1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Tests Memory Protection Keys (see Documentation/core-api/protection-keys.rst)
4 *
5 * There are examples in here of:
6 *  * how to set protection keys on memory
7 *  * how to set/clear bits in pkey registers (the rights register)
8 *  * how to handle SEGV_PKUERR signals and extract pkey-relevant
9 *    information from the siginfo
10 *
11 * Things to add:
12 *	make sure KSM and KSM COW breaking works
13 *	prefault pages in at malloc, or not
14 *	protect MPX bounds tables with protection keys?
15 *	make sure VMA splitting/merging is working correctly
16 *	OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
17 *	look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
18 *	do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
19 *
20 * Compile like this:
21 *	gcc -mxsave      -o protection_keys    -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
22 *	gcc -mxsave -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
23 */
24#define _GNU_SOURCE
25#define __SANE_USERSPACE_TYPES__
26#include <errno.h>
27#include <linux/elf.h>
28#include <linux/futex.h>
29#include <time.h>
30#include <sys/time.h>
31#include <sys/syscall.h>
32#include <string.h>
33#include <stdio.h>
34#include <stdint.h>
35#include <stdbool.h>
36#include <signal.h>
37#include <assert.h>
38#include <stdlib.h>
39#include <ucontext.h>
40#include <sys/mman.h>
41#include <sys/types.h>
42#include <sys/wait.h>
43#include <sys/stat.h>
44#include <fcntl.h>
45#include <unistd.h>
46#include <sys/ptrace.h>
47#include <setjmp.h>
48
49#include "pkey-helpers.h"
50
51int iteration_nr = 1;
52int test_nr;
53
54u64 shadow_pkey_reg;
55int dprint_in_signal;
56char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];
57
58void cat_into_file(char *str, char *file)
59{
60	int fd = open(file, O_RDWR);
61	int ret;
62
63	dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
64	/*
65	 * these need to be raw because they are called under
66	 * pkey_assert()
67	 */
68	if (fd < 0) {
69		fprintf(stderr, "error opening '%s'\n", str);
70		perror("error: ");
71		exit(__LINE__);
72	}
73
74	ret = write(fd, str, strlen(str));
75	if (ret != strlen(str)) {
76		perror("write to file failed");
77		fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
78		exit(__LINE__);
79	}
80	close(fd);
81}
82
83#if CONTROL_TRACING > 0
84static int warned_tracing;
85int tracing_root_ok(void)
86{
87	if (geteuid() != 0) {
88		if (!warned_tracing)
89			fprintf(stderr, "WARNING: not run as root, "
90					"can not do tracing control\n");
91		warned_tracing = 1;
92		return 0;
93	}
94	return 1;
95}
96#endif
97
98void tracing_on(void)
99{
100#if CONTROL_TRACING > 0
101#define TRACEDIR "/sys/kernel/tracing"
102	char pidstr[32];
103
104	if (!tracing_root_ok())
105		return;
106
107	sprintf(pidstr, "%d", getpid());
108	cat_into_file("0", TRACEDIR "/tracing_on");
109	cat_into_file("\n", TRACEDIR "/trace");
110	if (1) {
111		cat_into_file("function_graph", TRACEDIR "/current_tracer");
112		cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
113	} else {
114		cat_into_file("nop", TRACEDIR "/current_tracer");
115	}
116	cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
117	cat_into_file("1", TRACEDIR "/tracing_on");
118	dprintf1("enabled tracing\n");
119#endif
120}
121
122void tracing_off(void)
123{
124#if CONTROL_TRACING > 0
125	if (!tracing_root_ok())
126		return;
127	cat_into_file("0", "/sys/kernel/tracing/tracing_on");
128#endif
129}
130
131void abort_hooks(void)
132{
133	fprintf(stderr, "running %s()...\n", __func__);
134	tracing_off();
135#ifdef SLEEP_ON_ABORT
136	sleep(SLEEP_ON_ABORT);
137#endif
138}
139
140/*
141 * This attempts to have roughly a page of instructions followed by a few
142 * instructions that do a write, and another page of instructions.  That
143 * way, we are pretty sure that the write is in the second page of
144 * instructions and has at least a page of padding behind it.
145 *
146 * *That* lets us be sure to madvise() away the write instruction, which
147 * will then fault, which makes sure that the fault code handles
148 * execute-only memory properly.
149 */
150#ifdef __powerpc64__
151/* This way, both 4K and 64K alignment are maintained */
152__attribute__((__aligned__(65536)))
153#else
154__attribute__((__aligned__(PAGE_SIZE)))
155#endif
156void lots_o_noops_around_write(int *write_to_me)
157{
158	dprintf3("running %s()\n", __func__);
159	__page_o_noops();
160	/* Assume this happens in the second page of instructions: */
161	*write_to_me = __LINE__;
162	/* pad out by another page: */
163	__page_o_noops();
164	dprintf3("%s() done\n", __func__);
165}
166
167void dump_mem(void *dumpme, int len_bytes)
168{
169	char *c = (void *)dumpme;
170	int i;
171
172	for (i = 0; i < len_bytes; i += sizeof(u64)) {
173		u64 *ptr = (u64 *)(c + i);
174		dprintf1("dump[%03d][@%p]: %016llx\n", i, ptr, *ptr);
175	}
176}
177
178static u32 hw_pkey_get(int pkey, unsigned long flags)
179{
180	u64 pkey_reg = __read_pkey_reg();
181
182	dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
183			__func__, pkey, flags, 0, 0);
184	dprintf2("%s() raw pkey_reg: %016llx\n", __func__, pkey_reg);
185
186	return (u32) get_pkey_bits(pkey_reg, pkey);
187}
188
189static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags)
190{
191	u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
192	u64 old_pkey_reg = __read_pkey_reg();
193	u64 new_pkey_reg;
194
195	/* make sure that 'rights' only contains the bits we expect: */
196	assert(!(rights & ~mask));
197
198	/* modify bits accordingly in old pkey_reg and assign it */
199	new_pkey_reg = set_pkey_bits(old_pkey_reg, pkey, rights);
200
201	__write_pkey_reg(new_pkey_reg);
202
203	dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x"
204		" pkey_reg now: %016llx old_pkey_reg: %016llx\n",
205		__func__, pkey, rights, flags, 0, __read_pkey_reg(),
206		old_pkey_reg);
207	return 0;
208}
209
210void pkey_disable_set(int pkey, int flags)
211{
212	unsigned long syscall_flags = 0;
213	int ret;
214	int pkey_rights;
215	u64 orig_pkey_reg = read_pkey_reg();
216
217	dprintf1("START->%s(%d, 0x%x)\n", __func__,
218		pkey, flags);
219	pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
220
221	pkey_rights = hw_pkey_get(pkey, syscall_flags);
222
223	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
224			pkey, pkey, pkey_rights);
225
226	pkey_assert(pkey_rights >= 0);
227
228	pkey_rights |= flags;
229
