162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * tools/testing/selftests/kvm/lib/kvm_util.c
462306a36Sopenharmony_ci *
562306a36Sopenharmony_ci * Copyright (C) 2018, Google LLC.
662306a36Sopenharmony_ci */
762306a36Sopenharmony_ci
862306a36Sopenharmony_ci#define _GNU_SOURCE /* for program_invocation_name */
962306a36Sopenharmony_ci#include "test_util.h"
1062306a36Sopenharmony_ci#include "kvm_util.h"
1162306a36Sopenharmony_ci#include "processor.h"
1262306a36Sopenharmony_ci
1362306a36Sopenharmony_ci#include <assert.h>
1462306a36Sopenharmony_ci#include <sched.h>
1562306a36Sopenharmony_ci#include <sys/mman.h>
1662306a36Sopenharmony_ci#include <sys/types.h>
1762306a36Sopenharmony_ci#include <sys/stat.h>
1862306a36Sopenharmony_ci#include <unistd.h>
1962306a36Sopenharmony_ci#include <linux/kernel.h>
2062306a36Sopenharmony_ci
2162306a36Sopenharmony_ci#define KVM_UTIL_MIN_PFN	2
2262306a36Sopenharmony_ci
2362306a36Sopenharmony_cistatic int vcpu_mmap_sz(void);
2462306a36Sopenharmony_ci
2562306a36Sopenharmony_ciint open_path_or_exit(const char *path, int flags)
2662306a36Sopenharmony_ci{
2762306a36Sopenharmony_ci	int fd;
2862306a36Sopenharmony_ci
2962306a36Sopenharmony_ci	fd = open(path, flags);
3062306a36Sopenharmony_ci	__TEST_REQUIRE(fd >= 0, "%s not available (errno: %d)", path, errno);
3162306a36Sopenharmony_ci
3262306a36Sopenharmony_ci	return fd;
3362306a36Sopenharmony_ci}
3462306a36Sopenharmony_ci
3562306a36Sopenharmony_ci/*
3662306a36Sopenharmony_ci * Open KVM_DEV_PATH if available, otherwise exit the entire program.
3762306a36Sopenharmony_ci *
3862306a36Sopenharmony_ci * Input Args:
3962306a36Sopenharmony_ci *   flags - The flags to pass when opening KVM_DEV_PATH.
4062306a36Sopenharmony_ci *
4162306a36Sopenharmony_ci * Return:
4262306a36Sopenharmony_ci *   The opened file descriptor of /dev/kvm.
4362306a36Sopenharmony_ci */
4462306a36Sopenharmony_cistatic int _open_kvm_dev_path_or_exit(int flags)
4562306a36Sopenharmony_ci{
4662306a36Sopenharmony_ci	return open_path_or_exit(KVM_DEV_PATH, flags);
4762306a36Sopenharmony_ci}
4862306a36Sopenharmony_ci
4962306a36Sopenharmony_ciint open_kvm_dev_path_or_exit(void)
5062306a36Sopenharmony_ci{
5162306a36Sopenharmony_ci	return _open_kvm_dev_path_or_exit(O_RDONLY);
5262306a36Sopenharmony_ci}
5362306a36Sopenharmony_ci
5462306a36Sopenharmony_cistatic bool get_module_param_bool(const char *module_name, const char *param)
5562306a36Sopenharmony_ci{
5662306a36Sopenharmony_ci	const int path_size = 128;
5762306a36Sopenharmony_ci	char path[path_size];
5862306a36Sopenharmony_ci	char value;
5962306a36Sopenharmony_ci	ssize_t r;
6062306a36Sopenharmony_ci	int fd;
6162306a36Sopenharmony_ci
6262306a36Sopenharmony_ci	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
6362306a36Sopenharmony_ci		     module_name, param);
6462306a36Sopenharmony_ci	TEST_ASSERT(r < path_size,
6562306a36Sopenharmony_ci		    "Failed to construct sysfs path in %d bytes.", path_size);
6662306a36Sopenharmony_ci
6762306a36Sopenharmony_ci	fd = open_path_or_exit(path, O_RDONLY);
6862306a36Sopenharmony_ci
6962306a36Sopenharmony_ci	r = read(fd, &value, 1);
7062306a36Sopenharmony_ci	TEST_ASSERT(r == 1, "read(%s) failed", path);
7162306a36Sopenharmony_ci
7262306a36Sopenharmony_ci	r = close(fd);
7362306a36Sopenharmony_ci	TEST_ASSERT(!r, "close(%s) failed", path);
7462306a36Sopenharmony_ci
7562306a36Sopenharmony_ci	if (value == 'Y')
7662306a36Sopenharmony_ci		return true;
7762306a36Sopenharmony_ci	else if (value == 'N')
7862306a36Sopenharmony_ci		return false;
7962306a36Sopenharmony_ci
8062306a36Sopenharmony_ci	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
8162306a36Sopenharmony_ci}
8262306a36Sopenharmony_ci
8362306a36Sopenharmony_cibool get_kvm_param_bool(const char *param)
8462306a36Sopenharmony_ci{
8562306a36Sopenharmony_ci	return get_module_param_bool("kvm", param);
8662306a36Sopenharmony_ci}
8762306a36Sopenharmony_ci
8862306a36Sopenharmony_cibool get_kvm_intel_param_bool(const char *param)
8962306a36Sopenharmony_ci{
9062306a36Sopenharmony_ci	return get_module_param_bool("kvm_intel", param);
9162306a36Sopenharmony_ci}
9262306a36Sopenharmony_ci
9362306a36Sopenharmony_cibool get_kvm_amd_param_bool(const char *param)
9462306a36Sopenharmony_ci{
9562306a36Sopenharmony_ci	return get_module_param_bool("kvm_amd", param);
9662306a36Sopenharmony_ci}
9762306a36Sopenharmony_ci
9862306a36Sopenharmony_ci/*
9962306a36Sopenharmony_ci * Capability
10062306a36Sopenharmony_ci *
10162306a36Sopenharmony_ci * Input Args:
10262306a36Sopenharmony_ci *   cap - Capability
10362306a36Sopenharmony_ci *
10462306a36Sopenharmony_ci * Output Args: None
10562306a36Sopenharmony_ci *
10662306a36Sopenharmony_ci * Return:
10762306a36Sopenharmony_ci *   On success, the Value corresponding to the capability (KVM_CAP_*)
10862306a36Sopenharmony_ci *   specified by the value of cap.  On failure a TEST_ASSERT failure
10962306a36Sopenharmony_ci *   is produced.
11062306a36Sopenharmony_ci *
11162306a36Sopenharmony_ci * Looks up and returns the value corresponding to the capability
11262306a36Sopenharmony_ci * (KVM_CAP_*) given by cap.
11362306a36Sopenharmony_ci */
11462306a36Sopenharmony_ciunsigned int kvm_check_cap(long cap)
11562306a36Sopenharmony_ci{
11662306a36Sopenharmony_ci	int ret;
11762306a36Sopenharmony_ci	int kvm_fd;
11862306a36Sopenharmony_ci
11962306a36Sopenharmony_ci	kvm_fd = open_kvm_dev_path_or_exit();
12062306a36Sopenharmony_ci	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
12162306a36Sopenharmony_ci	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
12262306a36Sopenharmony_ci
12362306a36Sopenharmony_ci	close(kvm_fd);
12462306a36Sopenharmony_ci
12562306a36Sopenharmony_ci	return (unsigned int)ret;
12662306a36Sopenharmony_ci}
12762306a36Sopenharmony_ci
12862306a36Sopenharmony_civoid vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
12962306a36Sopenharmony_ci{
13062306a36Sopenharmony_ci	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
13162306a36Sopenharmony_ci		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
13262306a36Sopenharmony_ci	else
13362306a36Sopenharmony_ci		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
13462306a36Sopenharmony_ci	vm->dirty_ring_size = ring_size;
13562306a36Sopenharmony_ci}
13662306a36Sopenharmony_ci
13762306a36Sopenharmony_cistatic void vm_open(struct kvm_vm *vm)
13862306a36Sopenharmony_ci{
13962306a36Sopenharmony_ci	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
14062306a36Sopenharmony_ci
14162306a36Sopenharmony_ci	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
14262306a36Sopenharmony_ci
14362306a36Sopenharmony_ci	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
14462306a36Sopenharmony_ci	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
14562306a36Sopenharmony_ci}
14662306a36Sopenharmony_ci
14762306a36Sopenharmony_ciconst char *vm_guest_mode_string(uint32_t i)
14862306a36Sopenharmony_ci{
14962306a36Sopenharmony_ci	static const char * const strings[] = {
15062306a36Sopenharmony_ci		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
15162306a36Sopenharmony_ci		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
15262306a36Sopenharmony_ci		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
15362306a36Sopenharmony_ci		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
15462306a36Sopenharmony_ci		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
15562306a36Sopenharmony_ci		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
15662306a36Sopenharmony_ci		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
15762306a36Sopenharmony_ci		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
15862306a36Sopenharmony_ci		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
15962306a36Sopenharmony_ci		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
16062306a36Sopenharmony_ci		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
16162306a36Sopenharmony_ci		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
16262306a36Sopenharmony_ci		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
16362306a36Sopenharmony_ci		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
16462306a36Sopenharmony_ci		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
16562306a36Sopenharmony_ci	};
16662306a36Sopenharmony_ci	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
16762306a36Sopenharmony_ci		       "Missing new mode strings?");
16862306a36Sopenharmony_ci
16962306a36Sopenharmony_ci	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
17062306a36Sopenharmony_ci
17162306a36Sopenharmony_ci	return strings[i];
17262306a36Sopenharmony_ci}
17362306a36Sopenharmony_ci
17462306a36Sopenharmony_ciconst struct vm_guest_mode_params vm_guest_mode_params[] = {
17562306a36Sopenharmony_ci	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
17662306a36Sopenharmony_ci	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
17762306a36Sopenharmony_ci	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
17862306a36Sopenharmony_ci	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
17962306a36Sopenharmony_ci	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
18062306a36Sopenharmony_ci	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
18162306a36Sopenharmony_ci	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
18262306a36Sopenharmony_ci	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
18362306a36Sopenharmony_ci	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
18462306a36Sopenharmony_ci	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
18562306a36Sopenharmony_ci	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
18662306a36Sopenharmony_ci	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
18762306a36Sopenharmony_ci	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
18862306a36Sopenharmony_ci	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
18962306a36Sopenharmony_ci	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
19062306a36Sopenharmony_ci};
19162306a36Sopenharmony_ci_Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
19262306a36Sopenharmony_ci	       "Missing new mode params?");
19362306a36Sopenharmony_ci
19462306a36Sopenharmony_ci/*
19562306a36Sopenharmony_ci * Initializes vm->vpages_valid to match the canonical VA space of the
19662306a36Sopenharmony_ci * architecture.
19762306a36Sopenharmony_ci *
19862306a36Sopenharmony_ci * The default implementation is valid for architectures which split the
19962306a36Sopenharmony_ci * range addressed by a single page table into a low and high region
20062306a36Sopenharmony_ci * based on the MSB of the VA. On architectures with this behavior
20162306a36Sopenharmony_ci * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
20262306a36Sopenharmony_ci */
20362306a36Sopenharmony_ci__weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
20462306a36Sopenharmony_ci{
20562306a36Sopenharmony_ci	sparsebit_set_num(vm->vpages_valid,
20662306a36Sopenharmony_ci		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
20762306a36Sopenharmony_ci	sparsebit_set_num(vm->vpages_valid,
20862306a36Sopenharmony_ci		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
20962306a36Sopenharmony_ci		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
21062306a36Sopenharmony_ci}
21162306a36Sopenharmony_ci
21262306a36Sopenharmony_cistruct kvm_vm *____vm_create(enum vm_guest_mode mode)
21362306a36Sopenharmony_ci{
21462306a36Sopenharmony_ci	struct kvm_vm *vm;
21562306a36Sopenharmony_ci
21662306a36Sopenharmony_ci	vm = calloc(1, sizeof(*vm));
21762306a36Sopenharmony_ci	TEST_ASSERT(vm != NULL, "Insufficient Memory");
21862306a36Sopenharmony_ci
21962306a36Sopenharmony_ci	INIT_LIST_HEAD(&vm->vcpus);
22062306a36Sopenharmony_ci	vm->regions.gpa_tree = RB_ROOT;
22162306a36Sopenharmony_ci	vm->regions.hva_tree = RB_ROOT;
22262306a36Sopenharmony_ci	hash_init(vm->regions.slot_hash);
22362306a36Sopenharmony_ci
22462306a36Sopenharmony_ci	vm->mode = mode;
22562306a36Sopenharmony_ci	vm->type = 0;
22662306a36Sopenharmony_ci
22762306a36Sopenharmony_ci	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
22862306a36Sopenharmony_ci	vm->va_bits = vm_guest_mode_params[mode].va_bits;
22962306a36Sopenharmony_ci	vm->page_size = vm_guest_mode_params[mode].page_size;
23062306a36Sopenharmony_ci	vm->page_shift = vm_guest_mode_params[mode].page_shift;
23162306a36Sopenharmony_ci
23262306a36Sopenharmony_ci	/* Setup mode specific traits. */
23362306a36Sopenharmony_ci	switch (vm->mode) {
23462306a36Sopenharmony_ci	case VM_MODE_P52V48_4K:
23562306a36Sopenharmony_ci		vm->pgtable_levels = 4;
23662306a36Sopenharmony_ci		break;
23762306a36Sopenharmony_ci	case VM_MODE_P52V48_64K:
23862306a36Sopenharmony_ci		vm->pgtable_levels = 3;
23962306a36Sopenharmony_ci		break;
24062306a36Sopenharmony_ci	case VM_MODE_P48V48_4K:
24162306a36Sopenharmony_ci		vm->pgtable_levels = 4;
24262306a36Sopenharmony_ci		break;
24362306a36Sopenharmony_ci	case VM_MODE_P48V48_64K:
24462306a36Sopenharmony_ci		vm->pgtable_levels = 3;
24562306a36Sopenharmony_ci		break;
24662306a36Sopenharmony_ci	case VM_MODE_P40V48_4K:
24762306a36Sopenharmony_ci	case VM_MODE_P36V48_4K:
24862306a36Sopenharmony_ci		vm->pgtable_levels = 4;
24962306a36Sopenharmony_ci		break;
25062306a36Sopenharmony_ci	case VM_MODE_P40V48_64K:
25162306a36Sopenharmony_ci	case VM_MODE_P36V48_64K:
25262306a36Sopenharmony_ci		vm->pgtable_levels = 3;
25362306a36Sopenharmony_ci		break;
25462306a36Sopenharmony_ci	case VM_MODE_P48V48_16K:
25562306a36Sopenharmony_ci	case VM_MODE_P40V48_16K:
25662306a36Sopenharmony_ci	case VM_MODE_P36V48_16K:
25762306a36Sopenharmony_ci		vm->pgtable_levels = 4;
25862306a36Sopenharmony_ci		break;
25962306a36Sopenharmony_ci	case VM_MODE_P36V47_16K:
26062306a36Sopenharmony_ci		vm->pgtable_levels = 3;
26162306a36Sopenharmony_ci		break;
26262306a36Sopenharmony_ci	case VM_MODE_PXXV48_4K:
26362306a36Sopenharmony_ci#ifdef __x86_64__
26462306a36Sopenharmony_ci		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
26562306a36Sopenharmony_ci		/*
26662306a36Sopenharmony_ci		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
26762306a36Sopenharmony_ci		 * it doesn't take effect unless a CR4.LA57 is set, which it
26862306a36Sopenharmony_ci		 * isn't for this VM_MODE.
