xref: /kernel/linux/linux-6.6/tools/perf/util/machine.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "path.h"
20#include "srcline.h"
21#include "symbol.h"
22#include "sort.h"
23#include "strlist.h"
24#include "target.h"
25#include "thread.h"
26#include "util.h"
27#include "vdso.h"
28#include <stdbool.h>
29#include <sys/types.h>
30#include <sys/stat.h>
31#include <unistd.h>
32#include "unwind.h"
33#include "linux/hash.h"
34#include "asm/bug.h"
35#include "bpf-event.h"
36#include <internal/lib.h> // page_size
37#include "cgroup.h"
38#include "arm64-frame-pointer-unwind-support.h"
39
40#include <linux/ctype.h>
41#include <symbol/kallsyms.h>
42#include <linux/mman.h>
43#include <linux/string.h>
44#include <linux/zalloc.h>
45
46static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
47				     struct thread *th, bool lock);
48
49static struct dso *machine__kernel_dso(struct machine *machine)
50{
51	return map__dso(machine->vmlinux_map);
52}
53
54static void dsos__init(struct dsos *dsos)
55{
56	INIT_LIST_HEAD(&dsos->head);
57	dsos->root = RB_ROOT;
58	init_rwsem(&dsos->lock);
59}
60
61static void machine__threads_init(struct machine *machine)
62{
63	int i;
64
65	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
66		struct threads *threads = &machine->threads[i];
67		threads->entries = RB_ROOT_CACHED;
68		init_rwsem(&threads->lock);
69		threads->nr = 0;
70		INIT_LIST_HEAD(&threads->dead);
71		threads->last_match = NULL;
72	}
73}
74
75static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd)
76{
77	int to_find = (int) *((pid_t *)key);
78
79	return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread);
80}
81
82static struct thread_rb_node *thread_rb_node__find(const struct thread *th,
83						   struct rb_root *tree)
84{
85	pid_t to_find = thread__tid(th);
86	struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid);
87
88	return rb_entry(nd, struct thread_rb_node, rb_node);
89}
90
91static int machine__set_mmap_name(struct machine *machine)
92{
93	if (machine__is_host(machine))
94		machine->mmap_name = strdup("[kernel.kallsyms]");
95	else if (machine__is_default_guest(machine))
96		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
97	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
98			  machine->pid) < 0)
99		machine->mmap_name = NULL;
100
101	return machine->mmap_name ? 0 : -ENOMEM;
102}
103
104static void thread__set_guest_comm(struct thread *thread, pid_t pid)
105{
106	char comm[64];
107
108	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
109	thread__set_comm(thread, comm, 0);
110}
111
112int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
113{
114	int err = -ENOMEM;
115
116	memset(machine, 0, sizeof(*machine));
117	machine->kmaps = maps__new(machine);
118	if (machine->kmaps == NULL)
119		return -ENOMEM;
120
121	RB_CLEAR_NODE(&machine->rb_node);
122	dsos__init(&machine->dsos);
123
124	machine__threads_init(machine);
125
126	machine->vdso_info = NULL;
127	machine->env = NULL;
128
129	machine->pid = pid;
130
131	machine->id_hdr_size = 0;
132	machine->kptr_restrict_warned = false;
133	machine->comm_exec = false;
134	machine->kernel_start = 0;
135	machine->vmlinux_map = NULL;
136
137	machine->root_dir = strdup(root_dir);
138	if (machine->root_dir == NULL)
139		goto out;
140
141	if (machine__set_mmap_name(machine))
142		goto out;
143
144	if (pid != HOST_KERNEL_ID) {
145		struct thread *thread = machine__findnew_thread(machine, -1,
146								pid);
147
148		if (thread == NULL)
149			goto out;
150
151		thread__set_guest_comm(thread, pid);
152		thread__put(thread);
153	}
154
155	machine->current_tid = NULL;
156	err = 0;
157
158out:
159	if (err) {
160		zfree(&machine->kmaps);
161		zfree(&machine->root_dir);
162		zfree(&machine->mmap_name);
163	}
164	return 0;
165}
166
167struct machine *machine__new_host(void)
168{
169	struct machine *machine = malloc(sizeof(*machine));
170
171	if (machine != NULL) {
172		machine__init(machine, "", HOST_KERNEL_ID);
173
174		if (machine__create_kernel_maps(machine) < 0)
175			goto out_delete;
176	}
177
178	return machine;
179out_delete:
180	free(machine);
181	return NULL;
182}
183
184struct machine *machine__new_kallsyms(void)
185{
186	struct machine *machine = machine__new_host();
187	/*
188	 * FIXME:
189	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
190	 *    ask for not using the kcore parsing code, once this one is fixed
191	 *    to create a map per module.