230	ret = hw_pkey_set(pkey, pkey_rights, syscall_flags);
231	assert(!ret);
232	/* pkey_reg and flags have the same format */
233	shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
234	dprintf1("%s(%d) shadow: 0x%016llx\n",
235		__func__, pkey, shadow_pkey_reg);
236
237	pkey_assert(ret >= 0);
238
239	pkey_rights = hw_pkey_get(pkey, syscall_flags);
240	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
241			pkey, pkey, pkey_rights);
242
243	dprintf1("%s(%d) pkey_reg: 0x%016llx\n",
244		__func__, pkey, read_pkey_reg());
245	if (flags)
246		pkey_assert(read_pkey_reg() >= orig_pkey_reg);
247	dprintf1("END<---%s(%d, 0x%x)\n", __func__,
248		pkey, flags);
249}
250
251void pkey_disable_clear(int pkey, int flags)
252{
253	unsigned long syscall_flags = 0;
254	int ret;
255	int pkey_rights = hw_pkey_get(pkey, syscall_flags);
256	u64 orig_pkey_reg = read_pkey_reg();
257
258	pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
259
260	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
261			pkey, pkey, pkey_rights);
262	pkey_assert(pkey_rights >= 0);
263
264	pkey_rights &= ~flags;
265
266	ret = hw_pkey_set(pkey, pkey_rights, 0);
267	shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, pkey, pkey_rights);
268	pkey_assert(ret >= 0);
269
270	pkey_rights = hw_pkey_get(pkey, syscall_flags);
271	dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
272			pkey, pkey, pkey_rights);
273
274	dprintf1("%s(%d) pkey_reg: 0x%016llx\n", __func__,
275			pkey, read_pkey_reg());
276	if (flags)
277		assert(read_pkey_reg() <= orig_pkey_reg);
278}
279
280void pkey_write_allow(int pkey)
281{
282	pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
283}
284void pkey_write_deny(int pkey)
285{
286	pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
287}
288void pkey_access_allow(int pkey)
289{
290	pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
291}
292void pkey_access_deny(int pkey)
293{
294	pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
295}
296
297static char *si_code_str(int si_code)
298{
299	if (si_code == SEGV_MAPERR)
300		return "SEGV_MAPERR";
301	if (si_code == SEGV_ACCERR)
302		return "SEGV_ACCERR";
303	if (si_code == SEGV_BNDERR)
304		return "SEGV_BNDERR";
305	if (si_code == SEGV_PKUERR)
306		return "SEGV_PKUERR";
307	return "UNKNOWN";
308}
309
310int pkey_faults;
311int last_si_pkey = -1;
312void signal_handler(int signum, siginfo_t *si, void *vucontext)
313{
314	ucontext_t *uctxt = vucontext;
315	int trapno;
316	unsigned long ip;
317	char *fpregs;
318#if defined(__i386__) || defined(__x86_64__) /* arch */
319	u32 *pkey_reg_ptr;
320	int pkey_reg_offset;
321#endif /* arch */
322	u64 siginfo_pkey;
323	u32 *si_pkey_ptr;
324
325	dprint_in_signal = 1;
326	dprintf1(">>>>===============SIGSEGV============================\n");
327	dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
328			__func__, __LINE__,
329			__read_pkey_reg(), shadow_pkey_reg);
330
331	trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
332	ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
333	fpregs = (char *) uctxt->uc_mcontext.fpregs;
334
335	dprintf2("%s() trapno: %d ip: 0x%016lx info->si_code: %s/%d\n",
336			__func__, trapno, ip, si_code_str(si->si_code),
337			si->si_code);
338
339#if defined(__i386__) || defined(__x86_64__) /* arch */
340#ifdef __i386__
341	/*
342	 * 32-bit has some extra padding so that userspace can tell whether
343	 * the XSTATE header is present in addition to the "legacy" FPU
344	 * state.  We just assume that it is here.
345	 */
346	fpregs += 0x70;
347#endif /* i386 */
348	pkey_reg_offset = pkey_reg_xstate_offset();
349	pkey_reg_ptr = (void *)(&fpregs[pkey_reg_offset]);
350
351	/*
352	 * If we got a PKEY fault, we *HAVE* to have at least one bit set in
353	 * here.
354	 */
355	dprintf1("pkey_reg_xstate_offset: %d\n", pkey_reg_xstate_offset());
356	if (DEBUG_LEVEL > 4)
357		dump_mem(pkey_reg_ptr - 128, 256);
358	pkey_assert(*pkey_reg_ptr);
359#endif /* arch */
360
361	dprintf1("siginfo: %p\n", si);
362	dprintf1(" fpregs: %p\n", fpregs);
363
364	if ((si->si_code == SEGV_MAPERR) ||
365	    (si->si_code == SEGV_ACCERR) ||
366	    (si->si_code == SEGV_BNDERR)) {
367		printf("non-PK si_code, exiting...\n");
368		exit(4);
369	}
370
371	si_pkey_ptr = siginfo_get_pkey_ptr(si);
372	dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
373	dump_mem((u8 *)si_pkey_ptr - 8, 24);
374	siginfo_pkey = *si_pkey_ptr;
375	pkey_assert(siginfo_pkey < NR_PKEYS);
376	last_si_pkey = siginfo_pkey;
377
378	/*
379	 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
380	 * checking
381	 */
382	dprintf1("signal pkey_reg from  pkey_reg: %016llx\n",
383			__read_pkey_reg());
384	dprintf1("pkey from siginfo: %016llx\n", siginfo_pkey);
385#if defined(__i386__) || defined(__x86_64__) /* arch */
386	dprintf1("signal pkey_reg from xsave: %08x\n", *pkey_reg_ptr);
387	*(u64 *)pkey_reg_ptr = 0x00000000;
388	dprintf1("WARNING: set PKEY_REG=0 to allow faulting instruction to continue\n");
389#elif defined(__powerpc64__) /* arch */
390	/* restore access and let the faulting instruction continue */
391	pkey_access_allow(siginfo_pkey);
392#endif /* arch */
393	pkey_faults++;
394	dprintf1("<<<<==================================================\n");
395	dprint_in_signal = 0;
396}
397
398int wait_all_children(void)
399{
400	int status;
401	return waitpid(-1, &status, 0);
402}
403
404void sig_chld(int x)
405{
406	dprint_in_signal = 1;
407	dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
408	dprint_in_signal = 0;
409}
410
411void setup_sigsegv_handler(void)
412{
413	int r, rs;
414	struct sigaction newact;
415	struct sigaction oldact;
416
417	/* #PF is mapped to sigsegv */
418	int signum  = SIGSEGV;
419
420	newact.sa_handler = 0;
421	newact.sa_sigaction = signal_handler;
422
423	/*sigset_t - signals to block while in the handler */
424	/* get the old signal mask. */
425	rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
426	pkey_assert(rs == 0);
427
428	/* call sa_sigaction, not sa_handler*/
429	newact.sa_flags = SA_SIGINFO;
430
431	newact.sa_restorer = 0;  /* void(*)(), obsolete */
432	r = sigaction(signum, &newact, &oldact);
433	r = sigaction(SIGALRM, &newact, &oldact);
434	pkey_assert(r == 0);
435}
436
437void setup_handlers(void)
438{
439	signal(SIGCHLD, &sig_chld);
440	setup_sigsegv_handler();
441}
442
443pid_t fork_lazy_child(void)
444{
445	pid_t forkret;
446
447	forkret = fork();
448	pkey_assert(forkret >= 0);