26962306a36Sopenharmony_ci		 */
27062306a36Sopenharmony_ci		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
27162306a36Sopenharmony_ci			    "Linear address width (%d bits) not supported",
27262306a36Sopenharmony_ci			    vm->va_bits);
27362306a36Sopenharmony_ci		pr_debug("Guest physical address width detected: %d\n",
27462306a36Sopenharmony_ci			 vm->pa_bits);
27562306a36Sopenharmony_ci		vm->pgtable_levels = 4;
27662306a36Sopenharmony_ci		vm->va_bits = 48;
27762306a36Sopenharmony_ci#else
27862306a36Sopenharmony_ci		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
27962306a36Sopenharmony_ci#endif
28062306a36Sopenharmony_ci		break;
28162306a36Sopenharmony_ci	case VM_MODE_P47V64_4K:
28262306a36Sopenharmony_ci		vm->pgtable_levels = 5;
28362306a36Sopenharmony_ci		break;
28462306a36Sopenharmony_ci	case VM_MODE_P44V64_4K:
28562306a36Sopenharmony_ci		vm->pgtable_levels = 5;
28662306a36Sopenharmony_ci		break;
28762306a36Sopenharmony_ci	default:
28862306a36Sopenharmony_ci		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
28962306a36Sopenharmony_ci	}
29062306a36Sopenharmony_ci
29162306a36Sopenharmony_ci#ifdef __aarch64__
29262306a36Sopenharmony_ci	if (vm->pa_bits != 40)
29362306a36Sopenharmony_ci		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
29462306a36Sopenharmony_ci#endif
29562306a36Sopenharmony_ci
29662306a36Sopenharmony_ci	vm_open(vm);
29762306a36Sopenharmony_ci
29862306a36Sopenharmony_ci	/* Limit to VA-bit canonical virtual addresses. */
29962306a36Sopenharmony_ci	vm->vpages_valid = sparsebit_alloc();
30062306a36Sopenharmony_ci	vm_vaddr_populate_bitmap(vm);
30162306a36Sopenharmony_ci
30262306a36Sopenharmony_ci	/* Limit physical addresses to PA-bits. */
30362306a36Sopenharmony_ci	vm->max_gfn = vm_compute_max_gfn(vm);
30462306a36Sopenharmony_ci
30562306a36Sopenharmony_ci	/* Allocate and setup memory for guest. */
30662306a36Sopenharmony_ci	vm->vpages_mapped = sparsebit_alloc();
30762306a36Sopenharmony_ci
30862306a36Sopenharmony_ci	return vm;
30962306a36Sopenharmony_ci}
31062306a36Sopenharmony_ci
31162306a36Sopenharmony_cistatic uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
31262306a36Sopenharmony_ci				     uint32_t nr_runnable_vcpus,
31362306a36Sopenharmony_ci				     uint64_t extra_mem_pages)
31462306a36Sopenharmony_ci{
31562306a36Sopenharmony_ci	uint64_t page_size = vm_guest_mode_params[mode].page_size;
31662306a36Sopenharmony_ci	uint64_t nr_pages;
31762306a36Sopenharmony_ci
31862306a36Sopenharmony_ci	TEST_ASSERT(nr_runnable_vcpus,
31962306a36Sopenharmony_ci		    "Use vm_create_barebones() for VMs that _never_ have vCPUs\n");
32062306a36Sopenharmony_ci
32162306a36Sopenharmony_ci	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
32262306a36Sopenharmony_ci		    "nr_vcpus = %d too large for host, max-vcpus = %d",
32362306a36Sopenharmony_ci		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
32462306a36Sopenharmony_ci
32562306a36Sopenharmony_ci	/*
32662306a36Sopenharmony_ci	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
32762306a36Sopenharmony_ci	 * test code and other per-VM assets that will be loaded into memslot0.
32862306a36Sopenharmony_ci	 */
32962306a36Sopenharmony_ci	nr_pages = 512;
33062306a36Sopenharmony_ci
33162306a36Sopenharmony_ci	/* Account for the per-vCPU stacks on behalf of the test. */
33262306a36Sopenharmony_ci	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
33362306a36Sopenharmony_ci
33462306a36Sopenharmony_ci	/*
33562306a36Sopenharmony_ci	 * Account for the number of pages needed for the page tables.  The
33662306a36Sopenharmony_ci	 * maximum page table size for a memory region will be when the
33762306a36Sopenharmony_ci	 * smallest page size is used. Considering each page contains x page
33862306a36Sopenharmony_ci	 * table descriptors, the total extra size for page tables (for extra
33962306a36Sopenharmony_ci	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
34062306a36Sopenharmony_ci	 * than N/x*2.
34162306a36Sopenharmony_ci	 */
34262306a36Sopenharmony_ci	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
34362306a36Sopenharmony_ci
34462306a36Sopenharmony_ci	/* Account for the number of pages needed by ucall. */
34562306a36Sopenharmony_ci	nr_pages += ucall_nr_pages_required(page_size);
34662306a36Sopenharmony_ci
34762306a36Sopenharmony_ci	return vm_adjust_num_guest_pages(mode, nr_pages);
34862306a36Sopenharmony_ci}
34962306a36Sopenharmony_ci
35062306a36Sopenharmony_cistruct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
35162306a36Sopenharmony_ci			   uint64_t nr_extra_pages)
35262306a36Sopenharmony_ci{
35362306a36Sopenharmony_ci	uint64_t nr_pages = vm_nr_pages_required(mode, nr_runnable_vcpus,
35462306a36Sopenharmony_ci						 nr_extra_pages);
35562306a36Sopenharmony_ci	struct userspace_mem_region *slot0;
35662306a36Sopenharmony_ci	struct kvm_vm *vm;
35762306a36Sopenharmony_ci	int i;
35862306a36Sopenharmony_ci
35962306a36Sopenharmony_ci	pr_debug("%s: mode='%s' pages='%ld'\n", __func__,
36062306a36Sopenharmony_ci		 vm_guest_mode_string(mode), nr_pages);
36162306a36Sopenharmony_ci
36262306a36Sopenharmony_ci	vm = ____vm_create(mode);
36362306a36Sopenharmony_ci
36462306a36Sopenharmony_ci	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
36562306a36Sopenharmony_ci	for (i = 0; i < NR_MEM_REGIONS; i++)
36662306a36Sopenharmony_ci		vm->memslots[i] = 0;
36762306a36Sopenharmony_ci
36862306a36Sopenharmony_ci	kvm_vm_elf_load(vm, program_invocation_name);
36962306a36Sopenharmony_ci
37062306a36Sopenharmony_ci	/*
37162306a36Sopenharmony_ci	 * TODO: Add proper defines to protect the library's memslots, and then
37262306a36Sopenharmony_ci	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
37362306a36Sopenharmony_ci	 * read-only memslots as MMIO, and creating a read-only memslot for the
37462306a36Sopenharmony_ci	 * MMIO region would prevent silently clobbering the MMIO region.
37562306a36Sopenharmony_ci	 */
37662306a36Sopenharmony_ci	slot0 = memslot2region(vm, 0);
37762306a36Sopenharmony_ci	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
37862306a36Sopenharmony_ci
37962306a36Sopenharmony_ci	kvm_arch_vm_post_create(vm);
38062306a36Sopenharmony_ci
38162306a36Sopenharmony_ci	return vm;
38262306a36Sopenharmony_ci}
38362306a36Sopenharmony_ci
38462306a36Sopenharmony_ci/*
38562306a36Sopenharmony_ci * VM Create with customized parameters
38662306a36Sopenharmony_ci *
38762306a36Sopenharmony_ci * Input Args:
38862306a36Sopenharmony_ci *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
38962306a36Sopenharmony_ci *   nr_vcpus - VCPU count
39062306a36Sopenharmony_ci *   extra_mem_pages - Non-slot0 physical memory total size
39162306a36Sopenharmony_ci *   guest_code - Guest entry point
39262306a36Sopenharmony_ci *   vcpuids - VCPU IDs
39362306a36Sopenharmony_ci *
39462306a36Sopenharmony_ci * Output Args: None
39562306a36Sopenharmony_ci *
39662306a36Sopenharmony_ci * Return:
39762306a36Sopenharmony_ci *   Pointer to opaque structure that describes the created VM.
39862306a36Sopenharmony_ci *
39962306a36Sopenharmony_ci * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
40062306a36Sopenharmony_ci * extra_mem_pages is only used to calculate the maximum page table size,
40162306a36Sopenharmony_ci * no real memory allocation for non-slot0 memory in this function.
40262306a36Sopenharmony_ci */
40362306a36Sopenharmony_cistruct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
40462306a36Sopenharmony_ci				      uint64_t extra_mem_pages,
40562306a36Sopenharmony_ci				      void *guest_code, struct kvm_vcpu *vcpus[])
40662306a36Sopenharmony_ci{
40762306a36Sopenharmony_ci	struct kvm_vm *vm;
40862306a36Sopenharmony_ci	int i;
40962306a36Sopenharmony_ci
41062306a36Sopenharmony_ci	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
41162306a36Sopenharmony_ci
41262306a36Sopenharmony_ci	vm = __vm_create(mode, nr_vcpus, extra_mem_pages);
41362306a36Sopenharmony_ci
41462306a36Sopenharmony_ci	for (i = 0; i < nr_vcpus; ++i)
41562306a36Sopenharmony_ci		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
41662306a36Sopenharmony_ci
41762306a36Sopenharmony_ci	return vm;
41862306a36Sopenharmony_ci}
41962306a36Sopenharmony_ci
42062306a36Sopenharmony_cistruct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
42162306a36Sopenharmony_ci					 uint64_t extra_mem_pages,
42262306a36Sopenharmony_ci					 void *guest_code)
42362306a36Sopenharmony_ci{
42462306a36Sopenharmony_ci	struct kvm_vcpu *vcpus[1];
42562306a36Sopenharmony_ci	struct kvm_vm *vm;
42662306a36Sopenharmony_ci
42762306a36Sopenharmony_ci	vm = __vm_create_with_vcpus(VM_MODE_DEFAULT, 1, extra_mem_pages,
42862306a36Sopenharmony_ci				    guest_code, vcpus);
42962306a36Sopenharmony_ci
43062306a36Sopenharmony_ci	*vcpu = vcpus[0];
43162306a36Sopenharmony_ci	return vm;
43262306a36Sopenharmony_ci}
43362306a36Sopenharmony_ci
43462306a36Sopenharmony_ci/*
43562306a36Sopenharmony_ci * VM Restart
43662306a36Sopenharmony_ci *
43762306a36Sopenharmony_ci * Input Args:
43862306a36Sopenharmony_ci *   vm - VM that has been released before
43962306a36Sopenharmony_ci *
44062306a36Sopenharmony_ci * Output Args: None
44162306a36Sopenharmony_ci *
44262306a36Sopenharmony_ci * Reopens the file descriptors associated to the VM and reinstates the
44362306a36Sopenharmony_ci * global state, such as the irqchip and the memory regions that are mapped
44462306a36Sopenharmony_ci * into the guest.
44562306a36Sopenharmony_ci */
44662306a36Sopenharmony_civoid kvm_vm_restart(struct kvm_vm *vmp)
44762306a36Sopenharmony_ci{
44862306a36Sopenharmony_ci	int ctr;
44962306a36Sopenharmony_ci	struct userspace_mem_region *region;
45062306a36Sopenharmony_ci
45162306a36Sopenharmony_ci	vm_open(vmp);
45262306a36Sopenharmony_ci	if (vmp->has_irqchip)
45362306a36Sopenharmony_ci		vm_create_irqchip(vmp);
45462306a36Sopenharmony_ci
45562306a36Sopenharmony_ci	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
45662306a36Sopenharmony_ci		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
45762306a36Sopenharmony_ci		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
45862306a36Sopenharmony_ci			    "  rc: %i errno: %i\n"
45962306a36Sopenharmony_ci			    "  slot: %u flags: 0x%x\n"
46062306a36Sopenharmony_ci			    "  guest_phys_addr: 0x%llx size: 0x%llx",
46162306a36Sopenharmony_ci			    ret, errno, region->region.slot,
46262306a36Sopenharmony_ci			    region->region.flags,
46362306a36Sopenharmony_ci			    region->region.guest_phys_addr,
46462306a36Sopenharmony_ci			    region->region.memory_size);
46562306a36Sopenharmony_ci	}
46662306a36Sopenharmony_ci}
46762306a36Sopenharmony_ci
46862306a36Sopenharmony_ci__weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
46962306a36Sopenharmony_ci					      uint32_t vcpu_id)
47062306a36Sopenharmony_ci{
47162306a36Sopenharmony_ci	return __vm_vcpu_add(vm, vcpu_id);
47262306a36Sopenharmony_ci}
47362306a36Sopenharmony_ci
47462306a36Sopenharmony_cistruct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
47562306a36Sopenharmony_ci{
47662306a36Sopenharmony_ci	kvm_vm_restart(vm);
47762306a36Sopenharmony_ci
47862306a36Sopenharmony_ci	return vm_vcpu_recreate(vm, 0);
47962306a36Sopenharmony_ci}
48062306a36Sopenharmony_ci
48162306a36Sopenharmony_civoid kvm_pin_this_task_to_pcpu(uint32_t pcpu)
48262306a36Sopenharmony_ci{
48362306a36Sopenharmony_ci	cpu_set_t mask;
48462306a36Sopenharmony_ci	int r;
48562306a36Sopenharmony_ci
48662306a36Sopenharmony_ci	CPU_ZERO(&mask);
48762306a36Sopenharmony_ci	CPU_SET(pcpu, &mask);
48862306a36Sopenharmony_ci	r = sched_setaffinity(0, sizeof(mask), &mask);
48962306a36Sopenharmony_ci	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.\n", pcpu);
49062306a36Sopenharmony_ci}
49162306a36Sopenharmony_ci
49262306a36Sopenharmony_cistatic uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
49362306a36Sopenharmony_ci{
49462306a36Sopenharmony_ci	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
49562306a36Sopenharmony_ci
49662306a36Sopenharmony_ci	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
49762306a36Sopenharmony_ci		    "Not allowed to run on pCPU '%d', check cgroups?\n", pcpu);
49862306a36Sopenharmony_ci	return pcpu;
49962306a36Sopenharmony_ci}
50062306a36Sopenharmony_ci
50162306a36Sopenharmony_civoid kvm_print_vcpu_pinning_help(void)
50262306a36Sopenharmony_ci{
50362306a36Sopenharmony_ci	const char *name = program_invocation_name;
50462306a36Sopenharmony_ci
50562306a36Sopenharmony_ci	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
50662306a36Sopenharmony_ci	       "     values (target pCPU), one for each vCPU, plus an optional\n"
50762306a36Sopenharmony_ci	       "     entry for the main application task (specified via entry\n"
50862306a36Sopenharmony_ci	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
50962306a36Sopenharmony_ci	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
51062306a36Sopenharmony_ci	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
51162306a36Sopenharmony_ci	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
51262306a36Sopenharmony_ci	       "         %s -v 3 -c 22,23,24,50\n\n"
51362306a36Sopenharmony_ci	       "     To leave the application task unpinned, drop the final entry:\n\n"
51462306a36Sopenharmony_ci	       "         %s -v 3 -c 22,23,24\n\n"
51562306a36Sopenharmony_ci	       "     (default: no pinning)\n", name, name);
51662306a36Sopenharmony_ci}
51762306a36Sopenharmony_ci
51862306a36Sopenharmony_civoid kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
51962306a36Sopenharmony_ci			    int nr_vcpus)
52062306a36Sopenharmony_ci{
52162306a36Sopenharmony_ci	cpu_set_t allowed_mask;
52262306a36Sopenharmony_ci	char *cpu, *cpu_list;
52362306a36Sopenharmony_ci	char delim[2] = ",";
52462306a36Sopenharmony_ci	int i, r;
52562306a36Sopenharmony_ci
52662306a36Sopenharmony_ci	cpu_list = strdup(pcpus_string);
52762306a36Sopenharmony_ci	TEST_ASSERT(cpu_list, "strdup() allocation failed.\n");
52862306a36Sopenharmony_ci
52962306a36Sopenharmony_ci	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
53062306a36Sopenharmony_ci	TEST_ASSERT(!r, "sched_getaffinity() failed");
53162306a36Sopenharmony_ci
53262306a36Sopenharmony_ci	cpu = strtok(cpu_list, delim);
53362306a36Sopenharmony_ci
53462306a36Sopenharmony_ci	/* 1. Get all pcpus for vcpus. */
53562306a36Sopenharmony_ci	for (i = 0; i < nr_vcpus; i++) {
53662306a36Sopenharmony_ci		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'\n", i);
53762306a36Sopenharmony_ci		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
53862306a36Sopenharmony_ci		cpu = strtok(NULL, delim);
53962306a36Sopenharmony_ci	}
54062306a36Sopenharmony_ci
54162306a36Sopenharmony_ci	/* 2. Check if the main worker needs to be pinned. */
54262306a36Sopenharmony_ci	if (cpu) {
54362306a36Sopenharmony_ci		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
54462306a36Sopenharmony_ci		cpu = strtok(NULL, delim);
54562306a36Sopenharmony_ci	}
54662306a36Sopenharmony_ci
54762306a36Sopenharmony_ci	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
54862306a36Sopenharmony_ci	free(cpu_list);
54962306a36Sopenharmony_ci}
55062306a36Sopenharmony_ci
55162306a36Sopenharmony_ci/*
55262306a36Sopenharmony_ci * Userspace Memory Region Find
55362306a36Sopenharmony_ci *
55462306a36Sopenharmony_ci * Input Args:
55562306a36Sopenharmony_ci *   vm - Virtual Machine
55662306a36Sopenharmony_ci *   start - Starting VM physical address
55762306a36Sopenharmony_ci *   end - Ending VM physical address, inclusive.