192	 */
193	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
194		machine__delete(machine);
195		machine = NULL;
196	}
197
198	return machine;
199}
200
201static void dsos__purge(struct dsos *dsos)
202{
203	struct dso *pos, *n;
204
205	down_write(&dsos->lock);
206
207	list_for_each_entry_safe(pos, n, &dsos->head, node) {
208		RB_CLEAR_NODE(&pos->rb_node);
209		pos->root = NULL;
210		list_del_init(&pos->node);
211		dso__put(pos);
212	}
213
214	up_write(&dsos->lock);
215}
216
217static void dsos__exit(struct dsos *dsos)
218{
219	dsos__purge(dsos);
220	exit_rwsem(&dsos->lock);
221}
222
223void machine__delete_threads(struct machine *machine)
224{
225	struct rb_node *nd;
226	int i;
227
228	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229		struct threads *threads = &machine->threads[i];
230		down_write(&threads->lock);
231		nd = rb_first_cached(&threads->entries);
232		while (nd) {
233			struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
234
235			nd = rb_next(nd);
236			__machine__remove_thread(machine, trb, trb->thread, false);
237		}
238		up_write(&threads->lock);
239	}
240}
241
242void machine__exit(struct machine *machine)
243{
244	int i;
245
246	if (machine == NULL)
247		return;
248
249	machine__destroy_kernel_maps(machine);
250	maps__zput(machine->kmaps);
251	dsos__exit(&machine->dsos);
252	machine__exit_vdso(machine);
253	zfree(&machine->root_dir);
254	zfree(&machine->mmap_name);
255	zfree(&machine->current_tid);
256	zfree(&machine->kallsyms_filename);
257
258	machine__delete_threads(machine);
259	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
260		struct threads *threads = &machine->threads[i];
261
262		exit_rwsem(&threads->lock);
263	}
264}
265
266void machine__delete(struct machine *machine)
267{
268	if (machine) {
269		machine__exit(machine);
270		free(machine);
271	}
272}
273
274void machines__init(struct machines *machines)
275{
276	machine__init(&machines->host, "", HOST_KERNEL_ID);
277	machines->guests = RB_ROOT_CACHED;
278}
279
280void machines__exit(struct machines *machines)
281{
282	machine__exit(&machines->host);
283	/* XXX exit guest */
284}
285
286struct machine *machines__add(struct machines *machines, pid_t pid,
287			      const char *root_dir)
288{
289	struct rb_node **p = &machines->guests.rb_root.rb_node;
290	struct rb_node *parent = NULL;
291	struct machine *pos, *machine = malloc(sizeof(*machine));
292	bool leftmost = true;
293
294	if (machine == NULL)
295		return NULL;
296
297	if (machine__init(machine, root_dir, pid) != 0) {
298		free(machine);
299		return NULL;
300	}
301
302	while (*p != NULL) {
303		parent = *p;
304		pos = rb_entry(parent, struct machine, rb_node);
305		if (pid < pos->pid)
306			p = &(*p)->rb_left;
307		else {
308			p = &(*p)->rb_right;
309			leftmost = false;
310		}
311	}
312
313	rb_link_node(&machine->rb_node, parent, p);
314	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
315
316	machine->machines = machines;
317
318	return machine;
319}
320
321void machines__set_comm_exec(struct machines *machines, bool comm_exec)
322{
323	struct rb_node *nd;
324
325	machines->host.comm_exec = comm_exec;
326
327	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
328		struct machine *machine = rb_entry(nd, struct machine, rb_node);
329
330		machine->comm_exec = comm_exec;
331	}
332}
333
334struct machine *machines__find(struct machines *machines, pid_t pid)
335{
336	struct rb_node **p = &machines->guests.rb_root.rb_node;
337	struct rb_node *parent = NULL;
338	struct machine *machine;
339	struct machine *default_machine = NULL;
340
341	if (pid == HOST_KERNEL_ID)