449	dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
450
451	if (!forkret) {
452		/* in the child */
453		while (1) {
454			dprintf1("child sleeping...\n");
455			sleep(30);
456		}
457	}
458	return forkret;
459}
460
461int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
462		unsigned long pkey)
463{
464	int sret;
465
466	dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__,
467			ptr, size, orig_prot, pkey);
468
469	errno = 0;
470	sret = syscall(__NR_pkey_mprotect, ptr, size, orig_prot, pkey);
471	if (errno) {
472		dprintf2("SYS_mprotect_key sret: %d\n", sret);
473		dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot);
474		dprintf2("SYS_mprotect_key failed, errno: %d\n", errno);
475		if (DEBUG_LEVEL >= 2)
476			perror("SYS_mprotect_pkey");
477	}
478	return sret;
479}
480
481int sys_pkey_alloc(unsigned long flags, unsigned long init_val)
482{
483	int ret = syscall(SYS_pkey_alloc, flags, init_val);
484	dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
485			__func__, flags, init_val, ret, errno);
486	return ret;
487}
488
489int alloc_pkey(void)
490{
491	int ret;
492	unsigned long init_val = 0x0;
493
494	dprintf1("%s()::%d, pkey_reg: 0x%016llx shadow: %016llx\n",
495			__func__, __LINE__, __read_pkey_reg(), shadow_pkey_reg);
496	ret = sys_pkey_alloc(0, init_val);
497	/*
498	 * pkey_alloc() sets PKEY register, so we need to reflect it in
499	 * shadow_pkey_reg:
500	 */
501	dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
502			" shadow: 0x%016llx\n",
503			__func__, __LINE__, ret, __read_pkey_reg(),
504			shadow_pkey_reg);
505	if (ret > 0) {
506		/* clear both the bits: */
507		shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
508						~PKEY_MASK);
509		dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
510				" shadow: 0x%016llx\n",
511				__func__,
512				__LINE__, ret, __read_pkey_reg(),
513				shadow_pkey_reg);
514		/*
515		 * move the new state in from init_val
516		 * (remember, we cheated and init_val == pkey_reg format)
517		 */
518		shadow_pkey_reg = set_pkey_bits(shadow_pkey_reg, ret,
519						init_val);
520	}
521	dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
522			" shadow: 0x%016llx\n",
523			__func__, __LINE__, ret, __read_pkey_reg(),
524			shadow_pkey_reg);
525	dprintf1("%s()::%d errno: %d\n", __func__, __LINE__, errno);
526	/* for shadow checking: */
527	read_pkey_reg();
528	dprintf4("%s()::%d, ret: %d pkey_reg: 0x%016llx"
529		 " shadow: 0x%016llx\n",
530		__func__, __LINE__, ret, __read_pkey_reg(),
531		shadow_pkey_reg);
532	return ret;
533}
534
535int sys_pkey_free(unsigned long pkey)
536{
537	int ret = syscall(SYS_pkey_free, pkey);
538	dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret);
539	return ret;
540}
541
542/*
543 * I had a bug where pkey bits could be set by mprotect() but
544 * not cleared.  This ensures we get lots of random bit sets
545 * and clears on the vma and pte pkey bits.
546 */
547int alloc_random_pkey(void)
548{
549	int max_nr_pkey_allocs;
550	int ret;
551	int i;
552	int alloced_pkeys[NR_PKEYS];
553	int nr_alloced = 0;
554	int random_index;
555	memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
556
557	/* allocate every possible key and make a note of which ones we got */
558	max_nr_pkey_allocs = NR_PKEYS;
559	for (i = 0; i < max_nr_pkey_allocs; i++) {
560		int new_pkey = alloc_pkey();
561		if (new_pkey < 0)
562			break;
563		alloced_pkeys[nr_alloced++] = new_pkey;
564	}
565
566	pkey_assert(nr_alloced > 0);
567	/* select a random one out of the allocated ones */
568	random_index = rand() % nr_alloced;
569	ret = alloced_pkeys[random_index];
570	/* now zero it out so we don't free it next */
571	alloced_pkeys[random_index] = 0;
572
573	/* go through the allocated ones that we did not want and free them */
574	for (i = 0; i < nr_alloced; i++) {
575		int free_ret;
576		if (!alloced_pkeys[i])
577			continue;
578		free_ret = sys_pkey_free(alloced_pkeys[i]);
579		pkey_assert(!free_ret);
580	}
581	dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
582			 " shadow: 0x%016llx\n", __func__,
583			__LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
584	return ret;
585}
586
587int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
588		unsigned long pkey)
589{
590	int nr_iterations = random() % 100;
591	int ret;
592
593	while (0) {
594		int rpkey = alloc_random_pkey();
595		ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
596		dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
597				ptr, size, orig_prot, pkey, ret);
598		if (nr_iterations-- < 0)
599			break;
600
601		dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
602			" shadow: 0x%016llx\n",
603			__func__, __LINE__, ret, __read_pkey_reg(),
604			shadow_pkey_reg);
605		sys_pkey_free(rpkey);
606		dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
607			" shadow: 0x%016llx\n",
608			__func__, __LINE__, ret, __read_pkey_reg(),
609			shadow_pkey_reg);
610	}
611	pkey_assert(pkey < NR_PKEYS);
612
613	ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
614	dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
615			ptr, size, orig_prot, pkey, ret);
616	pkey_assert(!ret);
617	dprintf1("%s()::%d, ret: %d pkey_reg: 0x%016llx"
618			" shadow: 0x%016llx\n", __func__,
619			__LINE__, ret, __read_pkey_reg(), shadow_pkey_reg);
620	return ret;
621}
622
623struct pkey_malloc_record {
624	void *ptr;
625	long size;
626	int prot;
627};
628struct pkey_malloc_record *pkey_malloc_records;
629struct pkey_malloc_record *pkey_last_malloc_record;
630long nr_pkey_malloc_records;
631void record_pkey_malloc(void *ptr, long size, int prot)
632{
633	long i;
634	struct pkey_malloc_record *rec = NULL;
635
636	for (i = 0; i < nr_pkey_malloc_records; i++) {
637		rec = &pkey_malloc_records[i];
638		/* find a free record */
639		if (rec)
640			break;
641	}
642	if (!rec) {
643		/* every record is full */
644		size_t old_nr_records = nr_pkey_malloc_records;
645		size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
646		size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
647		dprintf2("new_nr_records: %zd\n", new_nr_records);
648		dprintf2("new_size: %zd\n", new_size);
649		pkey_malloc_records = realloc(pkey_malloc_records, new_size);
650		pkey_assert(pkey_malloc_records != NULL);
651		rec = &pkey_malloc_records[nr_pkey_malloc_records];
652		/*
653		 * realloc() does not initialize memory, so zero it from
654		 * the first new record all the way to the end.