55862306a36Sopenharmony_ci *
55962306a36Sopenharmony_ci * Output Args: None
56062306a36Sopenharmony_ci *
56162306a36Sopenharmony_ci * Return:
56262306a36Sopenharmony_ci *   Pointer to overlapping region, NULL if no such region.
56362306a36Sopenharmony_ci *
56462306a36Sopenharmony_ci * Searches for a region with any physical memory that overlaps with
56562306a36Sopenharmony_ci * any portion of the guest physical addresses from start to end
56662306a36Sopenharmony_ci * inclusive.  If multiple overlapping regions exist, a pointer to any
56762306a36Sopenharmony_ci * of the regions is returned.  Null is returned only when no overlapping
56862306a36Sopenharmony_ci * region exists.
56962306a36Sopenharmony_ci */
57062306a36Sopenharmony_cistatic struct userspace_mem_region *
57162306a36Sopenharmony_ciuserspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
57262306a36Sopenharmony_ci{
57362306a36Sopenharmony_ci	struct rb_node *node;
57462306a36Sopenharmony_ci
57562306a36Sopenharmony_ci	for (node = vm->regions.gpa_tree.rb_node; node; ) {
57662306a36Sopenharmony_ci		struct userspace_mem_region *region =
57762306a36Sopenharmony_ci			container_of(node, struct userspace_mem_region, gpa_node);
57862306a36Sopenharmony_ci		uint64_t existing_start = region->region.guest_phys_addr;
57962306a36Sopenharmony_ci		uint64_t existing_end = region->region.guest_phys_addr
58062306a36Sopenharmony_ci			+ region->region.memory_size - 1;
58162306a36Sopenharmony_ci		if (start <= existing_end && end >= existing_start)
58262306a36Sopenharmony_ci			return region;
58362306a36Sopenharmony_ci
58462306a36Sopenharmony_ci		if (start < existing_start)
58562306a36Sopenharmony_ci			node = node->rb_left;
58662306a36Sopenharmony_ci		else
58762306a36Sopenharmony_ci			node = node->rb_right;
58862306a36Sopenharmony_ci	}
58962306a36Sopenharmony_ci
59062306a36Sopenharmony_ci	return NULL;
59162306a36Sopenharmony_ci}
59262306a36Sopenharmony_ci
59362306a36Sopenharmony_ci/*
59462306a36Sopenharmony_ci * KVM Userspace Memory Region Find
59562306a36Sopenharmony_ci *
59662306a36Sopenharmony_ci * Input Args:
59762306a36Sopenharmony_ci *   vm - Virtual Machine
59862306a36Sopenharmony_ci *   start - Starting VM physical address
59962306a36Sopenharmony_ci *   end - Ending VM physical address, inclusive.
60062306a36Sopenharmony_ci *
60162306a36Sopenharmony_ci * Output Args: None
60262306a36Sopenharmony_ci *
60362306a36Sopenharmony_ci * Return:
60462306a36Sopenharmony_ci *   Pointer to overlapping region, NULL if no such region.
60562306a36Sopenharmony_ci *
60662306a36Sopenharmony_ci * Public interface to userspace_mem_region_find. Allows tests to look up
60762306a36Sopenharmony_ci * the memslot datastructure for a given range of guest physical memory.
60862306a36Sopenharmony_ci */
60962306a36Sopenharmony_cistruct kvm_userspace_memory_region *
61062306a36Sopenharmony_cikvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
61162306a36Sopenharmony_ci				 uint64_t end)
61262306a36Sopenharmony_ci{
61362306a36Sopenharmony_ci	struct userspace_mem_region *region;
61462306a36Sopenharmony_ci
61562306a36Sopenharmony_ci	region = userspace_mem_region_find(vm, start, end);
61662306a36Sopenharmony_ci	if (!region)
61762306a36Sopenharmony_ci		return NULL;
61862306a36Sopenharmony_ci
61962306a36Sopenharmony_ci	return &region->region;
62062306a36Sopenharmony_ci}
62162306a36Sopenharmony_ci
62262306a36Sopenharmony_ci__weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
62362306a36Sopenharmony_ci{
62462306a36Sopenharmony_ci
62562306a36Sopenharmony_ci}
62662306a36Sopenharmony_ci
62762306a36Sopenharmony_ci/*
62862306a36Sopenharmony_ci * VM VCPU Remove
62962306a36Sopenharmony_ci *
63062306a36Sopenharmony_ci * Input Args:
63162306a36Sopenharmony_ci *   vcpu - VCPU to remove
63262306a36Sopenharmony_ci *
63362306a36Sopenharmony_ci * Output Args: None
63462306a36Sopenharmony_ci *
63562306a36Sopenharmony_ci * Return: None, TEST_ASSERT failures for all error conditions
63662306a36Sopenharmony_ci *
63762306a36Sopenharmony_ci * Removes a vCPU from a VM and frees its resources.
63862306a36Sopenharmony_ci */
63962306a36Sopenharmony_cistatic void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
64062306a36Sopenharmony_ci{
64162306a36Sopenharmony_ci	int ret;
64262306a36Sopenharmony_ci
64362306a36Sopenharmony_ci	if (vcpu->dirty_gfns) {
64462306a36Sopenharmony_ci		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
64562306a36Sopenharmony_ci		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
64662306a36Sopenharmony_ci		vcpu->dirty_gfns = NULL;
64762306a36Sopenharmony_ci	}
64862306a36Sopenharmony_ci
64962306a36Sopenharmony_ci	ret = munmap(vcpu->run, vcpu_mmap_sz());
65062306a36Sopenharmony_ci	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
65162306a36Sopenharmony_ci
65262306a36Sopenharmony_ci	ret = close(vcpu->fd);
65362306a36Sopenharmony_ci	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
65462306a36Sopenharmony_ci
65562306a36Sopenharmony_ci	list_del(&vcpu->list);
65662306a36Sopenharmony_ci
65762306a36Sopenharmony_ci	vcpu_arch_free(vcpu);
65862306a36Sopenharmony_ci	free(vcpu);
65962306a36Sopenharmony_ci}
66062306a36Sopenharmony_ci
66162306a36Sopenharmony_civoid kvm_vm_release(struct kvm_vm *vmp)
66262306a36Sopenharmony_ci{
66362306a36Sopenharmony_ci	struct kvm_vcpu *vcpu, *tmp;
66462306a36Sopenharmony_ci	int ret;
66562306a36Sopenharmony_ci
66662306a36Sopenharmony_ci	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
66762306a36Sopenharmony_ci		vm_vcpu_rm(vmp, vcpu);
66862306a36Sopenharmony_ci
66962306a36Sopenharmony_ci	ret = close(vmp->fd);
67062306a36Sopenharmony_ci	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
67162306a36Sopenharmony_ci
67262306a36Sopenharmony_ci	ret = close(vmp->kvm_fd);
67362306a36Sopenharmony_ci	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
67462306a36Sopenharmony_ci}
67562306a36Sopenharmony_ci
67662306a36Sopenharmony_cistatic void __vm_mem_region_delete(struct kvm_vm *vm,
67762306a36Sopenharmony_ci				   struct userspace_mem_region *region,
67862306a36Sopenharmony_ci				   bool unlink)
67962306a36Sopenharmony_ci{
68062306a36Sopenharmony_ci	int ret;
68162306a36Sopenharmony_ci
68262306a36Sopenharmony_ci	if (unlink) {
68362306a36Sopenharmony_ci		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
68462306a36Sopenharmony_ci		rb_erase(&region->hva_node, &vm->regions.hva_tree);
68562306a36Sopenharmony_ci		hash_del(&region->slot_node);
68662306a36Sopenharmony_ci	}
68762306a36Sopenharmony_ci
68862306a36Sopenharmony_ci	region->region.memory_size = 0;
68962306a36Sopenharmony_ci	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
69062306a36Sopenharmony_ci
69162306a36Sopenharmony_ci	sparsebit_free(&region->unused_phy_pages);
69262306a36Sopenharmony_ci	ret = munmap(region->mmap_start, region->mmap_size);
69362306a36Sopenharmony_ci	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
69462306a36Sopenharmony_ci	if (region->fd >= 0) {
69562306a36Sopenharmony_ci		/* There's an extra map when using shared memory. */
69662306a36Sopenharmony_ci		ret = munmap(region->mmap_alias, region->mmap_size);
69762306a36Sopenharmony_ci		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
69862306a36Sopenharmony_ci		close(region->fd);
69962306a36Sopenharmony_ci	}
70062306a36Sopenharmony_ci
70162306a36Sopenharmony_ci	free(region);
70262306a36Sopenharmony_ci}
70362306a36Sopenharmony_ci
70462306a36Sopenharmony_ci/*
70562306a36Sopenharmony_ci * Destroys and frees the VM pointed to by vmp.
70662306a36Sopenharmony_ci */
70762306a36Sopenharmony_civoid kvm_vm_free(struct kvm_vm *vmp)
70862306a36Sopenharmony_ci{
70962306a36Sopenharmony_ci	int ctr;
71062306a36Sopenharmony_ci	struct hlist_node *node;
71162306a36Sopenharmony_ci	struct userspace_mem_region *region;
71262306a36Sopenharmony_ci
71362306a36Sopenharmony_ci	if (vmp == NULL)
71462306a36Sopenharmony_ci		return;
71562306a36Sopenharmony_ci
71662306a36Sopenharmony_ci	/* Free cached stats metadata and close FD */
71762306a36Sopenharmony_ci	if (vmp->stats_fd) {
71862306a36Sopenharmony_ci		free(vmp->stats_desc);
71962306a36Sopenharmony_ci		close(vmp->stats_fd);
72062306a36Sopenharmony_ci	}
72162306a36Sopenharmony_ci
72262306a36Sopenharmony_ci	/* Free userspace_mem_regions. */
72362306a36Sopenharmony_ci	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
72462306a36Sopenharmony_ci		__vm_mem_region_delete(vmp, region, false);
72562306a36Sopenharmony_ci
72662306a36Sopenharmony_ci	/* Free sparsebit arrays. */
72762306a36Sopenharmony_ci	sparsebit_free(&vmp->vpages_valid);
72862306a36Sopenharmony_ci	sparsebit_free(&vmp->vpages_mapped);
72962306a36Sopenharmony_ci
73062306a36Sopenharmony_ci	kvm_vm_release(vmp);
73162306a36Sopenharmony_ci
73262306a36Sopenharmony_ci	/* Free the structure describing the VM. */
73362306a36Sopenharmony_ci	free(vmp);
73462306a36Sopenharmony_ci}
73562306a36Sopenharmony_ci
73662306a36Sopenharmony_ciint kvm_memfd_alloc(size_t size, bool hugepages)
73762306a36Sopenharmony_ci{
73862306a36Sopenharmony_ci	int memfd_flags = MFD_CLOEXEC;
73962306a36Sopenharmony_ci	int fd, r;
74062306a36Sopenharmony_ci
74162306a36Sopenharmony_ci	if (hugepages)
74262306a36Sopenharmony_ci		memfd_flags |= MFD_HUGETLB;
74362306a36Sopenharmony_ci
74462306a36Sopenharmony_ci	fd = memfd_create("kvm_selftest", memfd_flags);
74562306a36Sopenharmony_ci	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
74662306a36Sopenharmony_ci
74762306a36Sopenharmony_ci	r = ftruncate(fd, size);
74862306a36Sopenharmony_ci	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
74962306a36Sopenharmony_ci
75062306a36Sopenharmony_ci	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
75162306a36Sopenharmony_ci	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
75262306a36Sopenharmony_ci
75362306a36Sopenharmony_ci	return fd;
75462306a36Sopenharmony_ci}
75562306a36Sopenharmony_ci
75662306a36Sopenharmony_ci/*
75762306a36Sopenharmony_ci * Memory Compare, host virtual to guest virtual
75862306a36Sopenharmony_ci *
75962306a36Sopenharmony_ci * Input Args:
76062306a36Sopenharmony_ci *   hva - Starting host virtual address
76162306a36Sopenharmony_ci *   vm - Virtual Machine
76262306a36Sopenharmony_ci *   gva - Starting guest virtual address
76362306a36Sopenharmony_ci *   len - number of bytes to compare
76462306a36Sopenharmony_ci *
76562306a36Sopenharmony_ci * Output Args: None
76662306a36Sopenharmony_ci *
76762306a36Sopenharmony_ci * Input/Output Args: None
76862306a36Sopenharmony_ci *
76962306a36Sopenharmony_ci * Return:
77062306a36Sopenharmony_ci *   Returns 0 if the bytes starting at hva for a length of len
77162306a36Sopenharmony_ci *   are equal the guest virtual bytes starting at gva.  Returns
77262306a36Sopenharmony_ci *   a value < 0, if bytes at hva are less than those at gva.
77362306a36Sopenharmony_ci *   Otherwise a value > 0 is returned.
77462306a36Sopenharmony_ci *
77562306a36Sopenharmony_ci * Compares the bytes starting at the host virtual address hva, for
77662306a36Sopenharmony_ci * a length of len, to the guest bytes starting at the guest virtual
77762306a36Sopenharmony_ci * address given by gva.
77862306a36Sopenharmony_ci */
77962306a36Sopenharmony_ciint kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
78062306a36Sopenharmony_ci{
78162306a36Sopenharmony_ci	size_t amt;
78262306a36Sopenharmony_ci
78362306a36Sopenharmony_ci	/*
78462306a36Sopenharmony_ci	 * Compare a batch of bytes until either a match is found
78562306a36Sopenharmony_ci	 * or all the bytes have been compared.
78662306a36Sopenharmony_ci	 */
78762306a36Sopenharmony_ci	for (uintptr_t offset = 0; offset < len; offset += amt) {
78862306a36Sopenharmony_ci		uintptr_t ptr1 = (uintptr_t)hva + offset;
78962306a36Sopenharmony_ci
79062306a36Sopenharmony_ci		/*
79162306a36Sopenharmony_ci		 * Determine host address for guest virtual address
79262306a36Sopenharmony_ci		 * at offset.
79362306a36Sopenharmony_ci		 */
79462306a36Sopenharmony_ci		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
79562306a36Sopenharmony_ci
79662306a36Sopenharmony_ci		/*
79762306a36Sopenharmony_ci		 * Determine amount to compare on this pass.
79862306a36Sopenharmony_ci		 * Don't allow the comparsion to cross a page boundary.
79962306a36Sopenharmony_ci		 */
80062306a36Sopenharmony_ci		amt = len - offset;
80162306a36Sopenharmony_ci		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
80262306a36Sopenharmony_ci			amt = vm->page_size - (ptr1 % vm->page_size);
80362306a36Sopenharmony_ci		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
80462306a36Sopenharmony_ci			amt = vm->page_size - (ptr2 % vm->page_size);
80562306a36Sopenharmony_ci
80662306a36Sopenharmony_ci		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
80762306a36Sopenharmony_ci		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
80862306a36Sopenharmony_ci
80962306a36Sopenharmony_ci		/*
81062306a36Sopenharmony_ci		 * Perform the comparison.  If there is a difference
81162306a36Sopenharmony_ci		 * return that result to the caller, otherwise need
81262306a36Sopenharmony_ci		 * to continue on looking for a mismatch.