342		return &machines->host;
343
344	while (*p != NULL) {
345		parent = *p;
346		machine = rb_entry(parent, struct machine, rb_node);
347		if (pid < machine->pid)
348			p = &(*p)->rb_left;
349		else if (pid > machine->pid)
350			p = &(*p)->rb_right;
351		else
352			return machine;
353		if (!machine->pid)
354			default_machine = machine;
355	}
356
357	return default_machine;
358}
359
360struct machine *machines__findnew(struct machines *machines, pid_t pid)
361{
362	char path[PATH_MAX];
363	const char *root_dir = "";
364	struct machine *machine = machines__find(machines, pid);
365
366	if (machine && (machine->pid == pid))
367		goto out;
368
369	if ((pid != HOST_KERNEL_ID) &&
370	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
371	    (symbol_conf.guestmount)) {
372		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
373		if (access(path, R_OK)) {
374			static struct strlist *seen;
375
376			if (!seen)
377				seen = strlist__new(NULL, NULL);
378
379			if (!strlist__has_entry(seen, path)) {
380				pr_err("Can't access file %s\n", path);
381				strlist__add(seen, path);
382			}
383			machine = NULL;
384			goto out;
385		}
386		root_dir = path;
387	}
388
389	machine = machines__add(machines, pid, root_dir);
390out:
391	return machine;
392}
393
394struct machine *machines__find_guest(struct machines *machines, pid_t pid)
395{
396	struct machine *machine = machines__find(machines, pid);
397
398	if (!machine)
399		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
400	return machine;
401}
402
403/*
404 * A common case for KVM test programs is that the test program acts as the
405 * hypervisor, creating, running and destroying the virtual machine, and
406 * providing the guest object code from its own object code. In this case,
407 * the VM is not running an OS, but only the functions loaded into it by the
408 * hypervisor test program, and conveniently, loaded at the same virtual
409 * addresses.
410 *
411 * Normally to resolve addresses, MMAP events are needed to map addresses
412 * back to the object code and debug symbols for that object code.
413 *
414 * Currently, there is no way to get such mapping information from guests
415 * but, in the scenario described above, the guest has the same mappings
416 * as the hypervisor, so support for that scenario can be achieved.
417 *
418 * To support that, copy the host thread's maps to the guest thread's maps.
419 * Note, we do not discover the guest until we encounter a guest event,
420 * which works well because it is not until then that we know that the host
421 * thread's maps have been set up.
422 *
423 * This function returns the guest thread. Apart from keeping the data
424 * structures sane, using a thread belonging to the guest machine, instead
425 * of the host thread, allows it to have its own comm (refer
426 * thread__set_guest_comm()).
427 */
428static struct thread *findnew_guest_code(struct machine *machine,
429					 struct machine *host_machine,
430					 pid_t pid)
431{
432	struct thread *host_thread;
433	struct thread *thread;
434	int err;
435
436	if (!machine)
437		return NULL;
438
439	thread = machine__findnew_thread(machine, -1, pid);
440	if (!thread)
441		return NULL;
442
443	/* Assume maps are set up if there are any */
444	if (maps__nr_maps(thread__maps(thread)))
445		return thread;
446
447	host_thread = machine__find_thread(host_machine, -1, pid);
448	if (!host_thread)
449		goto out_err;
450
451	thread__set_guest_comm(thread, pid);
452
453	/*
454	 * Guest code can be found in hypervisor process at the same address
455	 * so copy host maps.
