	ULtoxL		__ULtoxL_D2A
549#define	any_on		__any_on_D2A
550#define	b2d		__b2d_D2A
551#define	bigtens		__bigtens_D2A
552#define	cmp		__cmp_D2A
553#define	copybits	__copybits_D2A
554#define	d2b		__d2b_D2A
555#define	decrement	__decrement_D2A
556#define	diff		__diff_D2A
557#define	dtoa_result	__dtoa_result_D2A
558#define	g__fmt		__g__fmt_D2A
559#define	gethex		__gethex_D2A
560#define	hexdig		__hexdig_D2A
561#define	hexdig_init_D2A	__hexdig_init_D2A
562#define	hexnan		__hexnan_D2A
563#define	hi0bits		__hi0bits_D2A
564#define	hi0bits_D2A	__hi0bits_D2A
565#define	i2b		__i2b_D2A
566#define	increment	__increment_D2A
567#define	lo0bits		__lo0bits_D2A
568#define	lshift		__lshift_D2A
569#define	match		__match_D2A
570#define	mult		__mult_D2A
571#define	multadd		__multadd_D2A
572#define	nrv_alloc	__nrv_alloc_D2A
573#define	pow5mult	__pow5mult_D2A
574#define	quorem		__quorem_D2A
575#define	ratio		__ratio_D2A
576#define	rshift		__rshift_D2A
577#define	rv_alloc	__rv_alloc_D2A
578#define	s2b		__s2b_D2A
579#define	set_ones	__set_ones_D2A
580#define	strcp		__strcp_D2A
581#define	strcp_D2A      	__strcp_D2A
582#define	strtoIg		__strtoIg_D2A
583#define	sum		__sum_D2A
584#define	tens		__tens_D2A
585#define	tinytens	__tinytens_D2A
586#define	tinytens	__tinytens_D2A
587#define	trailz		__trailz_D2A
588#define	ulp		__ulp_D2A
589
590 extern char *dtoa_result;
591 extern CONST double bigtens[], tens[], tinytens[];
592 extern unsigned char hexdig[];
593
594 extern Bigint *Balloc ANSI((int));
595 extern void Bfree ANSI((Bigint*));
596 extern void ULtof ANSI((ULong*, ULong*, Long, int));
597 extern void ULtod ANSI((ULong*, ULong*, Long, int));
598 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
599 extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
600 extern void ULtox ANSI((UShort*, ULong*, Long, int));
601 extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
602 extern ULong any_on ANSI((Bigint*, int));
603 extern double b2d ANSI((Bigint*, int*));
604 extern int cmp ANSI((Bigint*, Bigint*));
605 extern void copybits ANSI((ULong*, int, Bigint*));
606 extern Bigint *d2b ANSI((double, int*, int*));
607 extern void decrement ANSI((Bigint*));
608 extern Bigint *diff ANSI((Bigint*, Bigint*));
609 extern char *dtoa ANSI((double d, int mode, int ndigits,
610			int *decpt, int *sign, char **rve));
611 extern void freedtoa ANSI((char*));
612 extern char *gdtoa ANSI((FPI *fpi, int be, ULong *bits, int *kindp,
613			  int mode, int ndigits, int *decpt, char **rve));
614 extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
615 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
616 extern void hexdig_init_D2A(Void);
617 extern int hexnan ANSI((CONST char**, FPI*, ULong*));
618 extern int hi0bits ANSI((ULong));
619 extern Bigint *i2b ANSI((int));
620 extern Bigint *increment ANSI((Bigint*));
621 extern int lo0bits ANSI((ULong*));
622 extern Bigint *lshift ANSI((Bigint*, int));
623 extern int match ANSI((CONST char**, char*));
624 extern Bigint *mult ANSI((Bigint*, Bigint*));
625 extern Bigint *multadd ANSI((Bigint*, int, int));
626 extern char *nrv_alloc ANSI((char*, char **, int));
627 extern Bigint *pow5mult ANSI((Bigint*, int));
628 extern int quorem ANSI((Bigint*, Bigint*));
629 extern double ratio ANSI((Bigint*, Bigint*));
630 extern void rshift ANSI((Bigint*, int));
631 extern char *rv_alloc ANSI((int));
632 extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int));
633 extern Bigint *set_ones ANSI((Bigint*, int));
634 extern char *strcp ANSI((char*, const char*));
635 extern int strtodg_l ANSI((CONST char*, char**, FPI*, Long*, ULong*, locale_t));
636
637 extern int strtoId ANSI((CONST char *, char **, double *, double *));
638 extern int strtoIdd ANSI((CONST char *, char **, double *, double *));
639 extern int strtoIf ANSI((CONST char *, char **, float *, float *));
640 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
641 extern int strtoIQ ANSI((CONST char *, char **, void *, void *));
642 extern int strtoIx ANSI((CONST char *, char **, void *, void *));
643 extern int strtoIxL ANSI((CONST char *, char **, void *, void *));
644 extern double strtod ANSI((const char *s00, char **se));
645 extern int strtopQ ANSI((CONST char *, char **, Void *));
646 extern int strtopf ANSI((CONST char *, char **, float *));
647 extern int strtopd ANSI((CONST char *, char **, double *));
648 extern int strtopdd ANSI((CONST char *, char **, double *));
649 extern int strtopx ANSI((CONST char *, char **, Void *));
650 extern int strtopxL ANSI((CONST char *, char **, Void *));
651 extern int strtord_l ANSI((CONST char *, char **, int, double *, locale_t));
652 extern int strtordd ANSI((CONST char *, char **, int, double *));
653 extern int strtorf ANSI((CONST char *, char **, int, float *));
654 extern int strtorQ_l ANSI((CONST char *, char **, int, void *, locale_t));
655 extern int strtorx_l ANSI((CONST char *, char **, int, void *, locale_t));
656 extern int strtorxL ANSI((CONST char *, char **, int, void *));
657 extern Bigint *sum ANSI((Bigint*, Bigint*));
658 extern int trailz ANSI((Bigint*));
659 extern double ulp ANSI((U*));
660
661#ifdef __cplusplus
662}
663#endif
664/*
665 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
666 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
667 * respectively), but now are determined by compiling and running
668 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
669 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
670 * and -DNAN_WORD1=...  values if necessary.  This should still work.
671 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
672 */
673#ifdef IEEE_Arith
674#ifndef NO_INFNAN_CHECK
675#undef INFNAN_CHECK
676#define INFNAN_CHECK
677#endif
678#ifdef IEEE_MC68k
679#define _0 0
680#define _1 1
681#ifndef NAN_WORD0
682#define NAN_WORD0 d_QNAN0
683#endif
684#ifndef NAN_WORD1
685#define NAN_WORD1 d_QNAN1
686#endif
687#else
688#define _0 1
689#define _1 0
690#ifndef NAN_WORD0
691#define NAN_WORD0 d_QNAN1
692#endif
693#ifndef NAN_WORD1
694#define NAN_WORD1 d_QNAN0
695#endif
696#endif
697#else
698#undef INFNAN_CHECK
699#endif
700
701#undef SI
702#ifdef Sudden_Underflow
703#define SI 1
704#else
705#define SI 0
706#endif
707
708#endif /* GDTOAIMP_H_INCLUDED */
709