81362306a36Sopenharmony_ci		 */
81462306a36Sopenharmony_ci		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
81562306a36Sopenharmony_ci		if (ret != 0)
81662306a36Sopenharmony_ci			return ret;
81762306a36Sopenharmony_ci	}
81862306a36Sopenharmony_ci
81962306a36Sopenharmony_ci	/*
82062306a36Sopenharmony_ci	 * No mismatch found.  Let the caller know the two memory
82162306a36Sopenharmony_ci	 * areas are equal.
82262306a36Sopenharmony_ci	 */
82362306a36Sopenharmony_ci	return 0;
82462306a36Sopenharmony_ci}
82562306a36Sopenharmony_ci
82662306a36Sopenharmony_cistatic void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
82762306a36Sopenharmony_ci					       struct userspace_mem_region *region)
82862306a36Sopenharmony_ci{
82962306a36Sopenharmony_ci	struct rb_node **cur, *parent;
83062306a36Sopenharmony_ci
83162306a36Sopenharmony_ci	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
83262306a36Sopenharmony_ci		struct userspace_mem_region *cregion;
83362306a36Sopenharmony_ci
83462306a36Sopenharmony_ci		cregion = container_of(*cur, typeof(*cregion), gpa_node);
83562306a36Sopenharmony_ci		parent = *cur;
83662306a36Sopenharmony_ci		if (region->region.guest_phys_addr <
83762306a36Sopenharmony_ci		    cregion->region.guest_phys_addr)
83862306a36Sopenharmony_ci			cur = &(*cur)->rb_left;
83962306a36Sopenharmony_ci		else {
84062306a36Sopenharmony_ci			TEST_ASSERT(region->region.guest_phys_addr !=
84162306a36Sopenharmony_ci				    cregion->region.guest_phys_addr,
84262306a36Sopenharmony_ci				    "Duplicate GPA in region tree");
84362306a36Sopenharmony_ci
84462306a36Sopenharmony_ci			cur = &(*cur)->rb_right;
84562306a36Sopenharmony_ci		}
84662306a36Sopenharmony_ci	}
84762306a36Sopenharmony_ci
84862306a36Sopenharmony_ci	rb_link_node(&region->gpa_node, parent, cur);
84962306a36Sopenharmony_ci	rb_insert_color(&region->gpa_node, gpa_tree);
85062306a36Sopenharmony_ci}
85162306a36Sopenharmony_ci
85262306a36Sopenharmony_cistatic void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
85362306a36Sopenharmony_ci					       struct userspace_mem_region *region)
85462306a36Sopenharmony_ci{
85562306a36Sopenharmony_ci	struct rb_node **cur, *parent;
85662306a36Sopenharmony_ci
85762306a36Sopenharmony_ci	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
85862306a36Sopenharmony_ci		struct userspace_mem_region *cregion;
85962306a36Sopenharmony_ci
86062306a36Sopenharmony_ci		cregion = container_of(*cur, typeof(*cregion), hva_node);
86162306a36Sopenharmony_ci		parent = *cur;
86262306a36Sopenharmony_ci		if (region->host_mem < cregion->host_mem)
86362306a36Sopenharmony_ci			cur = &(*cur)->rb_left;
86462306a36Sopenharmony_ci		else {
86562306a36Sopenharmony_ci			TEST_ASSERT(region->host_mem !=
86662306a36Sopenharmony_ci				    cregion->host_mem,
86762306a36Sopenharmony_ci				    "Duplicate HVA in region tree");
86862306a36Sopenharmony_ci
86962306a36Sopenharmony_ci			cur = &(*cur)->rb_right;
87062306a36Sopenharmony_ci		}
87162306a36Sopenharmony_ci	}
87262306a36Sopenharmony_ci
87362306a36Sopenharmony_ci	rb_link_node(&region->hva_node, parent, cur);
87462306a36Sopenharmony_ci	rb_insert_color(&region->hva_node, hva_tree);
87562306a36Sopenharmony_ci}
87662306a36Sopenharmony_ci
87762306a36Sopenharmony_ci
87862306a36Sopenharmony_ciint __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
87962306a36Sopenharmony_ci				uint64_t gpa, uint64_t size, void *hva)
88062306a36Sopenharmony_ci{
88162306a36Sopenharmony_ci	struct kvm_userspace_memory_region region = {
88262306a36Sopenharmony_ci		.slot = slot,
88362306a36Sopenharmony_ci		.flags = flags,
88462306a36Sopenharmony_ci		.guest_phys_addr = gpa,
88562306a36Sopenharmony_ci		.memory_size = size,
88662306a36Sopenharmony_ci		.userspace_addr = (uintptr_t)hva,
88762306a36Sopenharmony_ci	};
88862306a36Sopenharmony_ci
88962306a36Sopenharmony_ci	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
89062306a36Sopenharmony_ci}
89162306a36Sopenharmony_ci
89262306a36Sopenharmony_civoid vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
89362306a36Sopenharmony_ci			       uint64_t gpa, uint64_t size, void *hva)
89462306a36Sopenharmony_ci{
89562306a36Sopenharmony_ci	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
89662306a36Sopenharmony_ci
89762306a36Sopenharmony_ci	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
89862306a36Sopenharmony_ci		    errno, strerror(errno));
89962306a36Sopenharmony_ci}
90062306a36Sopenharmony_ci
90162306a36Sopenharmony_ci/*
90262306a36Sopenharmony_ci * VM Userspace Memory Region Add
90362306a36Sopenharmony_ci *
90462306a36Sopenharmony_ci * Input Args:
90562306a36Sopenharmony_ci *   vm - Virtual Machine
90662306a36Sopenharmony_ci *   src_type - Storage source for this region.
90762306a36Sopenharmony_ci *              NULL to use anonymous memory.
90862306a36Sopenharmony_ci *   guest_paddr - Starting guest physical address
90962306a36Sopenharmony_ci *   slot - KVM region slot
91062306a36Sopenharmony_ci *   npages - Number of physical pages
91162306a36Sopenharmony_ci *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
91262306a36Sopenharmony_ci *
91362306a36Sopenharmony_ci * Output Args: None
91462306a36Sopenharmony_ci *
91562306a36Sopenharmony_ci * Return: None
91662306a36Sopenharmony_ci *
91762306a36Sopenharmony_ci * Allocates a memory area of the number of pages specified by npages
91862306a36Sopenharmony_ci * and maps it to the VM specified by vm, at a starting physical address
91962306a36Sopenharmony_ci * given by guest_paddr.  The region is created with a KVM region slot
92062306a36Sopenharmony_ci * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
92162306a36Sopenharmony_ci * region is created with the flags given by flags.
92262306a36Sopenharmony_ci */
92362306a36Sopenharmony_civoid vm_userspace_mem_region_add(struct kvm_vm *vm,
92462306a36Sopenharmony_ci	enum vm_mem_backing_src_type src_type,
92562306a36Sopenharmony_ci	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
92662306a36Sopenharmony_ci	uint32_t flags)
92762306a36Sopenharmony_ci{
92862306a36Sopenharmony_ci	int ret;
92962306a36Sopenharmony_ci	struct userspace_mem_region *region;
93062306a36Sopenharmony_ci	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
93162306a36Sopenharmony_ci	size_t alignment;
93262306a36Sopenharmony_ci
93362306a36Sopenharmony_ci	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
93462306a36Sopenharmony_ci		"Number of guest pages is not compatible with the host. "
93562306a36Sopenharmony_ci		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
93662306a36Sopenharmony_ci
93762306a36Sopenharmony_ci	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
93862306a36Sopenharmony_ci		"address not on a page boundary.\n"
93962306a36Sopenharmony_ci		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
94062306a36Sopenharmony_ci		guest_paddr, vm->page_size);
94162306a36Sopenharmony_ci	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
94262306a36Sopenharmony_ci		<= vm->max_gfn, "Physical range beyond maximum "
94362306a36Sopenharmony_ci		"supported physical address,\n"
94462306a36Sopenharmony_ci		"  guest_paddr: 0x%lx npages: 0x%lx\n"
94562306a36Sopenharmony_ci		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
94662306a36Sopenharmony_ci		guest_paddr, npages, vm->max_gfn, vm->page_size);
94762306a36Sopenharmony_ci
94862306a36Sopenharmony_ci	/*
94962306a36Sopenharmony_ci	 * Confirm a mem region with an overlapping address doesn't
95062306a36Sopenharmony_ci	 * already exist.
95162306a36Sopenharmony_ci	 */
95262306a36Sopenharmony_ci	region = (struct userspace_mem_region *) userspace_mem_region_find(
95362306a36Sopenharmony_ci		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
95462306a36Sopenharmony_ci	if (region != NULL)
95562306a36Sopenharmony_ci		TEST_FAIL("overlapping userspace_mem_region already "
95662306a36Sopenharmony_ci			"exists\n"
95762306a36Sopenharmony_ci			"  requested guest_paddr: 0x%lx npages: 0x%lx "
95862306a36Sopenharmony_ci			"page_size: 0x%x\n"
95962306a36Sopenharmony_ci			"  existing guest_paddr: 0x%lx size: 0x%lx",
96062306a36Sopenharmony_ci			guest_paddr, npages, vm->page_size,
96162306a36Sopenharmony_ci			(uint64_t) region->region.guest_phys_addr,
96262306a36Sopenharmony_ci			(uint64_t) region->region.memory_size);
96362306a36Sopenharmony_ci
96462306a36Sopenharmony_ci	/* Confirm no region with the requested slot already exists. */
96562306a36Sopenharmony_ci	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
96662306a36Sopenharmony_ci			       slot) {
96762306a36Sopenharmony_ci		if (region->region.slot != slot)
96862306a36Sopenharmony_ci			continue;
96962306a36Sopenharmony_ci
97062306a36Sopenharmony_ci		TEST_FAIL("A mem region with the requested slot "
97162306a36Sopenharmony_ci			"already exists.\n"
97262306a36Sopenharmony_ci			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
97362306a36Sopenharmony_ci			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
97462306a36Sopenharmony_ci			slot, guest_paddr, npages,
97562306a36Sopenharmony_ci			region->region.slot,
97662306a36Sopenharmony_ci			(uint64_t) region->region.guest_phys_addr,
97762306a36Sopenharmony_ci			(uint64_t) region->region.memory_size);
97862306a36Sopenharmony_ci	}
97962306a36Sopenharmony_ci
98062306a36Sopenharmony_ci	/* Allocate and initialize new mem region structure. */
98162306a36Sopenharmony_ci	region = calloc(1, sizeof(*region));
98262306a36Sopenharmony_ci	TEST_ASSERT(region != NULL, "Insufficient Memory");
98362306a36Sopenharmony_ci	region->mmap_size = npages * vm->page_size;
98462306a36Sopenharmony_ci
98562306a36Sopenharmony_ci#ifdef __s390x__
98662306a36Sopenharmony_ci	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
98762306a36Sopenharmony_ci	alignment = 0x100000;
98862306a36Sopenharmony_ci#else
98962306a36Sopenharmony_ci	alignment = 1;
99062306a36Sopenharmony_ci#endif
99162306a36Sopenharmony_ci
99262306a36Sopenharmony_ci	/*
99362306a36Sopenharmony_ci	 * When using THP mmap is not guaranteed to returned a hugepage aligned
99462306a36Sopenharmony_ci	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
99562306a36Sopenharmony_ci	 * because mmap will always return an address aligned to the HugeTLB
99662306a36Sopenharmony_ci	 * page size.
99762306a36Sopenharmony_ci	 */
99862306a36Sopenharmony_ci	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
99962306a36Sopenharmony_ci		alignment = max(backing_src_pagesz, alignment);
100062306a36Sopenharmony_ci
100162306a36Sopenharmony_ci	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
100262306a36Sopenharmony_ci
100362306a36Sopenharmony_ci	/* Add enough memory to align up if necessary */
100462306a36Sopenharmony_ci	if (alignment > 1)
100562306a36Sopenharmony_ci		region->mmap_size += alignment;
100662306a36Sopenharmony_ci
100762306a36Sopenharmony_ci	region->fd = -1;
100862306a36Sopenharmony_ci	if (backing_src_is_shared(src_type))
100962306a36Sopenharmony_ci		region->fd = kvm_memfd_alloc(region->mmap_size,
101062306a36Sopenharmony_ci					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
101162306a36Sopenharmony_ci
101262306a36Sopenharmony_ci	region->mmap_start = mmap(NULL, region->mmap_size,
101362306a36Sopenharmony_ci				  PROT_READ | PROT_WRITE,
101462306a36Sopenharmony_ci				  vm_mem_backing_src_alias(src_type)->flag,
101562306a36Sopenharmony_ci				  region->fd, 0);
101662306a36Sopenharmony_ci	TEST_ASSERT(region->mmap_start != MAP_FAILED,
101762306a36Sopenharmony_ci		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
101862306a36Sopenharmony_ci
101962306a36Sopenharmony_ci	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
102062306a36Sopenharmony_ci		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
102162306a36Sopenharmony_ci		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
102262306a36Sopenharmony_ci		    region->mmap_start, backing_src_pagesz);
102362306a36Sopenharmony_ci
102462306a36Sopenharmony_ci	/* Align host address */
102562306a36Sopenharmony_ci	region->host_mem = align_ptr_up(region->mmap_start, alignment);
102662306a36Sopenharmony_ci
102762306a36Sopenharmony_ci	/* As needed perform madvise */
102862306a36Sopenharmony_ci	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
102962306a36Sopenharmony_ci	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
103062306a36Sopenharmony_ci		ret = madvise(region->host_mem, npages * vm->page_size,
103162306a36Sopenharmony_ci			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
103262306a36Sopenharmony_ci		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
103362306a36Sopenharmony_ci			    region->host_mem, npages * vm->page_size,
103462306a36Sopenharmony_ci			    vm_mem_backing_src_alias(src_type)->name);
103562306a36Sopenharmony_ci	}
103662306a36Sopenharmony_ci
103762306a36Sopenharmony_ci	region->backing_src_type = src_type;
103862306a36Sopenharmony_ci	region->unused_phy_pages = sparsebit_alloc();
103962306a36Sopenharmony_ci	sparsebit_set_num(region->unused_phy_pages,
104062306a36Sopenharmony_ci		guest_paddr >> vm->page_shift, npages);
104162306a36Sopenharmony_ci	region->region.slot = slot;
104262306a36Sopenharmony_ci	region->region.flags = flags;
104362306a36Sopenharmony_ci	region->region.guest_phys_addr = guest_paddr;
104462306a36Sopenharmony_ci	region->region.memory_size = npages * vm->page_size;
104562306a36Sopenharmony_ci	region->region.userspace_addr = (uintptr_t) region->host_mem;
104662306a36Sopenharmony_ci	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
104762306a36Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
104862306a36Sopenharmony_ci		"  rc: %i errno: %i\n"
104962306a36Sopenharmony_ci		"  slot: %u flags: 0x%x\n"
105062306a36Sopenharmony_ci		"  guest_phys_addr: 0x%lx size: 0x%lx",
105162306a36Sopenharmony_ci		ret, errno, slot, flags,
105262306a36Sopenharmony_ci		guest_paddr, (uint64_t) region->region.memory_size);
105362306a36Sopenharmony_ci
105462306a36Sopenharmony_ci	/* Add to quick lookup data structures */
105562306a36Sopenharmony_ci	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
105662306a36Sopenharmony_ci	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
105762306a36Sopenharmony_ci	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
105862306a36Sopenharmony_ci
105962306a36Sopenharmony_ci	/* If shared memory, create an alias. */
106062306a36Sopenharmony_ci	if (region->fd >= 0) {
106162306a36Sopenharmony_ci		region->mmap_alias = mmap(NULL, region->mmap_size,
106262306a36Sopenharmony_ci					  PROT_READ | PROT_WRITE,
106362306a36Sopenharmony_ci					  vm_mem_backing_src_alias(src_type)->flag,
106462306a36Sopenharmony_ci					  region->fd, 0);
106562306a36Sopenharmony_ci		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
106662306a36Sopenharmony_ci			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
106762306a36Sopenharmony_ci
106862306a36Sopenharmony_ci		/* Align host alias address */
106962306a36Sopenharmony_ci		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
107062306a36Sopenharmony_ci	}
107162306a36Sopenharmony_ci}
107262306a36Sopenharmony_ci
107362306a36Sopenharmony_ci/*
107462306a36Sopenharmony_ci * Memslot to region
107562306a36Sopenharmony_ci *
107662306a36Sopenharmony_ci * Input Args:
107762306a36Sopenharmony_ci *   vm - Virtual Machine
107862306a36Sopenharmony_ci *   memslot - KVM memory slot ID
107962306a36Sopenharmony_ci *
108062306a36Sopenharmony_ci * Output Args: None
108162306a36Sopenharmony_ci *
108262306a36Sopenharmony_ci * Return:
108362306a36Sopenharmony_ci *   Pointer to memory region structure that describe memory region
108462306a36Sopenharmony_ci *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
108562306a36Sopenharmony_ci *   on error (e.g. currently no memory region using memslot as a KVM
108662306a36Sopenharmony_ci *   memory slot ID).