456	 */
457	err = maps__clone(thread, thread__maps(host_thread));
458	thread__put(host_thread);
459	if (err)
460		goto out_err;
461
462	return thread;
463
464out_err:
465	thread__zput(thread);
466	return NULL;
467}
468
469struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
470{
471	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
472	struct machine *machine = machines__findnew(machines, pid);
473
474	return findnew_guest_code(machine, host_machine, pid);
475}
476
477struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
478{
479	struct machines *machines = machine->machines;
480	struct machine *host_machine;
481
482	if (!machines)
483		return NULL;
484
485	host_machine = machines__find(machines, HOST_KERNEL_ID);
486
487	return findnew_guest_code(machine, host_machine, pid);
488}
489
490void machines__process_guests(struct machines *machines,
491			      machine__process_t process, void *data)
492{
493	struct rb_node *nd;
494
495	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
496		struct machine *pos = rb_entry(nd, struct machine, rb_node);
497		process(pos, data);
498	}
499}
500
501void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
502{
503	struct rb_node *node;
504	struct machine *machine;
505
506	machines->host.id_hdr_size = id_hdr_size;
507
508	for (node = rb_first_cached(&machines->guests); node;
509	     node = rb_next(node)) {
510		machine = rb_entry(node, struct machine, rb_node);
511		machine->id_hdr_size = id_hdr_size;
512	}
513
514	return;
515}
516
517static void machine__update_thread_pid(struct machine *machine,
518				       struct thread *th, pid_t pid)
519{
520	struct thread *leader;
521
522	if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
523		return;
524
525	thread__set_pid(th, pid);
526
527	if (thread__pid(th) == thread__tid(th))
528		return;
529
530	leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
531	if (!leader)
532		goto out_err;
533
534	if (!thread__maps(leader))
535		thread__set_maps(leader, maps__new(machine));
536
537	if (!thread__maps(leader))
538		goto out_err;
539
540	if (thread__maps(th) == thread__maps(leader))
541		goto out_put;
542
543	if (thread__maps(th)) {
544		/*
545		 * Maps are created from MMAP events which provide the pid and
546		 * tid.  Consequently there never should be any maps on a thread
547		 * with an unknown pid.  Just print an error if there are.
548		 */
549		if (!maps__empty(thread__maps(th)))
550			pr_err("Discarding thread maps for %d:%d\n",
551				thread__pid(th), thread__tid(th));
552		maps__put(thread__maps(th));
553	}
554
555	thread__set_maps(th, maps__get(thread__maps(leader)));
556out_put:
557	thread__put(leader);
558	return;
559out_err:
560	pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
561	goto out_put;
562}
563
564/*
565 * Front-end cache - TID lookups come in blocks,
566 * so most of the time we dont have to look up
567 * the full rbtree:
568 */
569static struct thread*
570__threads__get_last_match(struct threads *threads, struct machine *machine,
571			  int pid, int tid)
572{
573	struct thread *th;
574
575	th = threads->last_match;
576	if (th != NULL) {
577		if (thread__tid(th) == tid) {
578			machine__update_thread_pid(machine, th, pid);
579			return thread__get(th);
580		}
581		thread__put(threads->last_match);
582		threads->last_match = NULL;
583	}
584
585	return NULL;
586}
587
588static struct thread*
589threads__get_last_match(struct threads *threads, struct machine *machine,
590			int pid, int tid)
591{
592	struct thread *th = NULL;
593
594	if (perf_singlethreaded)
595		th = __threads__get_last_match(threads, machine, pid, tid);
596
597	return th;
598}
599
600static void
601__threads__set_last_match(struct threads *threads, struct thread *th)
602{
603	thread__put(threads->last_match);
604	threads->last_match = thread__get(th);
605}
606
607static void
608threads__set_last_match(struct threads *threads, struct thread *th)
609{
610	if (perf_singlethreaded)
611		__threads__set_last_match(threads, th);
612}
613
614/*
615 * Caller must eventually drop thread->refcnt returned with a successful
616 * lookup/new thread inserted.
617 */
618static struct thread *____machine__findnew_thread(struct machine *machine,
619						  struct threads *threads,
620						  pid_t pid, pid_t tid,
621						  bool create)
622{
623	struct rb_node **p = &threads->entries.rb_root.rb_node;
624	struct rb_node *parent = NULL;
625	struct thread *th;
626	struct thread_rb_node *nd;
627	bool leftmost = true;
628
629	th = threads__get_last_match(threads, machine, pid, tid);
630	if (th)
631		return th;
632
633	while (*p != NULL) {
634		parent = *p;
635		th = rb_entry(parent, struct thread_rb_node, rb_node)->thread;
636
637		if (thread__tid(th) == tid) {
638			threads__set_last_match(threads, th);
639			machine__update_thread_pid(machine, th, pid);
640			return thread__get(th);
641		}
642
643		if (tid < thread__tid(th))
644			p = &(*p)->rb_left;
645		else {
646			p = &(*p)->rb_right;
647			leftmost = false;
648		}
649	}
650
651	if (!create)
652		return NULL;
653
654	th = thread__new(pid, tid);
655	if (th == NULL)
656		return NULL;
657
658	nd = malloc(sizeof(*nd));
659	if (nd == NULL) {
660		thread__put(th);
661		return NULL;
662	}
663	nd->thread = th;
664
665	rb_link_node(&nd->rb_node, parent, p);
666	rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost);
667	/*
668	 * We have to initialize maps separately after rb tree is updated.