655		 */
656		for (i = 0; i < new_nr_records - old_nr_records; i++)
657			memset(rec + i, 0, sizeof(*rec));
658	}
659	dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
660		(int)(rec - pkey_malloc_records), rec, ptr, size);
661	rec->ptr = ptr;
662	rec->size = size;
663	rec->prot = prot;
664	pkey_last_malloc_record = rec;
665	nr_pkey_malloc_records++;
666}
667
668void free_pkey_malloc(void *ptr)
669{
670	long i;
671	int ret;
672	dprintf3("%s(%p)\n", __func__, ptr);
673	for (i = 0; i < nr_pkey_malloc_records; i++) {
674		struct pkey_malloc_record *rec = &pkey_malloc_records[i];
675		dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
676				ptr, i, rec, rec->ptr, rec->size);
677		if ((ptr <  rec->ptr) ||
678		    (ptr >= rec->ptr + rec->size))
679			continue;
680
681		dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
682				ptr, i, rec, rec->ptr, rec->size);
683		nr_pkey_malloc_records--;
684		ret = munmap(rec->ptr, rec->size);
685		dprintf3("munmap ret: %d\n", ret);
686		pkey_assert(!ret);
687		dprintf3("clearing rec->ptr, rec: %p\n", rec);
688		rec->ptr = NULL;
689		dprintf3("done clearing rec->ptr, rec: %p\n", rec);
690		return;
691	}
692	pkey_assert(false);
693}
694
695
696void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
697{
698	void *ptr;
699	int ret;
700
701	read_pkey_reg();
702	dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
703			size, prot, pkey);
704	pkey_assert(pkey < NR_PKEYS);
705	ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
706	pkey_assert(ptr != (void *)-1);
707	ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
708	pkey_assert(!ret);
709	record_pkey_malloc(ptr, size, prot);
710	read_pkey_reg();
711
712	dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
713	return ptr;
714}
715
716void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
717{
718	int ret;
719	void *ptr;
720
721	dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
722			size, prot, pkey);
723	/*
724	 * Guarantee we can fit at least one huge page in the resulting
725	 * allocation by allocating space for 2:
726	 */
727	size = ALIGN_UP(size, HPAGE_SIZE * 2);
728	ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
729	pkey_assert(ptr != (void *)-1);
730	record_pkey_malloc(ptr, size, prot);
731	mprotect_pkey(ptr, size, prot, pkey);
732
733	dprintf1("unaligned ptr: %p\n", ptr);
734	ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
735	dprintf1("  aligned ptr: %p\n", ptr);
736	ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
737	dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
738	ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
739	dprintf1("MADV_WILLNEED ret: %d\n", ret);
740	memset(ptr, 0, HPAGE_SIZE);
741
742	dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
743	return ptr;
744}
745
746int hugetlb_setup_ok;
747#define SYSFS_FMT_NR_HUGE_PAGES "/sys/kernel/mm/hugepages/hugepages-%ldkB/nr_hugepages"
748#define GET_NR_HUGE_PAGES 10
749void setup_hugetlbfs(void)
750{
751	int err;
752	int fd;
753	char buf[256];
754	long hpagesz_kb;
755	long hpagesz_mb;
756
757	if (geteuid() != 0) {
758		fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
759		return;
760	}
761
762	cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
763
764	/*
765	 * Now go make sure that we got the pages and that they
766	 * are PMD-level pages. Someone might have made PUD-level
767	 * pages the default.
768	 */
769	hpagesz_kb = HPAGE_SIZE / 1024;
770	hpagesz_mb = hpagesz_kb / 1024;
771	sprintf(buf, SYSFS_FMT_NR_HUGE_PAGES, hpagesz_kb);
772	fd = open(buf, O_RDONLY);
773	if (fd < 0) {
774		fprintf(stderr, "opening sysfs %ldM hugetlb config: %s\n",
775			hpagesz_mb, strerror(errno));
776		return;
777	}
778
779	/* -1 to guarantee leaving the trailing \0 */
780	err = read(fd, buf, sizeof(buf)-1);
781	close(fd);
782	if (err <= 0) {
783		fprintf(stderr, "reading sysfs %ldM hugetlb config: %s\n",
784			hpagesz_mb, strerror(errno));
785		return;
786	}
787
788	if (atoi(buf) != GET_NR_HUGE_PAGES) {
789		fprintf(stderr, "could not confirm %ldM pages, got: '%s' expected %d\n",
790			hpagesz_mb, buf, GET_NR_HUGE_PAGES);
791		return;
792	}
793
794	hugetlb_setup_ok = 1;
795}
796
797void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
798{
799	void *ptr;
800	int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
801
802	if (!hugetlb_setup_ok)
803		return PTR_ERR_ENOTSUP;
804
805	dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
806	size = ALIGN_UP(size, HPAGE_SIZE * 2);
807	pkey_assert(pkey < NR_PKEYS);
808	ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
809	pkey_assert(ptr != (void *)-1);
810	mprotect_pkey(ptr, size, prot, pkey);
811
812	record_pkey_malloc(ptr, size, prot);
813
814	dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
815	return ptr;
816}
817
818void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey)
819{
820	void *ptr;
821	int fd;
822
823	dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
824			size, prot, pkey);
825	pkey_assert(pkey < NR_PKEYS);
826	fd = open("/dax/foo", O_RDWR);
827	pkey_assert(fd >= 0);
828
829	ptr = mmap(0, size, prot, MAP_SHARED, fd, 0);
830	pkey_assert(ptr != (void *)-1);
831
832	mprotect_pkey(ptr, size, prot, pkey);
833
834	record_pkey_malloc(ptr, size, prot);
835
836	dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr);
837	close(fd);
838	return ptr;
839}
840
841void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
842
843	malloc_pkey_with_mprotect,
844	malloc_pkey_with_mprotect_subpage,
845	malloc_pkey_anon_huge,
846	malloc_pkey_hugetlb
847/* can not do direct with the pkey_mprotect() API:
848	malloc_pkey_mmap_direct,
849	malloc_pkey_mmap_dax,
850*/
851};
852
853void *malloc_pkey(long size, int prot, u16 pkey)
854{
855	void *ret;
856	static int malloc_type;
857	int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
858
859	pkey_assert(pkey < NR_PKEYS);
860
861	while (1) {
862		pkey_assert(malloc_type < nr_malloc_types);
863
864		ret = pkey_malloc[malloc_type](size, prot, pkey);
865		pkey_assert(ret != (void *)-1);
866
867		malloc_type++;
868		if (malloc_type >= nr_malloc_types)
869			malloc_type = (random()%nr_malloc_types);
870
871		/* try again if the malloc_type we tried is unsupported */
872		if (ret == PTR_ERR_ENOTSUP)
873			continue;
874
875		break;
876	}
877
878	dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
879			size, prot, pkey, ret);
880	return ret;
881}
882
883int last_pkey_faults;
884#define UNKNOWN_PKEY -2
885void expected_pkey_fault(int pkey)
886{
887	dprintf2("%s(): last_pkey_faults: %d pkey_faults: %d\n",
888			__func__, last_pkey_faults, pkey_faults);
889	dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
890	pkey_assert(last_pkey_faults + 1 == pkey_faults);
891
892       /*
893	* For exec-only memory, we do not know the pkey in
894	* advance, so skip this check.
895	*/
896	if (pkey != UNKNOWN_PKEY)
897		pkey_assert(last_si_pkey == pkey);
898
899#if defined(__i386__) || defined(__x86_64__) /* arch */
900	/*
901	 * The signal handler shold have cleared out PKEY register to let the
902	 * test program continue.  We now have to restore it.