108762306a36Sopenharmony_ci */
108862306a36Sopenharmony_cistruct userspace_mem_region *
108962306a36Sopenharmony_cimemslot2region(struct kvm_vm *vm, uint32_t memslot)
109062306a36Sopenharmony_ci{
109162306a36Sopenharmony_ci	struct userspace_mem_region *region;
109262306a36Sopenharmony_ci
109362306a36Sopenharmony_ci	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
109462306a36Sopenharmony_ci			       memslot)
109562306a36Sopenharmony_ci		if (region->region.slot == memslot)
109662306a36Sopenharmony_ci			return region;
109762306a36Sopenharmony_ci
109862306a36Sopenharmony_ci	fprintf(stderr, "No mem region with the requested slot found,\n"
109962306a36Sopenharmony_ci		"  requested slot: %u\n", memslot);
110062306a36Sopenharmony_ci	fputs("---- vm dump ----\n", stderr);
110162306a36Sopenharmony_ci	vm_dump(stderr, vm, 2);
110262306a36Sopenharmony_ci	TEST_FAIL("Mem region not found");
110362306a36Sopenharmony_ci	return NULL;
110462306a36Sopenharmony_ci}
110562306a36Sopenharmony_ci
110662306a36Sopenharmony_ci/*
110762306a36Sopenharmony_ci * VM Memory Region Flags Set
110862306a36Sopenharmony_ci *
110962306a36Sopenharmony_ci * Input Args:
111062306a36Sopenharmony_ci *   vm - Virtual Machine
111162306a36Sopenharmony_ci *   flags - Starting guest physical address
111262306a36Sopenharmony_ci *
111362306a36Sopenharmony_ci * Output Args: None
111462306a36Sopenharmony_ci *
111562306a36Sopenharmony_ci * Return: None
111662306a36Sopenharmony_ci *
111762306a36Sopenharmony_ci * Sets the flags of the memory region specified by the value of slot,
111862306a36Sopenharmony_ci * to the values given by flags.
111962306a36Sopenharmony_ci */
112062306a36Sopenharmony_civoid vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
112162306a36Sopenharmony_ci{
112262306a36Sopenharmony_ci	int ret;
112362306a36Sopenharmony_ci	struct userspace_mem_region *region;
112462306a36Sopenharmony_ci
112562306a36Sopenharmony_ci	region = memslot2region(vm, slot);
112662306a36Sopenharmony_ci
112762306a36Sopenharmony_ci	region->region.flags = flags;
112862306a36Sopenharmony_ci
112962306a36Sopenharmony_ci	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
113062306a36Sopenharmony_ci
113162306a36Sopenharmony_ci	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
113262306a36Sopenharmony_ci		"  rc: %i errno: %i slot: %u flags: 0x%x",
113362306a36Sopenharmony_ci		ret, errno, slot, flags);
113462306a36Sopenharmony_ci}
113562306a36Sopenharmony_ci
113662306a36Sopenharmony_ci/*
113762306a36Sopenharmony_ci * VM Memory Region Move
113862306a36Sopenharmony_ci *
113962306a36Sopenharmony_ci * Input Args:
114062306a36Sopenharmony_ci *   vm - Virtual Machine
114162306a36Sopenharmony_ci *   slot - Slot of the memory region to move
114262306a36Sopenharmony_ci *   new_gpa - Starting guest physical address
114362306a36Sopenharmony_ci *
114462306a36Sopenharmony_ci * Output Args: None
114562306a36Sopenharmony_ci *
114662306a36Sopenharmony_ci * Return: None
114762306a36Sopenharmony_ci *
114862306a36Sopenharmony_ci * Change the gpa of a memory region.
114962306a36Sopenharmony_ci */
115062306a36Sopenharmony_civoid vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
115162306a36Sopenharmony_ci{
115262306a36Sopenharmony_ci	struct userspace_mem_region *region;
115362306a36Sopenharmony_ci	int ret;
115462306a36Sopenharmony_ci
115562306a36Sopenharmony_ci	region = memslot2region(vm, slot);
115662306a36Sopenharmony_ci
115762306a36Sopenharmony_ci	region->region.guest_phys_addr = new_gpa;
115862306a36Sopenharmony_ci
115962306a36Sopenharmony_ci	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
116062306a36Sopenharmony_ci
116162306a36Sopenharmony_ci	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
116262306a36Sopenharmony_ci		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
116362306a36Sopenharmony_ci		    ret, errno, slot, new_gpa);
116462306a36Sopenharmony_ci}
116562306a36Sopenharmony_ci
116662306a36Sopenharmony_ci/*
116762306a36Sopenharmony_ci * VM Memory Region Delete
116862306a36Sopenharmony_ci *
116962306a36Sopenharmony_ci * Input Args:
117062306a36Sopenharmony_ci *   vm - Virtual Machine
117162306a36Sopenharmony_ci *   slot - Slot of the memory region to delete
117262306a36Sopenharmony_ci *
117362306a36Sopenharmony_ci * Output Args: None
117462306a36Sopenharmony_ci *
117562306a36Sopenharmony_ci * Return: None
117662306a36Sopenharmony_ci *
117762306a36Sopenharmony_ci * Delete a memory region.
117862306a36Sopenharmony_ci */
117962306a36Sopenharmony_civoid vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
118062306a36Sopenharmony_ci{
118162306a36Sopenharmony_ci	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
118262306a36Sopenharmony_ci}
118362306a36Sopenharmony_ci
118462306a36Sopenharmony_ci/* Returns the size of a vCPU's kvm_run structure. */
118562306a36Sopenharmony_cistatic int vcpu_mmap_sz(void)
118662306a36Sopenharmony_ci{
118762306a36Sopenharmony_ci	int dev_fd, ret;
118862306a36Sopenharmony_ci
118962306a36Sopenharmony_ci	dev_fd = open_kvm_dev_path_or_exit();
119062306a36Sopenharmony_ci
119162306a36Sopenharmony_ci	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
119262306a36Sopenharmony_ci	TEST_ASSERT(ret >= sizeof(struct kvm_run),
119362306a36Sopenharmony_ci		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
119462306a36Sopenharmony_ci
119562306a36Sopenharmony_ci	close(dev_fd);
119662306a36Sopenharmony_ci
119762306a36Sopenharmony_ci	return ret;
119862306a36Sopenharmony_ci}
119962306a36Sopenharmony_ci
120062306a36Sopenharmony_cistatic bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
120162306a36Sopenharmony_ci{
120262306a36Sopenharmony_ci	struct kvm_vcpu *vcpu;
120362306a36Sopenharmony_ci
120462306a36Sopenharmony_ci	list_for_each_entry(vcpu, &vm->vcpus, list) {
120562306a36Sopenharmony_ci		if (vcpu->id == vcpu_id)
120662306a36Sopenharmony_ci			return true;
120762306a36Sopenharmony_ci	}
120862306a36Sopenharmony_ci
120962306a36Sopenharmony_ci	return false;
121062306a36Sopenharmony_ci}
121162306a36Sopenharmony_ci
121262306a36Sopenharmony_ci/*
121362306a36Sopenharmony_ci * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
121462306a36Sopenharmony_ci * No additional vCPU setup is done.  Returns the vCPU.
121562306a36Sopenharmony_ci */
121662306a36Sopenharmony_cistruct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
121762306a36Sopenharmony_ci{
121862306a36Sopenharmony_ci	struct kvm_vcpu *vcpu;
121962306a36Sopenharmony_ci
122062306a36Sopenharmony_ci	/* Confirm a vcpu with the specified id doesn't already exist. */
122162306a36Sopenharmony_ci	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists\n", vcpu_id);
122262306a36Sopenharmony_ci
122362306a36Sopenharmony_ci	/* Allocate and initialize new vcpu structure. */
122462306a36Sopenharmony_ci	vcpu = calloc(1, sizeof(*vcpu));
122562306a36Sopenharmony_ci	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
122662306a36Sopenharmony_ci
122762306a36Sopenharmony_ci	vcpu->vm = vm;
122862306a36Sopenharmony_ci	vcpu->id = vcpu_id;
122962306a36Sopenharmony_ci	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
123062306a36Sopenharmony_ci	TEST_ASSERT(vcpu->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu->fd));
123162306a36Sopenharmony_ci
123262306a36Sopenharmony_ci	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
123362306a36Sopenharmony_ci		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
123462306a36Sopenharmony_ci		vcpu_mmap_sz(), sizeof(*vcpu->run));
123562306a36Sopenharmony_ci	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
123662306a36Sopenharmony_ci		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
123762306a36Sopenharmony_ci	TEST_ASSERT(vcpu->run != MAP_FAILED,
123862306a36Sopenharmony_ci		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
123962306a36Sopenharmony_ci
124062306a36Sopenharmony_ci	/* Add to linked-list of VCPUs. */
124162306a36Sopenharmony_ci	list_add(&vcpu->list, &vm->vcpus);
124262306a36Sopenharmony_ci
124362306a36Sopenharmony_ci	return vcpu;
124462306a36Sopenharmony_ci}
124562306a36Sopenharmony_ci
124662306a36Sopenharmony_ci/*
124762306a36Sopenharmony_ci * VM Virtual Address Unused Gap
124862306a36Sopenharmony_ci *
124962306a36Sopenharmony_ci * Input Args:
125062306a36Sopenharmony_ci *   vm - Virtual Machine
125162306a36Sopenharmony_ci *   sz - Size (bytes)
125262306a36Sopenharmony_ci *   vaddr_min - Minimum Virtual Address
125362306a36Sopenharmony_ci *
125462306a36Sopenharmony_ci * Output Args: None
125562306a36Sopenharmony_ci *
125662306a36Sopenharmony_ci * Return:
125762306a36Sopenharmony_ci *   Lowest virtual address at or below vaddr_min, with at least
125862306a36Sopenharmony_ci *   sz unused bytes.  TEST_ASSERT failure if no area of at least
125962306a36Sopenharmony_ci *   size sz is available.
126062306a36Sopenharmony_ci *
126162306a36Sopenharmony_ci * Within the VM specified by vm, locates the lowest starting virtual
126262306a36Sopenharmony_ci * address >= vaddr_min, that has at least sz unallocated bytes.  A
126362306a36Sopenharmony_ci * TEST_ASSERT failure occurs for invalid input or no area of at least
126462306a36Sopenharmony_ci * sz unallocated bytes >= vaddr_min is available.
126562306a36Sopenharmony_ci */
126662306a36Sopenharmony_civm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
126762306a36Sopenharmony_ci			       vm_vaddr_t vaddr_min)
126862306a36Sopenharmony_ci{
126962306a36Sopenharmony_ci	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
127062306a36Sopenharmony_ci
127162306a36Sopenharmony_ci	/* Determine lowest permitted virtual page index. */
127262306a36Sopenharmony_ci	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
127362306a36Sopenharmony_ci	if ((pgidx_start * vm->page_size) < vaddr_min)
127462306a36Sopenharmony_ci		goto no_va_found;
127562306a36Sopenharmony_ci
127662306a36Sopenharmony_ci	/* Loop over section with enough valid virtual page indexes. */
127762306a36Sopenharmony_ci	if (!sparsebit_is_set_num(vm->vpages_valid,
127862306a36Sopenharmony_ci		pgidx_start, pages))
127962306a36Sopenharmony_ci		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
128062306a36Sopenharmony_ci			pgidx_start, pages);
128162306a36Sopenharmony_ci	do {
128262306a36Sopenharmony_ci		/*
128362306a36Sopenharmony_ci		 * Are there enough unused virtual pages available at
128462306a36Sopenharmony_ci		 * the currently proposed starting virtual page index.
128562306a36Sopenharmony_ci		 * If not, adjust proposed starting index to next
128662306a36Sopenharmony_ci		 * possible.
128762306a36Sopenharmony_ci		 */
128862306a36Sopenharmony_ci		if (sparsebit_is_clear_num(vm->vpages_mapped,
128962306a36Sopenharmony_ci			pgidx_start, pages))
129062306a36Sopenharmony_ci			goto va_found;
129162306a36Sopenharmony_ci		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
129262306a36Sopenharmony_ci			pgidx_start, pages);
129362306a36Sopenharmony_ci		if (pgidx_start == 0)
129462306a36Sopenharmony_ci			goto no_va_found;
129562306a36Sopenharmony_ci
129662306a36Sopenharmony_ci		/*
129762306a36Sopenharmony_ci		 * If needed, adjust proposed starting virtual address,
129862306a36Sopenharmony_ci		 * to next range of valid virtual addresses.
129962306a36Sopenharmony_ci		 */
130062306a36Sopenharmony_ci		if (!sparsebit_is_set_num(vm->vpages_valid,
130162306a36Sopenharmony_ci			pgidx_start, pages)) {
130262306a36Sopenharmony_ci			pgidx_start = sparsebit_next_set_num(
130362306a36Sopenharmony_ci				vm->vpages_valid, pgidx_start, pages);
130462306a36Sopenharmony_ci			if (pgidx_start == 0)
130562306a36Sopenharmony_ci				goto no_va_found;
130662306a36Sopenharmony_ci		}
130762306a36Sopenharmony_ci	} while (pgidx_start != 0);
130862306a36Sopenharmony_ci
130962306a36Sopenharmony_cino_va_found:
131062306a36Sopenharmony_ci	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
131162306a36Sopenharmony_ci
131262306a36Sopenharmony_ci	/* NOT REACHED */
131362306a36Sopenharmony_ci	return -1;
131462306a36Sopenharmony_ci
131562306a36Sopenharmony_civa_found:
131662306a36Sopenharmony_ci	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
131762306a36Sopenharmony_ci		pgidx_start, pages),
131862306a36Sopenharmony_ci		"Unexpected, invalid virtual page index range,\n"
131962306a36Sopenharmony_ci		"  pgidx_start: 0x%lx\n"
132062306a36Sopenharmony_ci		"  pages: 0x%lx",
132162306a36Sopenharmony_ci		pgidx_start, pages);
132262306a36Sopenharmony_ci	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
132362306a36Sopenharmony_ci		pgidx_start, pages),
132462306a36Sopenharmony_ci		"Unexpected, pages already mapped,\n"
132562306a36Sopenharmony_ci		"  pgidx_start: 0x%lx\n"
132662306a36Sopenharmony_ci		"  pages: 0x%lx",
132762306a36Sopenharmony_ci		pgidx_start, pages);
132862306a36Sopenharmony_ci
132962306a36Sopenharmony_ci	return pgidx_start * vm->page_size;
133062306a36Sopenharmony_ci}
133162306a36Sopenharmony_ci
133262306a36Sopenharmony_civm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
133362306a36Sopenharmony_ci			    enum kvm_mem_region_type type)
133462306a36Sopenharmony_ci{
133562306a36Sopenharmony_ci	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
133662306a36Sopenharmony_ci
133762306a36Sopenharmony_ci	virt_pgd_alloc(vm);
133862306a36Sopenharmony_ci	vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
133962306a36Sopenharmony_ci					      KVM_UTIL_MIN_PFN * vm->page_size,
134062306a36Sopenharmony_ci					      vm->memslots[type]);
134162306a36Sopenharmony_ci
134262306a36Sopenharmony_ci	/*
134362306a36Sopenharmony_ci	 * Find an unused range of virtual page addresses of at least
134462306a36Sopenharmony_ci	 * pages in length.