669	 *
670	 * The reason is that we call machine__findnew_thread within
671	 * thread__init_maps to find the thread leader and that would screwed
672	 * the rb tree.
673	 */
674	if (thread__init_maps(th, machine)) {
675		pr_err("Thread init failed thread %d\n", pid);
676		rb_erase_cached(&nd->rb_node, &threads->entries);
677		RB_CLEAR_NODE(&nd->rb_node);
678		free(nd);
679		thread__put(th);
680		return NULL;
681	}
682	/*
683	 * It is now in the rbtree, get a ref
684	 */
685	threads__set_last_match(threads, th);
686	++threads->nr;
687
688	return thread__get(th);
689}
690
691struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
692{
693	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
694}
695
696struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
697				       pid_t tid)
698{
699	struct threads *threads = machine__threads(machine, tid);
700	struct thread *th;
701
702	down_write(&threads->lock);
703	th = __machine__findnew_thread(machine, pid, tid);
704	up_write(&threads->lock);
705	return th;
706}
707
708struct thread *machine__find_thread(struct machine *machine, pid_t pid,
709				    pid_t tid)
710{
711	struct threads *threads = machine__threads(machine, tid);
712	struct thread *th;
713
714	down_read(&threads->lock);
715	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
716	up_read(&threads->lock);
717	return th;
718}
719
720/*
721 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
722 * So here a single thread is created for that, but actually there is a separate
723 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
724 * is only 1. That causes problems for some tools, requiring workarounds. For
725 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
726 */
727struct thread *machine__idle_thread(struct machine *machine)
728{
729	struct thread *thread = machine__findnew_thread(machine, 0, 0);
730
731	if (!thread || thread__set_comm(thread, "swapper", 0) ||
732	    thread__set_namespaces(thread, 0, NULL))
733		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
734
735	return thread;
736}
737
738struct comm *machine__thread_exec_comm(struct machine *machine,
739				       struct thread *thread)
740{
741	if (machine->comm_exec)
742		return thread__exec_comm(thread);
743	else
744		return thread__comm(thread);
745}
746
747int machine__process_comm_event(struct machine *machine, union perf_event *event,
748				struct perf_sample *sample)
749{
750	struct thread *thread = machine__findnew_thread(machine,
751							event->comm.pid,
752							event->comm.tid);
753	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
754	int err = 0;
755
756	if (exec)
757		machine->comm_exec = true;
758
759	if (dump_trace)
760		perf_event__fprintf_comm(event, stdout);
761
762	if (thread == NULL ||
763	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
764		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
765		err = -1;
766	}
767
768	thread__put(thread);
769
770	return err;
771}
772
773int machine__process_namespaces_event(struct machine *machine __maybe_unused,
774				      union perf_event *event,
775				      struct perf_sample *sample __maybe_unused)
776{
777	struct thread *thread = machine__findnew_thread(machine,
778							event->namespaces.pid,
779							event->namespaces.tid);
780	int err = 0;
781
782	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
783		  "\nWARNING: kernel seems to support more namespaces than perf"
784		  " tool.\nTry updating the perf tool..\n\n");
785
786	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
787		  "\nWARNING: perf tool seems to support more namespaces than"
788		  " the kernel.\nTry updating the kernel..\n\n");
789
790	if (dump_trace)
791		perf_event__fprintf_namespaces(event, stdout);
792
793	if (thread == NULL ||
794	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
795		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
796		err = -1;
797	}
798
799	thread__put(thread);
800
801	return err;
802}
803
804int machine__process_cgroup_event(struct machine *machine,
805				  union perf_event *event,
806				  struct perf_sample *sample __maybe_unused)
807{
808	struct cgroup *cgrp;
809
810	if (dump_trace)
811		perf_event__fprintf_cgroup(event, stdout);
812
813	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
814	if (cgrp == NULL)
815		return -ENOMEM;
816
817	return 0;
818}
819