903	 */
904	if (__read_pkey_reg() != 0)
905#else /* arch */
906	if (__read_pkey_reg() != shadow_pkey_reg)
907#endif /* arch */
908		pkey_assert(0);
909
910	__write_pkey_reg(shadow_pkey_reg);
911	dprintf1("%s() set pkey_reg=%016llx to restore state after signal "
912		       "nuked it\n", __func__, shadow_pkey_reg);
913	last_pkey_faults = pkey_faults;
914	last_si_pkey = -1;
915}
916
917#define do_not_expect_pkey_fault(msg)	do {			\
918	if (last_pkey_faults != pkey_faults)			\
919		dprintf0("unexpected PKey fault: %s\n", msg);	\
920	pkey_assert(last_pkey_faults == pkey_faults);		\
921} while (0)
922
923int test_fds[10] = { -1 };
924int nr_test_fds;
925void __save_test_fd(int fd)
926{
927	pkey_assert(fd >= 0);
928	pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
929	test_fds[nr_test_fds] = fd;
930	nr_test_fds++;
931}
932
933int get_test_read_fd(void)
934{
935	int test_fd = open("/etc/passwd", O_RDONLY);
936	__save_test_fd(test_fd);
937	return test_fd;
938}
939
940void close_test_fds(void)
941{
942	int i;
943
944	for (i = 0; i < nr_test_fds; i++) {
945		if (test_fds[i] < 0)
946			continue;
947		close(test_fds[i]);
948		test_fds[i] = -1;
949	}
950	nr_test_fds = 0;
951}
952
953#define barrier() __asm__ __volatile__("": : :"memory")
954__attribute__((noinline)) int read_ptr(int *ptr)
955{
956	/*
957	 * Keep GCC from optimizing this away somehow
958	 */
959	barrier();
960	return *ptr;
961}
962
963void test_pkey_alloc_free_attach_pkey0(int *ptr, u16 pkey)
964{
965	int i, err;
966	int max_nr_pkey_allocs;
967	int alloced_pkeys[NR_PKEYS];
968	int nr_alloced = 0;
969	long size;
970
971	pkey_assert(pkey_last_malloc_record);
972	size = pkey_last_malloc_record->size;
973	/*
974	 * This is a bit of a hack.  But mprotect() requires
975	 * huge-page-aligned sizes when operating on hugetlbfs.
976	 * So, make sure that we use something that's a multiple
977	 * of a huge page when we can.
978	 */
979	if (size >= HPAGE_SIZE)
980		size = HPAGE_SIZE;
981
982	/* allocate every possible key and make sure key-0 never got allocated */
983	max_nr_pkey_allocs = NR_PKEYS;
984	for (i = 0; i < max_nr_pkey_allocs; i++) {
985		int new_pkey = alloc_pkey();
986		pkey_assert(new_pkey != 0);
987
988		if (new_pkey < 0)
989			break;
990		alloced_pkeys[nr_alloced++] = new_pkey;
991	}
992	/* free all the allocated keys */
993	for (i = 0; i < nr_alloced; i++) {
994		int free_ret;
995
996		if (!alloced_pkeys[i])
997			continue;
998		free_ret = sys_pkey_free(alloced_pkeys[i]);
999		pkey_assert(!free_ret);
1000	}
1001
1002	/* attach key-0 in various modes */
1003	err = sys_mprotect_pkey(ptr, size, PROT_READ, 0);
1004	pkey_assert(!err);
1005	err = sys_mprotect_pkey(ptr, size, PROT_WRITE, 0);
1006	pkey_assert(!err);
1007	err = sys_mprotect_pkey(ptr, size, PROT_EXEC, 0);
1008	pkey_assert(!err);
1009	err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE, 0);
1010	pkey_assert(!err);
1011	err = sys_mprotect_pkey(ptr, size, PROT_READ|PROT_WRITE|PROT_EXEC, 0);
1012	pkey_assert(!err);
1013}
1014
1015void test_read_of_write_disabled_region(int *ptr, u16 pkey)
1016{
1017	int ptr_contents;
1018
1019	dprintf1("disabling write access to PKEY[1], doing read\n");
1020	pkey_write_deny(pkey);
1021	ptr_contents = read_ptr(ptr);
1022	dprintf1("*ptr: %d\n", ptr_contents);
1023	dprintf1("\n");
1024}
1025void test_read_of_access_disabled_region(int *ptr, u16 pkey)
1026{
1027	int ptr_contents;
1028
1029	dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
1030	read_pkey_reg();
1031	pkey_access_deny(pkey);
1032	ptr_contents = read_ptr(ptr);
1033	dprintf1("*ptr: %d\n", ptr_contents);
1034	expected_pkey_fault(pkey);
1035}
1036
1037void test_read_of_access_disabled_region_with_page_already_mapped(int *ptr,
1038		u16 pkey)
1039{
1040	int ptr_contents;
1041
1042	dprintf1("disabling access to PKEY[%02d], doing read @ %p\n",
1043				pkey, ptr);
1044	ptr_contents = read_ptr(ptr);
1045	dprintf1("reading ptr before disabling the read : %d\n",
1046			ptr_contents);
1047	read_pkey_reg();
1048	pkey_access_deny(pkey);
1049	ptr_contents = read_ptr(ptr);
1050	dprintf1("*ptr: %d\n", ptr_contents);
1051	expected_pkey_fault(pkey);
1052}
1053
1054void test_write_of_write_disabled_region_with_page_already_mapped(int *ptr,
1055		u16 pkey)
1056{
1057	*ptr = __LINE__;
1058	dprintf1("disabling write access; after accessing the page, "
1059		"to PKEY[%02d], doing write\n", pkey);
1060	pkey_write_deny(pkey);
1061	*ptr = __LINE__;
1062	expected_pkey_fault(pkey);
1063}
1064
1065void test_write_of_write_disabled_region(int *ptr, u16 pkey)
1066{
1067	dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
1068	pkey_write_deny(pkey);
1069	*ptr = __LINE__;
1070	expected_pkey_fault(pkey);
1071}
1072void test_write_of_access_disabled_region(int *ptr, u16 pkey)
1073{
1074	dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
1075	pkey_access_deny(pkey);
1076	*ptr = __LINE__;
1077	expected_pkey_fault(pkey);
1078}
1079
1080void test_write_of_access_disabled_region_with_page_already_mapped(int *ptr,
1081			u16 pkey)
1082{
1083	*ptr = __LINE__;
1084	dprintf1("disabling access; after accessing the page, "
1085		" to PKEY[%02d], doing write\n", pkey);
1086	pkey_access_deny(pkey);
1087	*ptr = __LINE__;
1088	expected_pkey_fault(pkey);
1089}
1090
1091void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
1092{
1093	int ret;
1094	int test_fd = get_test_read_fd();
1095
1096	dprintf1("disabling access to PKEY[%02d], "
1097		 "having kernel read() to buffer\n", pkey);
1098	pkey_access_deny(pkey);
1099	ret = read(test_fd, ptr, 1);
1100	dprintf1("read ret: %d\n", ret);
1101	pkey_assert(ret);
1102}
1103void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
1104{
1105	int ret;
1106	int test_fd = get_test_read_fd();
1107
1108	pkey_write_deny(pkey);
1109	ret = read(test_fd, ptr, 100);
1110	dprintf1("read ret: %d\n", ret);
1111	if (ret < 0 && (DEBUG_LEVEL > 0))
1112		perror("verbose read result (OK for this to be bad)");
1113	pkey_assert(ret);
1114}
1115
1116void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
1117{
1118	int pipe_ret, vmsplice_ret;
1119	struct iovec iov;
1120	int pipe_fds[2];
1121
1122	pipe_ret = pipe(pipe_fds);
1123
1124	pkey_assert(pipe_ret == 0);
1125	dprintf1("disabling access to PKEY[%02d], "
1126		 "having kernel vmsplice from buffer\n", pkey);
1127	pkey_access_deny(pkey);
1128	iov.iov_base = ptr;
1129	iov.iov_len = PAGE_SIZE;
