1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2020, Google LLC.
4 */
5#define _GNU_SOURCE
6
7#include <inttypes.h>
8#include <linux/bitmap.h>
9
10#include "kvm_util.h"
11#include "memstress.h"
12#include "processor.h"
13
14struct memstress_args memstress_args;
15
16/*
17 * Guest virtual memory offset of the testing memory slot.
18 * Must not conflict with identity mapped test code.
19 */
20static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
21
22struct vcpu_thread {
23	/* The index of the vCPU. */
24	int vcpu_idx;
25
26	/* The pthread backing the vCPU. */
27	pthread_t thread;
28
29	/* Set to true once the vCPU thread is up and running. */
30	bool running;
31};
32
33/* The vCPU threads involved in this test. */
34static struct vcpu_thread vcpu_threads[KVM_MAX_VCPUS];
35
36/* The function run by each vCPU thread, as provided by the test. */
37static void (*vcpu_thread_fn)(struct memstress_vcpu_args *);
38
39/* Set to true once all vCPU threads are up and running. */
40static bool all_vcpu_threads_running;
41
42static struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
43
44/*
45 * Continuously write to the first 8 bytes of each page in the
46 * specified region.
47 */
48void memstress_guest_code(uint32_t vcpu_idx)
49{
50	struct memstress_args *args = &memstress_args;
51	struct memstress_vcpu_args *vcpu_args = &args->vcpu_args[vcpu_idx];
52	struct guest_random_state rand_state;
53	uint64_t gva;
54	uint64_t pages;
55	uint64_t addr;
56	uint64_t page;
57	int i;
58
59	rand_state = new_guest_random_state(args->random_seed + vcpu_idx);
60
61	gva = vcpu_args->gva;
62	pages = vcpu_args->pages;
63
64	/* Make sure vCPU args data structure is not corrupt. */
65	GUEST_ASSERT(vcpu_args->vcpu_idx == vcpu_idx);
66
67	while (true) {
68		for (i = 0; i < sizeof(memstress_args); i += args->guest_page_size)
69			(void) *((volatile char *)args + i);
70
71		for (i = 0; i < pages; i++) {
72			if (args->random_access)
73				page = guest_random_u32(&rand_state) % pages;
74			else
75				page = i;
76
77			addr = gva + (page * args->guest_page_size);
78
79			if (guest_random_u32(&rand_state) % 100 < args->write_percent)
80				*(uint64_t *)addr = 0x0123456789ABCDEF;
81			else
82				READ_ONCE(*(uint64_t *)addr);
83		}
84
85		GUEST_SYNC(1);
86	}
87}
88
89void memstress_setup_vcpus(struct kvm_vm *vm, int nr_vcpus,
90			   struct kvm_vcpu *vcpus[],
91			   uint64_t vcpu_memory_bytes,
92			   bool partition_vcpu_memory_access)
93{
94	struct memstress_args *args = &memstress_args;
95	struct memstress_vcpu_args *vcpu_args;
96	int i;
97
98	for (i = 0; i < nr_vcpus; i++) {
99		vcpu_args = &args->vcpu_args[i];
100
101		vcpu_args->vcpu = vcpus[i];
102		vcpu_args->vcpu_idx = i;
103
104		if (partition_vcpu_memory_access) {
105			vcpu_args->gva = guest_test_virt_mem +
106					 (i * vcpu_memory_bytes);
107			vcpu_args->pages = vcpu_memory_bytes /
108					   args->guest_page_size;
109			vcpu_args->gpa = args->gpa + (i * vcpu_memory_bytes);
110		} else {
111			vcpu_args->gva = guest_test_virt_mem;
112			vcpu_args->pages = (nr_vcpus * vcpu_memory_bytes) /
113					   args->guest_page_size;
114			vcpu_args->gpa = args->gpa;
115		}
116
117		vcpu_args_set(vcpus[i], 1, i);
118
119		pr_debug("Added VCPU %d with test mem gpa [%lx, %lx)\n",
120			 i, vcpu_args->gpa, vcpu_args->gpa +
121			 (vcpu_args->pages * args->guest_page_size));
122	}
123}
124
125struct kvm_vm *memstress_create_vm(enum vm_guest_mode mode, int nr_vcpus,
126				   uint64_t vcpu_memory_bytes, int slots,
127				   enum vm_mem_backing_src_type backing_src,
128				   bool partition_vcpu_memory_access)
129{
130	struct memstress_args *args = &memstress_args;
131	struct kvm_vm *vm;
132	uint64_t guest_num_pages, slot0_pages = 0;
133	uint64_t backing_src_pagesz = get_backing_src_pagesz(backing_src);
134	uint64_t region_end_gfn;
135	int i;
136
137	pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
138
139	/* By default vCPUs will write to memory. */
140	args->write_percent = 100;
141
142	/*
143	 * Snapshot the non-huge page size.  This is used by the guest code to
144	 * access/dirty pages at the logging granularity.