134562306a36Sopenharmony_ci	 */
134662306a36Sopenharmony_ci	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
134762306a36Sopenharmony_ci
134862306a36Sopenharmony_ci	/* Map the virtual pages. */
134962306a36Sopenharmony_ci	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
135062306a36Sopenharmony_ci		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
135162306a36Sopenharmony_ci
135262306a36Sopenharmony_ci		virt_pg_map(vm, vaddr, paddr);
135362306a36Sopenharmony_ci
135462306a36Sopenharmony_ci		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
135562306a36Sopenharmony_ci	}
135662306a36Sopenharmony_ci
135762306a36Sopenharmony_ci	return vaddr_start;
135862306a36Sopenharmony_ci}
135962306a36Sopenharmony_ci
136062306a36Sopenharmony_ci/*
136162306a36Sopenharmony_ci * VM Virtual Address Allocate
136262306a36Sopenharmony_ci *
136362306a36Sopenharmony_ci * Input Args:
136462306a36Sopenharmony_ci *   vm - Virtual Machine
136562306a36Sopenharmony_ci *   sz - Size in bytes
136662306a36Sopenharmony_ci *   vaddr_min - Minimum starting virtual address
136762306a36Sopenharmony_ci *
136862306a36Sopenharmony_ci * Output Args: None
136962306a36Sopenharmony_ci *
137062306a36Sopenharmony_ci * Return:
137162306a36Sopenharmony_ci *   Starting guest virtual address
137262306a36Sopenharmony_ci *
137362306a36Sopenharmony_ci * Allocates at least sz bytes within the virtual address space of the vm
137462306a36Sopenharmony_ci * given by vm.  The allocated bytes are mapped to a virtual address >=
137562306a36Sopenharmony_ci * the address given by vaddr_min.  Note that each allocation uses a
137662306a36Sopenharmony_ci * a unique set of pages, with the minimum real allocation being at least
137762306a36Sopenharmony_ci * a page. The allocated physical space comes from the TEST_DATA memory region.
137862306a36Sopenharmony_ci */
137962306a36Sopenharmony_civm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
138062306a36Sopenharmony_ci{
138162306a36Sopenharmony_ci	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
138262306a36Sopenharmony_ci}
138362306a36Sopenharmony_ci
138462306a36Sopenharmony_ci/*
138562306a36Sopenharmony_ci * VM Virtual Address Allocate Pages
138662306a36Sopenharmony_ci *
138762306a36Sopenharmony_ci * Input Args:
138862306a36Sopenharmony_ci *   vm - Virtual Machine
138962306a36Sopenharmony_ci *
139062306a36Sopenharmony_ci * Output Args: None
139162306a36Sopenharmony_ci *
139262306a36Sopenharmony_ci * Return:
139362306a36Sopenharmony_ci *   Starting guest virtual address
139462306a36Sopenharmony_ci *
139562306a36Sopenharmony_ci * Allocates at least N system pages worth of bytes within the virtual address
139662306a36Sopenharmony_ci * space of the vm.
139762306a36Sopenharmony_ci */
139862306a36Sopenharmony_civm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
139962306a36Sopenharmony_ci{
140062306a36Sopenharmony_ci	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
140162306a36Sopenharmony_ci}
140262306a36Sopenharmony_ci
140362306a36Sopenharmony_civm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
140462306a36Sopenharmony_ci{
140562306a36Sopenharmony_ci	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
140662306a36Sopenharmony_ci}
140762306a36Sopenharmony_ci
140862306a36Sopenharmony_ci/*
140962306a36Sopenharmony_ci * VM Virtual Address Allocate Page
141062306a36Sopenharmony_ci *
141162306a36Sopenharmony_ci * Input Args:
141262306a36Sopenharmony_ci *   vm - Virtual Machine
141362306a36Sopenharmony_ci *
141462306a36Sopenharmony_ci * Output Args: None
141562306a36Sopenharmony_ci *
141662306a36Sopenharmony_ci * Return:
141762306a36Sopenharmony_ci *   Starting guest virtual address
141862306a36Sopenharmony_ci *
141962306a36Sopenharmony_ci * Allocates at least one system page worth of bytes within the virtual address
142062306a36Sopenharmony_ci * space of the vm.
142162306a36Sopenharmony_ci */
142262306a36Sopenharmony_civm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
142362306a36Sopenharmony_ci{
142462306a36Sopenharmony_ci	return vm_vaddr_alloc_pages(vm, 1);
142562306a36Sopenharmony_ci}
142662306a36Sopenharmony_ci
142762306a36Sopenharmony_ci/*
142862306a36Sopenharmony_ci * Map a range of VM virtual address to the VM's physical address
142962306a36Sopenharmony_ci *
143062306a36Sopenharmony_ci * Input Args:
143162306a36Sopenharmony_ci *   vm - Virtual Machine
143262306a36Sopenharmony_ci *   vaddr - Virtuall address to map
143362306a36Sopenharmony_ci *   paddr - VM Physical Address
143462306a36Sopenharmony_ci *   npages - The number of pages to map
143562306a36Sopenharmony_ci *
143662306a36Sopenharmony_ci * Output Args: None
143762306a36Sopenharmony_ci *
143862306a36Sopenharmony_ci * Return: None
143962306a36Sopenharmony_ci *
144062306a36Sopenharmony_ci * Within the VM given by @vm, creates a virtual translation for
144162306a36Sopenharmony_ci * @npages starting at @vaddr to the page range starting at @paddr.
144262306a36Sopenharmony_ci */
144362306a36Sopenharmony_civoid virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
144462306a36Sopenharmony_ci	      unsigned int npages)
144562306a36Sopenharmony_ci{
144662306a36Sopenharmony_ci	size_t page_size = vm->page_size;
144762306a36Sopenharmony_ci	size_t size = npages * page_size;
144862306a36Sopenharmony_ci
144962306a36Sopenharmony_ci	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
145062306a36Sopenharmony_ci	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
145162306a36Sopenharmony_ci
145262306a36Sopenharmony_ci	while (npages--) {
145362306a36Sopenharmony_ci		virt_pg_map(vm, vaddr, paddr);
145462306a36Sopenharmony_ci		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
145562306a36Sopenharmony_ci
145662306a36Sopenharmony_ci		vaddr += page_size;
145762306a36Sopenharmony_ci		paddr += page_size;
145862306a36Sopenharmony_ci	}
145962306a36Sopenharmony_ci}
146062306a36Sopenharmony_ci
146162306a36Sopenharmony_ci/*
146262306a36Sopenharmony_ci * Address VM Physical to Host Virtual
146362306a36Sopenharmony_ci *
146462306a36Sopenharmony_ci * Input Args:
146562306a36Sopenharmony_ci *   vm - Virtual Machine
146662306a36Sopenharmony_ci *   gpa - VM physical address
146762306a36Sopenharmony_ci *
146862306a36Sopenharmony_ci * Output Args: None
146962306a36Sopenharmony_ci *
147062306a36Sopenharmony_ci * Return:
147162306a36Sopenharmony_ci *   Equivalent host virtual address
147262306a36Sopenharmony_ci *
147362306a36Sopenharmony_ci * Locates the memory region containing the VM physical address given
147462306a36Sopenharmony_ci * by gpa, within the VM given by vm.  When found, the host virtual
147562306a36Sopenharmony_ci * address providing the memory to the vm physical address is returned.
147662306a36Sopenharmony_ci * A TEST_ASSERT failure occurs if no region containing gpa exists.
147762306a36Sopenharmony_ci */
147862306a36Sopenharmony_civoid *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
147962306a36Sopenharmony_ci{
148062306a36Sopenharmony_ci	struct userspace_mem_region *region;
148162306a36Sopenharmony_ci
148262306a36Sopenharmony_ci	region = userspace_mem_region_find(vm, gpa, gpa);
148362306a36Sopenharmony_ci	if (!region) {
148462306a36Sopenharmony_ci		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
148562306a36Sopenharmony_ci		return NULL;
148662306a36Sopenharmony_ci	}
148762306a36Sopenharmony_ci
148862306a36Sopenharmony_ci	return (void *)((uintptr_t)region->host_mem
148962306a36Sopenharmony_ci		+ (gpa - region->region.guest_phys_addr));
149062306a36Sopenharmony_ci}
149162306a36Sopenharmony_ci
149262306a36Sopenharmony_ci/*
149362306a36Sopenharmony_ci * Address Host Virtual to VM Physical
149462306a36Sopenharmony_ci *
149562306a36Sopenharmony_ci * Input Args:
149662306a36Sopenharmony_ci *   vm - Virtual Machine
149762306a36Sopenharmony_ci *   hva - Host virtual address
149862306a36Sopenharmony_ci *
149962306a36Sopenharmony_ci * Output Args: None
150062306a36Sopenharmony_ci *
150162306a36Sopenharmony_ci * Return:
150262306a36Sopenharmony_ci *   Equivalent VM physical address
150362306a36Sopenharmony_ci *
150462306a36Sopenharmony_ci * Locates the memory region containing the host virtual address given
150562306a36Sopenharmony_ci * by hva, within the VM given by vm.  When found, the equivalent
150662306a36Sopenharmony_ci * VM physical address is returned. A TEST_ASSERT failure occurs if no
150762306a36Sopenharmony_ci * region containing hva exists.
150862306a36Sopenharmony_ci */
150962306a36Sopenharmony_civm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
151062306a36Sopenharmony_ci{
151162306a36Sopenharmony_ci	struct rb_node *node;
151262306a36Sopenharmony_ci
151362306a36Sopenharmony_ci	for (node = vm->regions.hva_tree.rb_node; node; ) {
151462306a36Sopenharmony_ci		struct userspace_mem_region *region =
151562306a36Sopenharmony_ci			container_of(node, struct userspace_mem_region, hva_node);
151662306a36Sopenharmony_ci
151762306a36Sopenharmony_ci		if (hva >= region->host_mem) {
151862306a36Sopenharmony_ci			if (hva <= (region->host_mem
151962306a36Sopenharmony_ci				+ region->region.memory_size - 1))
152062306a36Sopenharmony_ci				return (vm_paddr_t)((uintptr_t)
152162306a36Sopenharmony_ci					region->region.guest_phys_addr
152262306a36Sopenharmony_ci					+ (hva - (uintptr_t)region->host_mem));
152362306a36Sopenharmony_ci
152462306a36Sopenharmony_ci			node = node->rb_right;
152562306a36Sopenharmony_ci		} else
152662306a36Sopenharmony_ci			node = node->rb_left;
152762306a36Sopenharmony_ci	}
152862306a36Sopenharmony_ci
152962306a36Sopenharmony_ci	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
153062306a36Sopenharmony_ci	return -1;
153162306a36Sopenharmony_ci}
153262306a36Sopenharmony_ci
153362306a36Sopenharmony_ci/*
153462306a36Sopenharmony_ci * Address VM physical to Host Virtual *alias*.
153562306a36Sopenharmony_ci *
153662306a36Sopenharmony_ci * Input Args:
153762306a36Sopenharmony_ci *   vm - Virtual Machine
153862306a36Sopenharmony_ci *   gpa - VM physical address
153962306a36Sopenharmony_ci *
154062306a36Sopenharmony_ci * Output Args: None
154162306a36Sopenharmony_ci *
154262306a36Sopenharmony_ci * Return:
154362306a36Sopenharmony_ci *   Equivalent address within the host virtual *alias* area, or NULL
154462306a36Sopenharmony_ci *   (without failing the test) if the guest memory is not shared (so
154562306a36Sopenharmony_ci *   no alias exists).
154662306a36Sopenharmony_ci *
154762306a36Sopenharmony_ci * Create a writable, shared virtual=>physical alias for the specific GPA.
154862306a36Sopenharmony_ci * The primary use case is to allow the host selftest to manipulate guest
154962306a36Sopenharmony_ci * memory without mapping said memory in the guest's address space. And, for
155062306a36Sopenharmony_ci * userfaultfd-based demand paging, to do so without triggering userfaults.
155162306a36Sopenharmony_ci */
155262306a36Sopenharmony_civoid *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
155362306a36Sopenharmony_ci{
155462306a36Sopenharmony_ci	struct userspace_mem_region *region;
155562306a36Sopenharmony_ci	uintptr_t offset;
155662306a36Sopenharmony_ci
155762306a36Sopenharmony_ci	region = userspace_mem_region_find(vm, gpa, gpa);
155862306a36Sopenharmony_ci	if (!region)
155962306a36Sopenharmony_ci		return NULL;
156062306a36Sopenharmony_ci
156162306a36Sopenharmony_ci	if (!region->host_alias)
156262306a36Sopenharmony_ci		return NULL;
156362306a36Sopenharmony_ci
156462306a36Sopenharmony_ci	offset = gpa - region->region.guest_phys_addr;
156562306a36Sopenharmony_ci	return (void *) ((uintptr_t) region->host_alias + offset);
156662306a36Sopenharmony_ci}
156762306a36Sopenharmony_ci
156862306a36Sopenharmony_ci/* Create an interrupt controller chip for the specified VM. */
156962306a36Sopenharmony_civoid vm_create_irqchip(struct kvm_vm *vm)
157062306a36Sopenharmony_ci{
157162306a36Sopenharmony_ci	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
157262306a36Sopenharmony_ci
157362306a36Sopenharmony_ci	vm->has_irqchip = true;
157462306a36Sopenharmony_ci}
157562306a36Sopenharmony_ci
157662306a36Sopenharmony_ciint _vcpu_run(struct kvm_vcpu *vcpu)
157762306a36Sopenharmony_ci{
157862306a36Sopenharmony_ci	int rc;
157962306a36Sopenharmony_ci
158062306a36Sopenharmony_ci	do {
158162306a36Sopenharmony_ci		rc = __vcpu_run(vcpu);
158262306a36Sopenharmony_ci	} while (rc == -1 && errno == EINTR);
158362306a36Sopenharmony_ci
158462306a36Sopenharmony_ci	assert_on_unhandled_exception(vcpu);
158562306a36Sopenharmony_ci
158662306a36Sopenharmony_ci	return rc;
158762306a36Sopenharmony_ci}
158862306a36Sopenharmony_ci
158962306a36Sopenharmony_ci/*
159062306a36Sopenharmony_ci * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
159162306a36Sopenharmony_ci * Assert if the KVM returns an error (other than -EINTR).
159262306a36Sopenharmony_ci */
159362306a36Sopenharmony_civoid vcpu_run(struct kvm_vcpu *vcpu)
159462306a36Sopenharmony_ci{
159562306a36Sopenharmony_ci	int ret = _vcpu_run(vcpu);
159662306a36Sopenharmony_ci
159762306a36Sopenharmony_ci	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
159862306a36Sopenharmony_ci}
159962306a36Sopenharmony_ci
160062306a36Sopenharmony_civoid vcpu_run_complete_io(struct kvm_vcpu *vcpu)
160162306a36Sopenharmony_ci{
160262306a36Sopenharmony_ci	int ret;
160362306a36Sopenharmony_ci
160462306a36Sopenharmony_ci	vcpu->run->immediate_exit = 1;
160562306a36Sopenharmony_ci	ret = __vcpu_run(vcpu);
160662306a36Sopenharmony_ci	vcpu->run->immediate_exit = 0;
160762306a36Sopenharmony_ci
160862306a36Sopenharmony_ci	TEST_ASSERT(ret == -1 && errno == EINTR,
160962306a36Sopenharmony_ci		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
161062306a36Sopenharmony_ci		    ret, errno);
161162306a36Sopenharmony_ci}
161262306a36Sopenharmony_ci
161362306a36Sopenharmony_ci/*
161462306a36Sopenharmony_ci * Get the list of guest registers which are supported for
161562306a36Sopenharmony_ci * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
161662306a36Sopenharmony_ci * it is the caller's responsibility to free the list.