1130	vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
1131	dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
1132	pkey_assert(vmsplice_ret == -1);
1133
1134	close(pipe_fds[0]);
1135	close(pipe_fds[1]);
1136}
1137
1138void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
1139{
1140	int ignored = 0xdada;
1141	int futex_ret;
1142	int some_int = __LINE__;
1143
1144	dprintf1("disabling write to PKEY[%02d], "
1145		 "doing futex gunk in buffer\n", pkey);
1146	*ptr = some_int;
1147	pkey_write_deny(pkey);
1148	futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
1149			&ignored, ignored);
1150	if (DEBUG_LEVEL > 0)
1151		perror("futex");
1152	dprintf1("futex() ret: %d\n", futex_ret);
1153}
1154
1155/* Assumes that all pkeys other than 'pkey' are unallocated */
1156void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
1157{
1158	int err;
1159	int i;
1160
1161	/* Note: 0 is the default pkey, so don't mess with it */
1162	for (i = 1; i < NR_PKEYS; i++) {
1163		if (pkey == i)
1164			continue;
1165
1166		dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
1167		err = sys_pkey_free(i);
1168		pkey_assert(err);
1169
1170		err = sys_pkey_free(i);
1171		pkey_assert(err);
1172
1173		err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
1174		pkey_assert(err);
1175	}
1176}
1177
1178/* Assumes that all pkeys other than 'pkey' are unallocated */
1179void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
1180{
1181	int err;
1182	int bad_pkey = NR_PKEYS+99;
1183
1184	/* pass a known-invalid pkey in: */
1185	err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
1186	pkey_assert(err);
1187}
1188
1189void become_child(void)
1190{
1191	pid_t forkret;
1192
1193	forkret = fork();
1194	pkey_assert(forkret >= 0);
1195	dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
1196
1197	if (!forkret) {
1198		/* in the child */
1199		return;
1200	}
1201	exit(0);
1202}
1203
1204/* Assumes that all pkeys other than 'pkey' are unallocated */
1205void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
1206{
1207	int err;
1208	int allocated_pkeys[NR_PKEYS] = {0};
1209	int nr_allocated_pkeys = 0;
1210	int i;
1211
1212	for (i = 0; i < NR_PKEYS*3; i++) {
1213		int new_pkey;
1214		dprintf1("%s() alloc loop: %d\n", __func__, i);
1215		new_pkey = alloc_pkey();
1216		dprintf4("%s()::%d, err: %d pkey_reg: 0x%016llx"
1217				" shadow: 0x%016llx\n",
1218				__func__, __LINE__, err, __read_pkey_reg(),
1219				shadow_pkey_reg);
1220		read_pkey_reg(); /* for shadow checking */
1221		dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
1222		if ((new_pkey == -1) && (errno == ENOSPC)) {
1223			dprintf2("%s() failed to allocate pkey after %d tries\n",
1224				__func__, nr_allocated_pkeys);
1225		} else {
1226			/*
1227			 * Ensure the number of successes never
1228			 * exceeds the number of keys supported
1229			 * in the hardware.
1230			 */
1231			pkey_assert(nr_allocated_pkeys < NR_PKEYS);
1232			allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1233		}
1234
1235		/*
1236		 * Make sure that allocation state is properly
1237		 * preserved across fork().
1238		 */
1239		if (i == NR_PKEYS*2)
1240			become_child();
1241	}
1242
1243	dprintf3("%s()::%d\n", __func__, __LINE__);
1244
1245	/*
1246	 * On x86:
1247	 * There are 16 pkeys supported in hardware.  Three are
1248	 * allocated by the time we get here:
1249	 *   1. The default key (0)
1250	 *   2. One possibly consumed by an execute-only mapping.
1251	 *   3. One allocated by the test code and passed in via
1252	 *      'pkey' to this function.
1253	 * Ensure that we can allocate at least another 13 (16-3).
1254	 *
1255	 * On powerpc:
1256	 * There are either 5, 28, 29 or 32 pkeys supported in
1257	 * hardware depending on the page size (4K or 64K) and
1258	 * platform (powernv or powervm). Four are allocated by
1259	 * the time we get here. These include pkey-0, pkey-1,
1260	 * exec-only pkey and the one allocated by the test code.
1261	 * Ensure that we can allocate the remaining.
1262	 */
1263	pkey_assert(i >= (NR_PKEYS - get_arch_reserved_keys() - 1));
1264
1265	for (i = 0; i < nr_allocated_pkeys; i++) {
1266		err = sys_pkey_free(allocated_pkeys[i]);
1267		pkey_assert(!err);
1268		read_pkey_reg(); /* for shadow checking */
1269	}
1270}
1271
1272void arch_force_pkey_reg_init(void)
1273{
1274#if defined(__i386__) || defined(__x86_64__) /* arch */
1275	u64 *buf;
1276
1277	/*
1278	 * All keys should be allocated and set to allow reads and
1279	 * writes, so the register should be all 0.  If not, just
1280	 * skip the test.
1281	 */
1282	if (read_pkey_reg())
1283		return;
1284
1285	/*
1286	 * Just allocate an absurd about of memory rather than
1287	 * doing the XSAVE size enumeration dance.
1288	 */
1289	buf = mmap(NULL, 1*MB, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1290
1291	/* These __builtins require compiling with -mxsave */
1292
1293	/* XSAVE to build a valid buffer: */
1294	__builtin_ia32_xsave(buf, XSTATE_PKEY);
1295	/* Clear XSTATE_BV[PKRU]: */
1296	buf[XSTATE_BV_OFFSET/sizeof(u64)] &= ~XSTATE_PKEY;
1297	/* XRSTOR will likely get PKRU back to the init state: */
1298	__builtin_ia32_xrstor(buf, XSTATE_PKEY);
1299
1300	munmap(buf, 1*MB);
1301#endif
1302}
1303
1304
1305/*
1306 * This is mostly useless on ppc for now.  But it will not
1307 * hurt anything and should give some better coverage as
1308 * a long-running test that continually checks the pkey
1309 * register.
1310 */
1311void test_pkey_init_state(int *ptr, u16 pkey)
1312{
1313	int err;
1314	int allocated_pkeys[NR_PKEYS] = {0};
1315	int nr_allocated_pkeys = 0;
1316	int i;
1317
1318	for (i = 0; i < NR_PKEYS; i++) {
1319		int new_pkey = alloc_pkey();
1320
1321		if (new_pkey < 0)
1322			continue;
1323		allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1324	}
1325
1326	dprintf3("%s()::%d\n", __func__, __LINE__);
1327
1328	arch_force_pkey_reg_init();
1329
1330	/*
1331	 * Loop for a bit, hoping to get exercise the kernel
1332	 * context switch code.
1333	 */
1334	for (i = 0; i < 1000000; i++)
1335		read_pkey_reg();
1336
1337	for (i = 0; i < nr_allocated_pkeys; i++) {
1338		err = sys_pkey_free(allocated_pkeys[i]);
1339		pkey_assert(!err);
1340		read_pkey_reg(); /* for shadow checking */
1341	}
1342}
1343
1344/*
1345 * pkey 0 is special.  It is allocated by default, so you do not
1346 * have to call pkey_alloc() to use it first.  Make sure that it
1347 * is usable.