145	 */
146	args->guest_page_size = vm_guest_mode_params[mode].page_size;
147
148	guest_num_pages = vm_adjust_num_guest_pages(mode,
149				(nr_vcpus * vcpu_memory_bytes) / args->guest_page_size);
150
151	TEST_ASSERT(vcpu_memory_bytes % getpagesize() == 0,
152		    "Guest memory size is not host page size aligned.");
153	TEST_ASSERT(vcpu_memory_bytes % args->guest_page_size == 0,
154		    "Guest memory size is not guest page size aligned.");
155	TEST_ASSERT(guest_num_pages % slots == 0,
156		    "Guest memory cannot be evenly divided into %d slots.",
157		    slots);
158
159	/*
160	 * If using nested, allocate extra pages for the nested page tables and
161	 * in-memory data structures.
162	 */
163	if (args->nested)
164		slot0_pages += memstress_nested_pages(nr_vcpus);
165
166	/*
167	 * Pass guest_num_pages to populate the page tables for test memory.
168	 * The memory is also added to memslot 0, but that's a benign side
169	 * effect as KVM allows aliasing HVAs in meslots.
170	 */
171	vm = __vm_create_with_vcpus(mode, nr_vcpus, slot0_pages + guest_num_pages,
172				    memstress_guest_code, vcpus);
173
174	args->vm = vm;
175
176	/* Put the test region at the top guest physical memory. */
177	region_end_gfn = vm->max_gfn + 1;
178
179#ifdef __x86_64__
180	/*
181	 * When running vCPUs in L2, restrict the test region to 48 bits to
182	 * avoid needing 5-level page tables to identity map L2.
183	 */
184	if (args->nested)
185		region_end_gfn = min(region_end_gfn, (1UL << 48) / args->guest_page_size);
186#endif
187	/*
188	 * If there should be more memory in the guest test region than there
189	 * can be pages in the guest, it will definitely cause problems.
190	 */
191	TEST_ASSERT(guest_num_pages < region_end_gfn,
192		    "Requested more guest memory than address space allows.\n"
193		    "    guest pages: %" PRIx64 " max gfn: %" PRIx64
194		    " nr_vcpus: %d wss: %" PRIx64 "]\n",
195		    guest_num_pages, region_end_gfn - 1, nr_vcpus, vcpu_memory_bytes);
196
197	args->gpa = (region_end_gfn - guest_num_pages - 1) * args->guest_page_size;
198	args->gpa = align_down(args->gpa, backing_src_pagesz);
199#ifdef __s390x__
200	/* Align to 1M (segment size) */
201	args->gpa = align_down(args->gpa, 1 << 20);
202#endif
203	args->size = guest_num_pages * args->guest_page_size;
204	pr_info("guest physical test memory: [0x%lx, 0x%lx)\n",
205		args->gpa, args->gpa + args->size);
206
207	/* Add extra memory slots for testing */
208	for (i = 0; i < slots; i++) {
209		uint64_t region_pages = guest_num_pages / slots;
210		vm_paddr_t region_start = args->gpa + region_pages * args->guest_page_size * i;
211
212		vm_userspace_mem_region_add(vm, backing_src, region_start,
213					    MEMSTRESS_MEM_SLOT_INDEX + i,
214					    region_pages, 0);
215	}
216
217	/* Do mapping for the demand paging memory slot */
218	virt_map(vm, guest_test_virt_mem, args->gpa, guest_num_pages);
219
220	memstress_setup_vcpus(vm, nr_vcpus, vcpus, vcpu_memory_bytes,
221			      partition_vcpu_memory_access);
222
223	if (args->nested) {
224		pr_info("Configuring vCPUs to run in L2 (nested).\n");
225		memstress_setup_nested(vm, nr_vcpus, vcpus);
226	}
227
228	/* Export the shared variables to the guest. */
229	sync_global_to_guest(vm, memstress_args);
230
231	return vm;
232}
233
234void memstress_destroy_vm(struct kvm_vm *vm)
235{
236	kvm_vm_free(vm);
237}
238
239void memstress_set_write_percent(struct kvm_vm *vm, uint32_t write_percent)
240{
241	memstress_args.write_percent = write_percent;
242	sync_global_to_guest(vm, memstress_args.write_percent);
243}
244
245void memstress_set_random_seed(struct kvm_vm *vm, uint32_t random_seed)
246{
247	memstress_args.random_seed = random_seed;
248	sync_global_to_guest(vm, memstress_args.random_seed);
249}
250
251void memstress_set_random_access(struct kvm_vm *vm, bool random_access)
252{
253	memstress_args.random_access = random_access;
254	sync_global_to_guest(vm, memstress_args.random_access);
255}
256
257uint64_t __weak memstress_nested_pages(int nr_vcpus)
258{
259	return 0;
260}
261
262void __weak memstress_setup_nested(struct kvm_vm *vm, int nr_vcpus, struct kvm_vcpu **vcpus)
263{
264	pr_info("%s() not support on this architecture, skipping.\n", __func__);
265	exit(KSFT_SKIP);
266}
267
268static void *vcpu_thread_main(void *data)
269{
270	struct vcpu_thread *vcpu = data;
271	int vcpu_idx = vcpu->vcpu_idx;
272
273	if (memstress_args.pin_vcpus)
274		kvm_pin_this_task_to_pcpu(memstress_args.vcpu_to_pcpu[vcpu_idx]);
275
276	WRITE_ONCE(vcpu->running, true);
277
278	/*
279	 * Wait for all vCPU threads to be up and running before calling the test-
280	 * provided vCPU thread function. This prevents thread creation (which
281	 * requires taking the mmap_sem in write mode) from interfering with the
282	 * guest faulting in its memory.