820int machine__process_lost_event(struct machine *machine __maybe_unused,
821				union perf_event *event, struct perf_sample *sample __maybe_unused)
822{
823	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
824		    event->lost.id, event->lost.lost);
825	return 0;
826}
827
828int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
829					union perf_event *event, struct perf_sample *sample)
830{
831	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
832		    sample->id, event->lost_samples.lost);
833	return 0;
834}
835
836static struct dso *machine__findnew_module_dso(struct machine *machine,
837					       struct kmod_path *m,
838					       const char *filename)
839{
840	struct dso *dso;
841
842	down_write(&machine->dsos.lock);
843
844	dso = __dsos__find(&machine->dsos, m->name, true);
845	if (!dso) {
846		dso = __dsos__addnew(&machine->dsos, m->name);
847		if (dso == NULL)
848			goto out_unlock;
849
850		dso__set_module_info(dso, m, machine);
851		dso__set_long_name(dso, strdup(filename), true);
852		dso->kernel = DSO_SPACE__KERNEL;
853	}
854
855	dso__get(dso);
856out_unlock:
857	up_write(&machine->dsos.lock);
858	return dso;
859}
860
861int machine__process_aux_event(struct machine *machine __maybe_unused,
862			       union perf_event *event)
863{
864	if (dump_trace)
865		perf_event__fprintf_aux(event, stdout);
866	return 0;
867}
868
869int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
870					union perf_event *event)
871{
872	if (dump_trace)
873		perf_event__fprintf_itrace_start(event, stdout);
874	return 0;
875}
876
877int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
878					    union perf_event *event)
879{
880	if (dump_trace)
881		perf_event__fprintf_aux_output_hw_id(event, stdout);
882	return 0;
883}
884
885int machine__process_switch_event(struct machine *machine __maybe_unused,
886				  union perf_event *event)
887{
888	if (dump_trace)
889		perf_event__fprintf_switch(event, stdout);
890	return 0;
891}
892
893static int machine__process_ksymbol_register(struct machine *machine,
894					     union perf_event *event,
895					     struct perf_sample *sample __maybe_unused)
896{
897	struct symbol *sym;
898	struct dso *dso;
899	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
900	bool put_map = false;
901	int err = 0;
902
903	if (!map) {
904		dso = dso__new(event->ksymbol.name);
905
906		if (!dso) {
907			err = -ENOMEM;
908			goto out;
909		}
910		dso->kernel = DSO_SPACE__KERNEL;
911		map = map__new2(0, dso);
912		dso__put(dso);
913		if (!map) {
914			err = -ENOMEM;
915			goto out;
916		}
917		/*
918		 * The inserted map has a get on it, we need to put to release
919		 * the reference count here, but do it after all accesses are
920		 * done.
921		 */
922		put_map = true;
923		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
924			dso->binary_type = DSO_BINARY_TYPE__OOL;
925			dso->data.file_size = event->ksymbol.len;
926			dso__set_loaded(dso);
927		}
928
929		map__set_start(map, event->ksymbol.addr);
930		map__set_end(map, map__start(map) + event->ksymbol.len);
931		err = maps__insert(machine__kernel_maps(machine), map);
932		if (err) {
933			err = -ENOMEM;
934			goto out;
935		}
936
937		dso__set_loaded(dso);
938
939		if (is_bpf_image(event->ksymbol.name)) {
940			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
941			dso__set_long_name(dso, "", false);
942		}
943	} else {
944		dso = map__dso(map);
945	}
946
947	sym = symbol__new(map__map_ip(map, map__start(map)),
948			  event->ksymbol.len,
949			  0, 0, event->ksymbol.name);
950	if (!sym) {
951		err = -ENOMEM;
952		goto out;
953	}
954	dso__insert_symbol(dso, sym);
955out:
956	if (put_map)
957		map__put(map);
958	return err;
959}
960
961static int machine__process_ksymbol_unregister(struct machine *machine,
962					       union perf_event *event,
963					       struct perf_sample *sample __maybe_unused)
964{
965	struct symbol *sym;
966	struct map *map;
967
968	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
969	if (!map)
970		return 0;
971
972	if (RC_CHK_ACCESS(map) != RC_CHK_ACCESS(machine->vmlinux_map))
973		maps__remove(machine__kernel_maps(machine), map);
974	else {
975		struct dso *dso = map__dso(map);
976
977		sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
978		if (sym)
979			dso__delete_symbol(dso, sym);
980	}
981
982	return 0;
983}
984