161762306a36Sopenharmony_ci */
161862306a36Sopenharmony_cistruct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
161962306a36Sopenharmony_ci{
162062306a36Sopenharmony_ci	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
162162306a36Sopenharmony_ci	int ret;
162262306a36Sopenharmony_ci
162362306a36Sopenharmony_ci	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
162462306a36Sopenharmony_ci	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
162562306a36Sopenharmony_ci
162662306a36Sopenharmony_ci	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
162762306a36Sopenharmony_ci	reg_list->n = reg_list_n.n;
162862306a36Sopenharmony_ci	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
162962306a36Sopenharmony_ci	return reg_list;
163062306a36Sopenharmony_ci}
163162306a36Sopenharmony_ci
163262306a36Sopenharmony_civoid *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
163362306a36Sopenharmony_ci{
163462306a36Sopenharmony_ci	uint32_t page_size = getpagesize();
163562306a36Sopenharmony_ci	uint32_t size = vcpu->vm->dirty_ring_size;
163662306a36Sopenharmony_ci
163762306a36Sopenharmony_ci	TEST_ASSERT(size > 0, "Should enable dirty ring first");
163862306a36Sopenharmony_ci
163962306a36Sopenharmony_ci	if (!vcpu->dirty_gfns) {
164062306a36Sopenharmony_ci		void *addr;
164162306a36Sopenharmony_ci
164262306a36Sopenharmony_ci		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
164362306a36Sopenharmony_ci			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
164462306a36Sopenharmony_ci		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
164562306a36Sopenharmony_ci
164662306a36Sopenharmony_ci		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
164762306a36Sopenharmony_ci			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
164862306a36Sopenharmony_ci		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
164962306a36Sopenharmony_ci
165062306a36Sopenharmony_ci		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
165162306a36Sopenharmony_ci			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
165262306a36Sopenharmony_ci		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
165362306a36Sopenharmony_ci
165462306a36Sopenharmony_ci		vcpu->dirty_gfns = addr;
165562306a36Sopenharmony_ci		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
165662306a36Sopenharmony_ci	}
165762306a36Sopenharmony_ci
165862306a36Sopenharmony_ci	return vcpu->dirty_gfns;
165962306a36Sopenharmony_ci}
166062306a36Sopenharmony_ci
166162306a36Sopenharmony_ci/*
166262306a36Sopenharmony_ci * Device Ioctl
166362306a36Sopenharmony_ci */
166462306a36Sopenharmony_ci
166562306a36Sopenharmony_ciint __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
166662306a36Sopenharmony_ci{
166762306a36Sopenharmony_ci	struct kvm_device_attr attribute = {
166862306a36Sopenharmony_ci		.group = group,
166962306a36Sopenharmony_ci		.attr = attr,
167062306a36Sopenharmony_ci		.flags = 0,
167162306a36Sopenharmony_ci	};
167262306a36Sopenharmony_ci
167362306a36Sopenharmony_ci	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
167462306a36Sopenharmony_ci}
167562306a36Sopenharmony_ci
167662306a36Sopenharmony_ciint __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
167762306a36Sopenharmony_ci{
167862306a36Sopenharmony_ci	struct kvm_create_device create_dev = {
167962306a36Sopenharmony_ci		.type = type,
168062306a36Sopenharmony_ci		.flags = KVM_CREATE_DEVICE_TEST,
168162306a36Sopenharmony_ci	};
168262306a36Sopenharmony_ci
168362306a36Sopenharmony_ci	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
168462306a36Sopenharmony_ci}
168562306a36Sopenharmony_ci
168662306a36Sopenharmony_ciint __kvm_create_device(struct kvm_vm *vm, uint64_t type)
168762306a36Sopenharmony_ci{
168862306a36Sopenharmony_ci	struct kvm_create_device create_dev = {
168962306a36Sopenharmony_ci		.type = type,
169062306a36Sopenharmony_ci		.fd = -1,
169162306a36Sopenharmony_ci		.flags = 0,
169262306a36Sopenharmony_ci	};
169362306a36Sopenharmony_ci	int err;
169462306a36Sopenharmony_ci
169562306a36Sopenharmony_ci	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
169662306a36Sopenharmony_ci	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
169762306a36Sopenharmony_ci	return err ? : create_dev.fd;
169862306a36Sopenharmony_ci}
169962306a36Sopenharmony_ci
170062306a36Sopenharmony_ciint __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
170162306a36Sopenharmony_ci{
170262306a36Sopenharmony_ci	struct kvm_device_attr kvmattr = {
170362306a36Sopenharmony_ci		.group = group,
170462306a36Sopenharmony_ci		.attr = attr,
170562306a36Sopenharmony_ci		.flags = 0,
170662306a36Sopenharmony_ci		.addr = (uintptr_t)val,
170762306a36Sopenharmony_ci	};
170862306a36Sopenharmony_ci
170962306a36Sopenharmony_ci	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
171062306a36Sopenharmony_ci}
171162306a36Sopenharmony_ci
171262306a36Sopenharmony_ciint __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
171362306a36Sopenharmony_ci{
171462306a36Sopenharmony_ci	struct kvm_device_attr kvmattr = {
171562306a36Sopenharmony_ci		.group = group,
171662306a36Sopenharmony_ci		.attr = attr,
171762306a36Sopenharmony_ci		.flags = 0,
171862306a36Sopenharmony_ci		.addr = (uintptr_t)val,
171962306a36Sopenharmony_ci	};
172062306a36Sopenharmony_ci
172162306a36Sopenharmony_ci	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
172262306a36Sopenharmony_ci}
172362306a36Sopenharmony_ci
172462306a36Sopenharmony_ci/*
172562306a36Sopenharmony_ci * IRQ related functions.
172662306a36Sopenharmony_ci */
172762306a36Sopenharmony_ci
172862306a36Sopenharmony_ciint _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
172962306a36Sopenharmony_ci{
173062306a36Sopenharmony_ci	struct kvm_irq_level irq_level = {
173162306a36Sopenharmony_ci		.irq    = irq,
173262306a36Sopenharmony_ci		.level  = level,
173362306a36Sopenharmony_ci	};
173462306a36Sopenharmony_ci
173562306a36Sopenharmony_ci	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
173662306a36Sopenharmony_ci}
173762306a36Sopenharmony_ci
173862306a36Sopenharmony_civoid kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
173962306a36Sopenharmony_ci{
174062306a36Sopenharmony_ci	int ret = _kvm_irq_line(vm, irq, level);
174162306a36Sopenharmony_ci
174262306a36Sopenharmony_ci	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
174362306a36Sopenharmony_ci}
174462306a36Sopenharmony_ci
174562306a36Sopenharmony_cistruct kvm_irq_routing *kvm_gsi_routing_create(void)
174662306a36Sopenharmony_ci{
174762306a36Sopenharmony_ci	struct kvm_irq_routing *routing;
174862306a36Sopenharmony_ci	size_t size;
174962306a36Sopenharmony_ci
175062306a36Sopenharmony_ci	size = sizeof(struct kvm_irq_routing);
175162306a36Sopenharmony_ci	/* Allocate space for the max number of entries: this wastes 196 KBs. */
175262306a36Sopenharmony_ci	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
175362306a36Sopenharmony_ci	routing = calloc(1, size);
175462306a36Sopenharmony_ci	assert(routing);
175562306a36Sopenharmony_ci
175662306a36Sopenharmony_ci	return routing;
175762306a36Sopenharmony_ci}
175862306a36Sopenharmony_ci
175962306a36Sopenharmony_civoid kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
176062306a36Sopenharmony_ci		uint32_t gsi, uint32_t pin)
176162306a36Sopenharmony_ci{
176262306a36Sopenharmony_ci	int i;
176362306a36Sopenharmony_ci
176462306a36Sopenharmony_ci	assert(routing);
176562306a36Sopenharmony_ci	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
176662306a36Sopenharmony_ci
176762306a36Sopenharmony_ci	i = routing->nr;
176862306a36Sopenharmony_ci	routing->entries[i].gsi = gsi;
176962306a36Sopenharmony_ci	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
177062306a36Sopenharmony_ci	routing->entries[i].flags = 0;
177162306a36Sopenharmony_ci	routing->entries[i].u.irqchip.irqchip = 0;
177262306a36Sopenharmony_ci	routing->entries[i].u.irqchip.pin = pin;
177362306a36Sopenharmony_ci	routing->nr++;
177462306a36Sopenharmony_ci}
177562306a36Sopenharmony_ci
177662306a36Sopenharmony_ciint _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
177762306a36Sopenharmony_ci{
177862306a36Sopenharmony_ci	int ret;
177962306a36Sopenharmony_ci
178062306a36Sopenharmony_ci	assert(routing);
178162306a36Sopenharmony_ci	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
178262306a36Sopenharmony_ci	free(routing);
178362306a36Sopenharmony_ci
178462306a36Sopenharmony_ci	return ret;
178562306a36Sopenharmony_ci}
178662306a36Sopenharmony_ci
178762306a36Sopenharmony_civoid kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
178862306a36Sopenharmony_ci{
178962306a36Sopenharmony_ci	int ret;
179062306a36Sopenharmony_ci
179162306a36Sopenharmony_ci	ret = _kvm_gsi_routing_write(vm, routing);
179262306a36Sopenharmony_ci	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
179362306a36Sopenharmony_ci}
179462306a36Sopenharmony_ci
179562306a36Sopenharmony_ci/*
179662306a36Sopenharmony_ci * VM Dump
179762306a36Sopenharmony_ci *
179862306a36Sopenharmony_ci * Input Args:
179962306a36Sopenharmony_ci *   vm - Virtual Machine
180062306a36Sopenharmony_ci *   indent - Left margin indent amount
180162306a36Sopenharmony_ci *
180262306a36Sopenharmony_ci * Output Args:
180362306a36Sopenharmony_ci *   stream - Output FILE stream
180462306a36Sopenharmony_ci *
180562306a36Sopenharmony_ci * Return: None
180662306a36Sopenharmony_ci *
180762306a36Sopenharmony_ci * Dumps the current state of the VM given by vm, to the FILE stream
180862306a36Sopenharmony_ci * given by stream.
180962306a36Sopenharmony_ci */
181062306a36Sopenharmony_civoid vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
181162306a36Sopenharmony_ci{
181262306a36Sopenharmony_ci	int ctr;
181362306a36Sopenharmony_ci	struct userspace_mem_region *region;
181462306a36Sopenharmony_ci	struct kvm_vcpu *vcpu;
181562306a36Sopenharmony_ci
181662306a36Sopenharmony_ci	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
181762306a36Sopenharmony_ci	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
181862306a36Sopenharmony_ci	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
181962306a36Sopenharmony_ci	fprintf(stream, "%*sMem Regions:\n", indent, "");
182062306a36Sopenharmony_ci	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
182162306a36Sopenharmony_ci		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
182262306a36Sopenharmony_ci			"host_virt: %p\n", indent + 2, "",
182362306a36Sopenharmony_ci			(uint64_t) region->region.guest_phys_addr,
182462306a36Sopenharmony_ci			(uint64_t) region->region.memory_size,
182562306a36Sopenharmony_ci			region->host_mem);
182662306a36Sopenharmony_ci		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
182762306a36Sopenharmony_ci		sparsebit_dump(stream, region->unused_phy_pages, 0);
182862306a36Sopenharmony_ci	}
182962306a36Sopenharmony_ci	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
183062306a36Sopenharmony_ci	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
183162306a36Sopenharmony_ci	fprintf(stream, "%*spgd_created: %u\n", indent, "",
183262306a36Sopenharmony_ci		vm->pgd_created);
183362306a36Sopenharmony_ci	if (vm->pgd_created) {
183462306a36Sopenharmony_ci		fprintf(stream, "%*sVirtual Translation Tables:\n",
183562306a36Sopenharmony_ci			indent + 2, "");
183662306a36Sopenharmony_ci		virt_dump(stream, vm, indent + 4);
183762306a36Sopenharmony_ci	}
183862306a36Sopenharmony_ci	fprintf(stream, "%*sVCPUs:\n", indent, "");
183962306a36Sopenharmony_ci
184062306a36Sopenharmony_ci	list_for_each_entry(vcpu, &vm->vcpus, list)
184162306a36Sopenharmony_ci		vcpu_dump(stream, vcpu, indent + 2);
184262306a36Sopenharmony_ci}
184362306a36Sopenharmony_ci
184462306a36Sopenharmony_ci#define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
184562306a36Sopenharmony_ci
184662306a36Sopenharmony_ci/* Known KVM exit reasons */
184762306a36Sopenharmony_cistatic struct exit_reason {
184862306a36Sopenharmony_ci	unsigned int reason;
184962306a36Sopenharmony_ci	const char *name;
185062306a36Sopenharmony_ci} exit_reasons_known[] = {
185162306a36Sopenharmony_ci	KVM_EXIT_STRING(UNKNOWN),
185262306a36Sopenharmony_ci	KVM_EXIT_STRING(EXCEPTION),
185362306a36Sopenharmony_ci	KVM_EXIT_STRING(IO),
185462306a36Sopenharmony_ci	KVM_EXIT_STRING(HYPERCALL),
185562306a36Sopenharmony_ci	KVM_EXIT_STRING(DEBUG),
185662306a36Sopenharmony_ci	KVM_EXIT_STRING(HLT),
185762306a36Sopenharmony_ci	KVM_EXIT_STRING(MMIO),
185862306a36Sopenharmony_ci	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
185962306a36Sopenharmony_ci	KVM_EXIT_STRING(SHUTDOWN),
186062306a36Sopenharmony_ci	KVM_EXIT_STRING(FAIL_ENTRY),
186162306a36Sopenharmony_ci	KVM_EXIT_STRING(INTR),
186262306a36Sopenharmony_ci	KVM_EXIT_STRING(SET_TPR),
186362306a36Sopenharmony_ci	KVM_EXIT_STRING(TPR_ACCESS),
186462306a36Sopenharmony_ci	KVM_EXIT_STRING(S390_SIEIC),
186562306a36Sopenharmony_ci	KVM_EXIT_STRING(S390_RESET),
186662306a36Sopenharmony_ci	KVM_EXIT_STRING(DCR),
186762306a36Sopenharmony_ci	KVM_EXIT_STRING(NMI),
186862306a36Sopenharmony_ci	KVM_EXIT_STRING(INTERNAL_ERROR),
186962306a36Sopenharmony_ci	KVM_EXIT_STRING(OSI),
187062306a36Sopenharmony_ci	KVM_EXIT_STRING(PAPR_HCALL),
187162306a36Sopenharmony_ci	KVM_EXIT_STRING(S390_UCONTROL),
187262306a36Sopenharmony_ci	KVM_EXIT_STRING(WATCHDOG),
187362306a36Sopenharmony_ci	KVM_EXIT_STRING(S390_TSCH),
187462306a36Sopenharmony_ci	KVM_EXIT_STRING(EPR),
187562306a36Sopenharmony_ci	KVM_EXIT_STRING(SYSTEM_EVENT),
187662306a36Sopenharmony_ci	KVM_EXIT_STRING(S390_STSI),
187762306a36Sopenharmony_ci	KVM_EXIT_STRING(IOAPIC_EOI),
187862306a36Sopenharmony_ci	KVM_EXIT_STRING(HYPERV),
187962306a36Sopenharmony_ci	KVM_EXIT_STRING(ARM_NISV),
188062306a36Sopenharmony_ci	KVM_EXIT_STRING(X86_RDMSR),
188162306a36Sopenharmony_ci	KVM_EXIT_STRING(X86_WRMSR),
188262306a36Sopenharmony_ci	KVM_EXIT_STRING(DIRTY_RING_FULL),
188362306a36Sopenharmony_ci	KVM_EXIT_STRING(AP_RESET_HOLD),
188462306a36Sopenharmony_ci	KVM_EXIT_STRING(X86_BUS_LOCK),
188562306a36Sopenharmony_ci	KVM_EXIT_STRING(XEN),
188662306a36Sopenharmony_ci	KVM_EXIT_STRING(RISCV_SBI),
188762306a36Sopenharmony_ci	KVM_EXIT_STRING(RISCV_CSR),
188862306a36Sopenharmony_ci	KVM_EXIT_STRING(NOTIFY),
188962306a36Sopenharmony_ci#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
189062306a36Sopenharmony_ci	KVM_EXIT_STRING(MEMORY_NOT_PRESENT),
189162306a36Sopenharmony_ci#endif
189262306a36Sopenharmony_ci};
189362306a36Sopenharmony_ci
189462306a36Sopenharmony_ci/*
189562306a36Sopenharmony_ci * Exit Reason String
189662306a36Sopenharmony_ci *
189762306a36Sopenharmony_ci * Input Args:
189862306a36Sopenharmony_ci *   exit_reason - Exit reason
189962306a36Sopenharmony_ci *
190062306a36Sopenharmony_ci * Output Args: None
190162306a36Sopenharmony_ci *
190262306a36Sopenharmony_ci * Return:
190362306a36Sopenharmony_ci *   Constant string pointer describing the exit reason.