1348 */
1349void test_mprotect_with_pkey_0(int *ptr, u16 pkey)
1350{
1351	long size;
1352	int prot;
1353
1354	assert(pkey_last_malloc_record);
1355	size = pkey_last_malloc_record->size;
1356	/*
1357	 * This is a bit of a hack.  But mprotect() requires
1358	 * huge-page-aligned sizes when operating on hugetlbfs.
1359	 * So, make sure that we use something that's a multiple
1360	 * of a huge page when we can.
1361	 */
1362	if (size >= HPAGE_SIZE)
1363		size = HPAGE_SIZE;
1364	prot = pkey_last_malloc_record->prot;
1365
1366	/* Use pkey 0 */
1367	mprotect_pkey(ptr, size, prot, 0);
1368
1369	/* Make sure that we can set it back to the original pkey. */
1370	mprotect_pkey(ptr, size, prot, pkey);
1371}
1372
1373void test_ptrace_of_child(int *ptr, u16 pkey)
1374{
1375	__attribute__((__unused__)) int peek_result;
1376	pid_t child_pid;
1377	void *ignored = 0;
1378	long ret;
1379	int status;
1380	/*
1381	 * This is the "control" for our little expermient.  Make sure
1382	 * we can always access it when ptracing.
1383	 */
1384	int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
1385	int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
1386
1387	/*
1388	 * Fork a child which is an exact copy of this process, of course.
1389	 * That means we can do all of our tests via ptrace() and then plain
1390	 * memory access and ensure they work differently.
1391	 */
1392	child_pid = fork_lazy_child();
1393	dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
1394
1395	ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
1396	if (ret)
1397		perror("attach");
1398	dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
1399	pkey_assert(ret != -1);
1400	ret = waitpid(child_pid, &status, WUNTRACED);
1401	if ((ret != child_pid) || !(WIFSTOPPED(status))) {
1402		fprintf(stderr, "weird waitpid result %ld stat %x\n",
1403				ret, status);
1404		pkey_assert(0);
1405	}
1406	dprintf2("waitpid ret: %ld\n", ret);
1407	dprintf2("waitpid status: %d\n", status);
1408
1409	pkey_access_deny(pkey);
1410	pkey_write_deny(pkey);
1411
1412	/* Write access, untested for now:
1413	ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
1414	pkey_assert(ret != -1);
1415	dprintf1("poke at %p: %ld\n", peek_at, ret);
1416	*/
1417
1418	/*
1419	 * Try to access the pkey-protected "ptr" via ptrace:
1420	 */
1421	ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
1422	/* expect it to work, without an error: */
1423	pkey_assert(ret != -1);
1424	/* Now access from the current task, and expect an exception: */
1425	peek_result = read_ptr(ptr);
1426	expected_pkey_fault(pkey);
1427
1428	/*
1429	 * Try to access the NON-pkey-protected "plain_ptr" via ptrace:
1430	 */
1431	ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
1432	/* expect it to work, without an error: */
1433	pkey_assert(ret != -1);
1434	/* Now access from the current task, and expect NO exception: */
1435	peek_result = read_ptr(plain_ptr);
1436	do_not_expect_pkey_fault("read plain pointer after ptrace");
1437
1438	ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
1439	pkey_assert(ret != -1);
1440
1441	ret = kill(child_pid, SIGKILL);
1442	pkey_assert(ret != -1);
1443
1444	wait(&status);
1445
1446	free(plain_ptr_unaligned);
1447}
1448
1449void *get_pointer_to_instructions(void)
1450{
1451	void *p1;
1452
1453	p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
1454	dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
1455	/* lots_o_noops_around_write should be page-aligned already */
1456	assert(p1 == &lots_o_noops_around_write);
1457
1458	/* Point 'p1' at the *second* page of the function: */
1459	p1 += PAGE_SIZE;
1460
1461	/*
1462	 * Try to ensure we fault this in on next touch to ensure
1463	 * we get an instruction fault as opposed to a data one
1464	 */
1465	madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1466
1467	return p1;
1468}
1469
1470void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
1471{
1472	void *p1;
1473	int scratch;
1474	int ptr_contents;
1475	int ret;
1476
1477	p1 = get_pointer_to_instructions();
1478	lots_o_noops_around_write(&scratch);
1479	ptr_contents = read_ptr(p1);
1480	dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1481
1482	ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
1483	pkey_assert(!ret);
1484	pkey_access_deny(pkey);
1485
1486	dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1487
1488	/*
1489	 * Make sure this is an *instruction* fault
1490	 */
1491	madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1492	lots_o_noops_around_write(&scratch);
1493	do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1494	expect_fault_on_read_execonly_key(p1, pkey);
1495}
1496
1497void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey)
1498{
1499	void *p1;
1500	int scratch;
1501	int ptr_contents;
1502	int ret;
1503
1504	dprintf1("%s() start\n", __func__);
1505
1506	p1 = get_pointer_to_instructions();
1507	lots_o_noops_around_write(&scratch);
1508	ptr_contents = read_ptr(p1);
1509	dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1510
1511	/* Use a *normal* mprotect(), not mprotect_pkey(): */
1512	ret = mprotect(p1, PAGE_SIZE, PROT_EXEC);
1513	pkey_assert(!ret);
1514
1515	/*
1516	 * Reset the shadow, assuming that the above mprotect()
1517	 * correctly changed PKRU, but to an unknown value since
1518	 * the actual allocated pkey is unknown.
1519	 */
1520	shadow_pkey_reg = __read_pkey_reg();
1521
1522	dprintf2("pkey_reg: %016llx\n", read_pkey_reg());
1523
1524	/* Make sure this is an *instruction* fault */
1525	madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1526	lots_o_noops_around_write(&scratch);
1527	do_not_expect_pkey_fault("executing on PROT_EXEC memory");
1528	expect_fault_on_read_execonly_key(p1, UNKNOWN_PKEY);
1529
1530	/*
1531	 * Put the memory back to non-PROT_EXEC.  Should clear the
1532	 * exec-only pkey off the VMA and allow it to be readable
1533	 * again.  Go to PROT_NONE first to check for a kernel bug
1534	 * that did not clear the pkey when doing PROT_NONE.