283	 */
284	while (!READ_ONCE(all_vcpu_threads_running))
285		;
286
287	vcpu_thread_fn(&memstress_args.vcpu_args[vcpu_idx]);
288
289	return NULL;
290}
291
292void memstress_start_vcpu_threads(int nr_vcpus,
293				  void (*vcpu_fn)(struct memstress_vcpu_args *))
294{
295	int i;
296
297	vcpu_thread_fn = vcpu_fn;
298	WRITE_ONCE(all_vcpu_threads_running, false);
299	WRITE_ONCE(memstress_args.stop_vcpus, false);
300
301	for (i = 0; i < nr_vcpus; i++) {
302		struct vcpu_thread *vcpu = &vcpu_threads[i];
303
304		vcpu->vcpu_idx = i;
305		WRITE_ONCE(vcpu->running, false);
306
307		pthread_create(&vcpu->thread, NULL, vcpu_thread_main, vcpu);
308	}
309
310	for (i = 0; i < nr_vcpus; i++) {
311		while (!READ_ONCE(vcpu_threads[i].running))
312			;
313	}
314
315	WRITE_ONCE(all_vcpu_threads_running, true);
316}
317
318void memstress_join_vcpu_threads(int nr_vcpus)
319{
320	int i;
321
322	WRITE_ONCE(memstress_args.stop_vcpus, true);
323
324	for (i = 0; i < nr_vcpus; i++)
325		pthread_join(vcpu_threads[i].thread, NULL);
326}
327
328static void toggle_dirty_logging(struct kvm_vm *vm, int slots, bool enable)
329{
330	int i;
331
332	for (i = 0; i < slots; i++) {
333		int slot = MEMSTRESS_MEM_SLOT_INDEX + i;
334		int flags = enable ? KVM_MEM_LOG_DIRTY_PAGES : 0;
335
336		vm_mem_region_set_flags(vm, slot, flags);
337	}
338}
339
340void memstress_enable_dirty_logging(struct kvm_vm *vm, int slots)
341{
342	toggle_dirty_logging(vm, slots, true);
343}
344
345void memstress_disable_dirty_logging(struct kvm_vm *vm, int slots)
346{
347	toggle_dirty_logging(vm, slots, false);
348}
349
350void memstress_get_dirty_log(struct kvm_vm *vm, unsigned long *bitmaps[], int slots)
351{
352	int i;
353
354	for (i = 0; i < slots; i++) {
355		int slot = MEMSTRESS_MEM_SLOT_INDEX + i;
356
357		kvm_vm_get_dirty_log(vm, slot, bitmaps[i]);
358	}
359}
360
361void memstress_clear_dirty_log(struct kvm_vm *vm, unsigned long *bitmaps[],
362			       int slots, uint64_t pages_per_slot)
363{
364	int i;
365
366	for (i = 0; i < slots; i++) {
367		int slot = MEMSTRESS_MEM_SLOT_INDEX + i;
368
369		kvm_vm_clear_dirty_log(vm, slot, bitmaps[i], 0, pages_per_slot);
370	}
371}
372
373unsigned long **memstress_alloc_bitmaps(int slots, uint64_t pages_per_slot)
374{
375	unsigned long **bitmaps;
376	int i;
377
378	bitmaps = malloc(slots * sizeof(bitmaps[0]));
379	TEST_ASSERT(bitmaps, "Failed to allocate bitmaps array.");
380
381	for (i = 0; i < slots; i++) {
382		bitmaps[i] = bitmap_zalloc(pages_per_slot);
383		TEST_ASSERT(bitmaps[i], "Failed to allocate slot bitmap.");
384	}
385
386	return bitmaps;
387}
388
389void memstress_free_bitmaps(unsigned long *bitmaps[], int slots)
390{
391	int i;
392
393	for (i = 0; i < slots; i++)
394		free(bitmaps[i]);
395
396	free(bitmaps);
397}
398