190462306a36Sopenharmony_ci *
190562306a36Sopenharmony_ci * Locates and returns a constant string that describes the KVM exit
190662306a36Sopenharmony_ci * reason given by exit_reason.  If no such string is found, a constant
190762306a36Sopenharmony_ci * string of "Unknown" is returned.
190862306a36Sopenharmony_ci */
190962306a36Sopenharmony_ciconst char *exit_reason_str(unsigned int exit_reason)
191062306a36Sopenharmony_ci{
191162306a36Sopenharmony_ci	unsigned int n1;
191262306a36Sopenharmony_ci
191362306a36Sopenharmony_ci	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
191462306a36Sopenharmony_ci		if (exit_reason == exit_reasons_known[n1].reason)
191562306a36Sopenharmony_ci			return exit_reasons_known[n1].name;
191662306a36Sopenharmony_ci	}
191762306a36Sopenharmony_ci
191862306a36Sopenharmony_ci	return "Unknown";
191962306a36Sopenharmony_ci}
192062306a36Sopenharmony_ci
192162306a36Sopenharmony_ci/*
192262306a36Sopenharmony_ci * Physical Contiguous Page Allocator
192362306a36Sopenharmony_ci *
192462306a36Sopenharmony_ci * Input Args:
192562306a36Sopenharmony_ci *   vm - Virtual Machine
192662306a36Sopenharmony_ci *   num - number of pages
192762306a36Sopenharmony_ci *   paddr_min - Physical address minimum
192862306a36Sopenharmony_ci *   memslot - Memory region to allocate page from
192962306a36Sopenharmony_ci *
193062306a36Sopenharmony_ci * Output Args: None
193162306a36Sopenharmony_ci *
193262306a36Sopenharmony_ci * Return:
193362306a36Sopenharmony_ci *   Starting physical address
193462306a36Sopenharmony_ci *
193562306a36Sopenharmony_ci * Within the VM specified by vm, locates a range of available physical
193662306a36Sopenharmony_ci * pages at or above paddr_min. If found, the pages are marked as in use
193762306a36Sopenharmony_ci * and their base address is returned. A TEST_ASSERT failure occurs if
193862306a36Sopenharmony_ci * not enough pages are available at or above paddr_min.
193962306a36Sopenharmony_ci */
194062306a36Sopenharmony_civm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
194162306a36Sopenharmony_ci			      vm_paddr_t paddr_min, uint32_t memslot)
194262306a36Sopenharmony_ci{
194362306a36Sopenharmony_ci	struct userspace_mem_region *region;
194462306a36Sopenharmony_ci	sparsebit_idx_t pg, base;
194562306a36Sopenharmony_ci
194662306a36Sopenharmony_ci	TEST_ASSERT(num > 0, "Must allocate at least one page");
194762306a36Sopenharmony_ci
194862306a36Sopenharmony_ci	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
194962306a36Sopenharmony_ci		"not divisible by page size.\n"
195062306a36Sopenharmony_ci		"  paddr_min: 0x%lx page_size: 0x%x",
195162306a36Sopenharmony_ci		paddr_min, vm->page_size);
195262306a36Sopenharmony_ci
195362306a36Sopenharmony_ci	region = memslot2region(vm, memslot);
195462306a36Sopenharmony_ci	base = pg = paddr_min >> vm->page_shift;
195562306a36Sopenharmony_ci
195662306a36Sopenharmony_ci	do {
195762306a36Sopenharmony_ci		for (; pg < base + num; ++pg) {
195862306a36Sopenharmony_ci			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
195962306a36Sopenharmony_ci				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
196062306a36Sopenharmony_ci				break;
196162306a36Sopenharmony_ci			}
196262306a36Sopenharmony_ci		}
196362306a36Sopenharmony_ci	} while (pg && pg != base + num);
196462306a36Sopenharmony_ci
196562306a36Sopenharmony_ci	if (pg == 0) {
196662306a36Sopenharmony_ci		fprintf(stderr, "No guest physical page available, "
196762306a36Sopenharmony_ci			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
196862306a36Sopenharmony_ci			paddr_min, vm->page_size, memslot);
196962306a36Sopenharmony_ci		fputs("---- vm dump ----\n", stderr);
197062306a36Sopenharmony_ci		vm_dump(stderr, vm, 2);
197162306a36Sopenharmony_ci		abort();
197262306a36Sopenharmony_ci	}
197362306a36Sopenharmony_ci
197462306a36Sopenharmony_ci	for (pg = base; pg < base + num; ++pg)
197562306a36Sopenharmony_ci		sparsebit_clear(region->unused_phy_pages, pg);
197662306a36Sopenharmony_ci
197762306a36Sopenharmony_ci	return base * vm->page_size;
197862306a36Sopenharmony_ci}
197962306a36Sopenharmony_ci
198062306a36Sopenharmony_civm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
198162306a36Sopenharmony_ci			     uint32_t memslot)
198262306a36Sopenharmony_ci{
198362306a36Sopenharmony_ci	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
198462306a36Sopenharmony_ci}
198562306a36Sopenharmony_ci
198662306a36Sopenharmony_civm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
198762306a36Sopenharmony_ci{
198862306a36Sopenharmony_ci	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
198962306a36Sopenharmony_ci				 vm->memslots[MEM_REGION_PT]);
199062306a36Sopenharmony_ci}
199162306a36Sopenharmony_ci
199262306a36Sopenharmony_ci/*
199362306a36Sopenharmony_ci * Address Guest Virtual to Host Virtual
199462306a36Sopenharmony_ci *
199562306a36Sopenharmony_ci * Input Args:
199662306a36Sopenharmony_ci *   vm - Virtual Machine
199762306a36Sopenharmony_ci *   gva - VM virtual address
199862306a36Sopenharmony_ci *
199962306a36Sopenharmony_ci * Output Args: None
200062306a36Sopenharmony_ci *
200162306a36Sopenharmony_ci * Return:
200262306a36Sopenharmony_ci *   Equivalent host virtual address
200362306a36Sopenharmony_ci */
200462306a36Sopenharmony_civoid *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
200562306a36Sopenharmony_ci{
200662306a36Sopenharmony_ci	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
200762306a36Sopenharmony_ci}
200862306a36Sopenharmony_ci
200962306a36Sopenharmony_ciunsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
201062306a36Sopenharmony_ci{
201162306a36Sopenharmony_ci	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
201262306a36Sopenharmony_ci}
201362306a36Sopenharmony_ci
201462306a36Sopenharmony_cistatic unsigned int vm_calc_num_pages(unsigned int num_pages,
201562306a36Sopenharmony_ci				      unsigned int page_shift,
201662306a36Sopenharmony_ci				      unsigned int new_page_shift,
201762306a36Sopenharmony_ci				      bool ceil)
201862306a36Sopenharmony_ci{
201962306a36Sopenharmony_ci	unsigned int n = 1 << (new_page_shift - page_shift);
202062306a36Sopenharmony_ci
202162306a36Sopenharmony_ci	if (page_shift >= new_page_shift)
202262306a36Sopenharmony_ci		return num_pages * (1 << (page_shift - new_page_shift));
202362306a36Sopenharmony_ci
202462306a36Sopenharmony_ci	return num_pages / n + !!(ceil && num_pages % n);
202562306a36Sopenharmony_ci}
202662306a36Sopenharmony_ci
202762306a36Sopenharmony_cistatic inline int getpageshift(void)
202862306a36Sopenharmony_ci{
202962306a36Sopenharmony_ci	return __builtin_ffs(getpagesize()) - 1;
203062306a36Sopenharmony_ci}
203162306a36Sopenharmony_ci
203262306a36Sopenharmony_ciunsigned int
203362306a36Sopenharmony_civm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
203462306a36Sopenharmony_ci{
203562306a36Sopenharmony_ci	return vm_calc_num_pages(num_guest_pages,
203662306a36Sopenharmony_ci				 vm_guest_mode_params[mode].page_shift,
203762306a36Sopenharmony_ci				 getpageshift(), true);
203862306a36Sopenharmony_ci}
203962306a36Sopenharmony_ci
204062306a36Sopenharmony_ciunsigned int
204162306a36Sopenharmony_civm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
204262306a36Sopenharmony_ci{
204362306a36Sopenharmony_ci	return vm_calc_num_pages(num_host_pages, getpageshift(),
204462306a36Sopenharmony_ci				 vm_guest_mode_params[mode].page_shift, false);
204562306a36Sopenharmony_ci}
204662306a36Sopenharmony_ci
204762306a36Sopenharmony_ciunsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
204862306a36Sopenharmony_ci{
204962306a36Sopenharmony_ci	unsigned int n;
205062306a36Sopenharmony_ci	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
205162306a36Sopenharmony_ci	return vm_adjust_num_guest_pages(mode, n);
205262306a36Sopenharmony_ci}
205362306a36Sopenharmony_ci
205462306a36Sopenharmony_ci/*
205562306a36Sopenharmony_ci * Read binary stats descriptors
205662306a36Sopenharmony_ci *
205762306a36Sopenharmony_ci * Input Args:
205862306a36Sopenharmony_ci *   stats_fd - the file descriptor for the binary stats file from which to read
205962306a36Sopenharmony_ci *   header - the binary stats metadata header corresponding to the given FD
206062306a36Sopenharmony_ci *
206162306a36Sopenharmony_ci * Output Args: None
206262306a36Sopenharmony_ci *
206362306a36Sopenharmony_ci * Return:
206462306a36Sopenharmony_ci *   A pointer to a newly allocated series of stat descriptors.
206562306a36Sopenharmony_ci *   Caller is responsible for freeing the returned kvm_stats_desc.
206662306a36Sopenharmony_ci *
206762306a36Sopenharmony_ci * Read the stats descriptors from the binary stats interface.
206862306a36Sopenharmony_ci */
206962306a36Sopenharmony_cistruct kvm_stats_desc *read_stats_descriptors(int stats_fd,
207062306a36Sopenharmony_ci					      struct kvm_stats_header *header)
207162306a36Sopenharmony_ci{
207262306a36Sopenharmony_ci	struct kvm_stats_desc *stats_desc;
207362306a36Sopenharmony_ci	ssize_t desc_size, total_size, ret;
207462306a36Sopenharmony_ci
207562306a36Sopenharmony_ci	desc_size = get_stats_descriptor_size(header);
207662306a36Sopenharmony_ci	total_size = header->num_desc * desc_size;
207762306a36Sopenharmony_ci
207862306a36Sopenharmony_ci	stats_desc = calloc(header->num_desc, desc_size);
207962306a36Sopenharmony_ci	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
208062306a36Sopenharmony_ci
208162306a36Sopenharmony_ci	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
208262306a36Sopenharmony_ci	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
208362306a36Sopenharmony_ci
208462306a36Sopenharmony_ci	return stats_desc;
208562306a36Sopenharmony_ci}
208662306a36Sopenharmony_ci
208762306a36Sopenharmony_ci/*
208862306a36Sopenharmony_ci * Read stat data for a particular stat
208962306a36Sopenharmony_ci *
209062306a36Sopenharmony_ci * Input Args:
209162306a36Sopenharmony_ci *   stats_fd - the file descriptor for the binary stats file from which to read
209262306a36Sopenharmony_ci *   header - the binary stats metadata header corresponding to the given FD
209362306a36Sopenharmony_ci *   desc - the binary stat metadata for the particular stat to be read
209462306a36Sopenharmony_ci *   max_elements - the maximum number of 8-byte values to read into data
209562306a36Sopenharmony_ci *
209662306a36Sopenharmony_ci * Output Args:
209762306a36Sopenharmony_ci *   data - the buffer into which stat data should be read
209862306a36Sopenharmony_ci *
209962306a36Sopenharmony_ci * Read the data values of a specified stat from the binary stats interface.
210062306a36Sopenharmony_ci */
210162306a36Sopenharmony_civoid read_stat_data(int stats_fd, struct kvm_stats_header *header,
210262306a36Sopenharmony_ci		    struct kvm_stats_desc *desc, uint64_t *data,
210362306a36Sopenharmony_ci		    size_t max_elements)
210462306a36Sopenharmony_ci{
210562306a36Sopenharmony_ci	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
210662306a36Sopenharmony_ci	size_t size = nr_elements * sizeof(*data);
210762306a36Sopenharmony_ci	ssize_t ret;
210862306a36Sopenharmony_ci
210962306a36Sopenharmony_ci	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
211062306a36Sopenharmony_ci	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
211162306a36Sopenharmony_ci
211262306a36Sopenharmony_ci	ret = pread(stats_fd, data, size,
211362306a36Sopenharmony_ci		    header->data_offset + desc->offset);
211462306a36Sopenharmony_ci
211562306a36Sopenharmony_ci	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
211662306a36Sopenharmony_ci		    desc->name, errno, strerror(errno));
211762306a36Sopenharmony_ci	TEST_ASSERT(ret == size,
211862306a36Sopenharmony_ci		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
211962306a36Sopenharmony_ci		    desc->name, size, ret);
212062306a36Sopenharmony_ci}
212162306a36Sopenharmony_ci
212262306a36Sopenharmony_ci/*
212362306a36Sopenharmony_ci * Read the data of the named stat
212462306a36Sopenharmony_ci *
212562306a36Sopenharmony_ci * Input Args:
212662306a36Sopenharmony_ci *   vm - the VM for which the stat should be read
212762306a36Sopenharmony_ci *   stat_name - the name of the stat to read
212862306a36Sopenharmony_ci *   max_elements - the maximum number of 8-byte values to read into data
212962306a36Sopenharmony_ci *
213062306a36Sopenharmony_ci * Output Args:
213162306a36Sopenharmony_ci *   data - the buffer into which stat data should be read
213262306a36Sopenharmony_ci *
213362306a36Sopenharmony_ci * Read the data values of a specified stat from the binary stats interface.
213462306a36Sopenharmony_ci */
213562306a36Sopenharmony_civoid __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
213662306a36Sopenharmony_ci		   size_t max_elements)
213762306a36Sopenharmony_ci{
213862306a36Sopenharmony_ci	struct kvm_stats_desc *desc;
213962306a36Sopenharmony_ci	size_t size_desc;
214062306a36Sopenharmony_ci	int i;
214162306a36Sopenharmony_ci
214262306a36Sopenharmony_ci	if (!vm->stats_fd) {
214362306a36Sopenharmony_ci		vm->stats_fd = vm_get_stats_fd(vm);
214462306a36Sopenharmony_ci		read_stats_header(vm->stats_fd, &vm->stats_header);
214562306a36Sopenharmony_ci		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
214662306a36Sopenharmony_ci							&vm->stats_header);
214762306a36Sopenharmony_ci	}
214862306a36Sopenharmony_ci
214962306a36Sopenharmony_ci	size_desc = get_stats_descriptor_size(&vm->stats_header);
215062306a36Sopenharmony_ci
215162306a36Sopenharmony_ci	for (i = 0; i < vm->stats_header.num_desc; ++i) {
215262306a36Sopenharmony_ci		desc = (void *)vm->stats_desc + (i * size_desc);
215362306a36Sopenharmony_ci
215462306a36Sopenharmony_ci		if (strcmp(desc->name, stat_name))
215562306a36Sopenharmony_ci			continue;
215662306a36Sopenharmony_ci
215762306a36Sopenharmony_ci		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
215862306a36Sopenharmony_ci			       data, max_elements);
215962306a36Sopenharmony_ci
216062306a36Sopenharmony_ci		break;
216162306a36Sopenharmony_ci	}
216262306a36Sopenharmony_ci}
216362306a36Sopenharmony_ci
216462306a36Sopenharmony_ci__weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
216562306a36Sopenharmony_ci{
216662306a36Sopenharmony_ci}
216762306a36Sopenharmony_ci
216862306a36Sopenharmony_ci__weak void kvm_selftest_arch_init(void)
216962306a36Sopenharmony_ci{
217062306a36Sopenharmony_ci}
217162306a36Sopenharmony_ci
217262306a36Sopenharmony_civoid __attribute((constructor)) kvm_selftest_init(void)
217362306a36Sopenharmony_ci{
217462306a36Sopenharmony_ci	/* Tell stdout not to buffer its content. */
217562306a36Sopenharmony_ci	setbuf(stdout, NULL);
217662306a36Sopenharmony_ci
217762306a36Sopenharmony_ci	kvm_selftest_arch_init();
217862306a36Sopenharmony_ci}
2179