1535	 */
1536	ret = mprotect(p1, PAGE_SIZE, PROT_NONE);
1537	pkey_assert(!ret);
1538
1539	ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC);
1540	pkey_assert(!ret);
1541	ptr_contents = read_ptr(p1);
1542	do_not_expect_pkey_fault("plain read on recently PROT_EXEC area");
1543}
1544
1545#if defined(__i386__) || defined(__x86_64__)
1546void test_ptrace_modifies_pkru(int *ptr, u16 pkey)
1547{
1548	u32 new_pkru;
1549	pid_t child;
1550	int status, ret;
1551	int pkey_offset = pkey_reg_xstate_offset();
1552	size_t xsave_size = cpu_max_xsave_size();
1553	void *xsave;
1554	u32 *pkey_register;
1555	u64 *xstate_bv;
1556	struct iovec iov;
1557
1558	new_pkru = ~read_pkey_reg();
1559	/* Don't make PROT_EXEC mappings inaccessible */
1560	new_pkru &= ~3;
1561
1562	child = fork();
1563	pkey_assert(child >= 0);
1564	dprintf3("[%d] fork() ret: %d\n", getpid(), child);
1565	if (!child) {
1566		ptrace(PTRACE_TRACEME, 0, 0, 0);
1567		/* Stop and allow the tracer to modify PKRU directly */
1568		raise(SIGSTOP);
1569
1570		/*
1571		 * need __read_pkey_reg() version so we do not do shadow_pkey_reg
1572		 * checking
1573		 */
1574		if (__read_pkey_reg() != new_pkru)
1575			exit(1);
1576
1577		/* Stop and allow the tracer to clear XSTATE_BV for PKRU */
1578		raise(SIGSTOP);
1579
1580		if (__read_pkey_reg() != 0)
1581			exit(1);
1582
1583		/* Stop and allow the tracer to examine PKRU */
1584		raise(SIGSTOP);
1585
1586		exit(0);
1587	}
1588
1589	pkey_assert(child == waitpid(child, &status, 0));
1590	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1591	pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1592
1593	xsave = (void *)malloc(xsave_size);
1594	pkey_assert(xsave > 0);
1595
1596	/* Modify the PKRU register directly */
1597	iov.iov_base = xsave;
1598	iov.iov_len = xsave_size;
1599	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1600	pkey_assert(ret == 0);
1601
1602	pkey_register = (u32 *)(xsave + pkey_offset);
1603	pkey_assert(*pkey_register == read_pkey_reg());
1604
1605	*pkey_register = new_pkru;
1606
1607	ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1608	pkey_assert(ret == 0);
1609
1610	/* Test that the modification is visible in ptrace before any execution */
1611	memset(xsave, 0xCC, xsave_size);
1612	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1613	pkey_assert(ret == 0);
1614	pkey_assert(*pkey_register == new_pkru);
1615
1616	/* Execute the tracee */
1617	ret = ptrace(PTRACE_CONT, child, 0, 0);
1618	pkey_assert(ret == 0);
1619
1620	/* Test that the tracee saw the PKRU value change */
1621	pkey_assert(child == waitpid(child, &status, 0));
1622	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1623	pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1624
1625	/* Test that the modification is visible in ptrace after execution */
1626	memset(xsave, 0xCC, xsave_size);
1627	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1628	pkey_assert(ret == 0);
1629	pkey_assert(*pkey_register == new_pkru);
1630
1631	/* Clear the PKRU bit from XSTATE_BV */
1632	xstate_bv = (u64 *)(xsave + 512);
1633	*xstate_bv &= ~(1 << 9);
1634
1635	ret = ptrace(PTRACE_SETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1636	pkey_assert(ret == 0);
1637
1638	/* Test that the modification is visible in ptrace before any execution */
1639	memset(xsave, 0xCC, xsave_size);
1640	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1641	pkey_assert(ret == 0);
1642	pkey_assert(*pkey_register == 0);
1643
1644	ret = ptrace(PTRACE_CONT, child, 0, 0);
1645	pkey_assert(ret == 0);
1646
1647	/* Test that the tracee saw the PKRU value go to 0 */
1648	pkey_assert(child == waitpid(child, &status, 0));
1649	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1650	pkey_assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
1651
1652	/* Test that the modification is visible in ptrace after execution */
1653	memset(xsave, 0xCC, xsave_size);
1654	ret = ptrace(PTRACE_GETREGSET, child, (void *)NT_X86_XSTATE, &iov);
1655	pkey_assert(ret == 0);
1656	pkey_assert(*pkey_register == 0);
1657
1658	ret = ptrace(PTRACE_CONT, child, 0, 0);
1659	pkey_assert(ret == 0);
1660	pkey_assert(child == waitpid(child, &status, 0));
1661	dprintf3("[%d] waitpid(%d) status: %x\n", getpid(), child, status);
1662	pkey_assert(WIFEXITED(status));
1663	pkey_assert(WEXITSTATUS(status) == 0);
1664	free(xsave);
1665}
1666#endif
1667
1668void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
1669{
1670	int size = PAGE_SIZE;
1671	int sret;
1672
1673	if (cpu_has_pkeys()) {
1674		dprintf1("SKIP: %s: no CPU support\n", __func__);
1675		return;
1676	}
1677
1678	sret = syscall(__NR_pkey_mprotect, ptr, size, PROT_READ, pkey);
1679	pkey_assert(sret < 0);
1680}
1681
1682void (*pkey_tests[])(int *ptr, u16 pkey) = {
1683	test_read_of_write_disabled_region,
1684	test_read_of_access_disabled_region,
1685	test_read_of_access_disabled_region_with_page_already_mapped,
1686	test_write_of_write_disabled_region,
1687	test_write_of_write_disabled_region_with_page_already_mapped,
1688	test_write_of_access_disabled_region,
1689	test_write_of_access_disabled_region_with_page_already_mapped,
1690	test_kernel_write_of_access_disabled_region,
1691	test_kernel_write_of_write_disabled_region,
1692	test_kernel_gup_of_access_disabled_region,
1693	test_kernel_gup_write_to_write_disabled_region,
1694	test_executing_on_unreadable_memory,
1695	test_implicit_mprotect_exec_only_memory,
1696	test_mprotect_with_pkey_0,
1697	test_ptrace_of_child,
1698	test_pkey_init_state,
1699	test_pkey_syscalls_on_non_allocated_pkey,
1700	test_pkey_syscalls_bad_args,
1701	test_pkey_alloc_exhaust,
1702	test_pkey_alloc_free_attach_pkey0,
1703#if defined(__i386__) || defined(__x86_64__)
1704	test_ptrace_modifies_pkru,
1705#endif
1706};
1707
1708void run_tests_once(void)
1709{
1710	int *ptr;
1711	int prot = PROT_READ|PROT_WRITE;
1712
1713	for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
1714		int pkey;
1715		int orig_pkey_faults = pkey_faults;
1716
1717		dprintf1("======================\n");
1718		dprintf1("test %d preparing...\n", test_nr);
1719
1720		tracing_on();
1721		pkey = alloc_random_pkey();
1722		dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
1723		ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
1724		dprintf1("test %d starting...\n", test_nr);
1725		pkey_tests[test_nr](ptr, pkey);
1726		dprintf1("freeing test memory: %p\n", ptr);
1727		free_pkey_malloc(ptr);
1728		sys_pkey_free(pkey);
1729
1730		dprintf1("pkey_faults: %d\n", pkey_faults);
1731		dprintf1("orig_pkey_faults: %d\n", orig_pkey_faults);
1732
1733		tracing_off();
1734		close_test_fds();
1735
1736		printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
1737		dprintf1("======================\n\n");
1738	}
1739	iteration_nr++;
1740}
1741
1742void pkey_setup_shadow(void)
1743{
1744	shadow_pkey_reg = __read_pkey_reg();
1745}
1746
1747int main(void)
1748{
1749	int nr_iterations = 22;
1750	int pkeys_supported = is_pkeys_supported();
1751
1752	srand((unsigned int)time(NULL));
1753
1754	setup_handlers();
1755
1756	printf("has pkeys: %d\n", pkeys_supported);
1757
1758	if (!pkeys_supported) {
1759		int size = PAGE_SIZE;
1760		int *ptr;
1761
1762		printf("running PKEY tests for unsupported CPU/OS\n");
1763
1764		ptr  = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1765		assert(ptr != (void *)-1);
1766		test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
1767		exit(0);
1768	}
1769
1770	pkey_setup_shadow();
1771	printf("startup pkey_reg: %016llx\n", read_pkey_reg());
1772	setup_hugetlbfs();
1773
1774	while (nr_iterations-- > 0)
1775		run_tests_once();
1776
1777	printf("done (all tests OK)\n");
1778	return 0;
1779}
1780