985int machine__process_ksymbol(struct machine *machine __maybe_unused,
986			     union perf_event *event,
987			     struct perf_sample *sample)
988{
989	if (dump_trace)
990		perf_event__fprintf_ksymbol(event, stdout);
991
992	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
993		return machine__process_ksymbol_unregister(machine, event,
994							   sample);
995	return machine__process_ksymbol_register(machine, event, sample);
996}
997
998int machine__process_text_poke(struct machine *machine, union perf_event *event,
999			       struct perf_sample *sample __maybe_unused)
1000{
1001	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
1002	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1003	struct dso *dso = map ? map__dso(map) : NULL;
1004
1005	if (dump_trace)
1006		perf_event__fprintf_text_poke(event, machine, stdout);
1007
1008	if (!event->text_poke.new_len)
1009		return 0;
1010
1011	if (cpumode != PERF_RECORD_MISC_KERNEL) {
1012		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
1013		return 0;
1014	}
1015
1016	if (dso) {
1017		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
1018		int ret;
1019
1020		/*
1021		 * Kernel maps might be changed when loading symbols so loading
1022		 * must be done prior to using kernel maps.
1023		 */
1024		map__load(map);
1025		ret = dso__data_write_cache_addr(dso, map, machine,
1026						 event->text_poke.addr,
1027						 new_bytes,
1028						 event->text_poke.new_len);
1029		if (ret != event->text_poke.new_len)
1030			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
1031				 event->text_poke.addr);
1032	} else {
1033		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
1034			 event->text_poke.addr);
1035	}
1036
1037	return 0;
1038}
1039
1040static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1041					      const char *filename)
1042{
1043	struct map *map = NULL;
1044	struct kmod_path m;
1045	struct dso *dso;
1046	int err;
1047
1048	if (kmod_path__parse_name(&m, filename))
1049		return NULL;
1050
1051	dso = machine__findnew_module_dso(machine, &m, filename);
1052	if (dso == NULL)
1053		goto out;
1054
1055	map = map__new2(start, dso);
1056	if (map == NULL)
1057		goto out;
1058
1059	err = maps__insert(machine__kernel_maps(machine), map);
1060	/* If maps__insert failed, return NULL. */
1061	if (err) {
1062		map__put(map);
1063		map = NULL;
1064	}
1065out:
1066	/* put the dso here, corresponding to  machine__findnew_module_dso */
1067	dso__put(dso);
1068	zfree(&m.name);
1069	return map;
1070}
1071
1072size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1073{
1074	struct rb_node *nd;
1075	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1076
1077	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1078		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1079		ret += __dsos__fprintf(&pos->dsos.head, fp);
1080	}
1081
1082	return ret;
1083}
1084
1085size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1086				     bool (skip)(struct dso *dso, int parm), int parm)
1087{
1088	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1089}
1090
1091size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1092				     bool (skip)(struct dso *dso, int parm), int parm)
1093{
1094	struct rb_node *nd;
1095	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1096
1097	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1098		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1099		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1100	}
1101	return ret;
1102}
1103
1104size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1105{
1106	int i;
1107	size_t printed = 0;
1108	struct dso *kdso = machine__kernel_dso(machine);
1109
1110	if (kdso->has_build_id) {
1111		char filename[PATH_MAX];
1112		if (dso__build_id_filename(kdso, filename, sizeof(filename),
1113					   false))
1114			printed += fprintf(fp, "[0] %s\n", filename);
1115	}
1116
1117	for (i = 0; i < vmlinux_path__nr_entries; ++i)
1118		printed += fprintf(fp, "[%d] %s\n",
1119				   i + kdso->has_build_id, vmlinux_path[i]);
1120
1121	return printed;
1122}
1123
1124size_t machine__fprintf(struct machine *machine, FILE *fp)
1125{
1126	struct rb_node *nd;
1127	size_t ret;
1128	int i;
1129
1130	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1131		struct threads *threads = &machine->threads[i];
1132
1133		down_read(&threads->lock);
1134
1135		ret = fprintf(fp, "Threads: %u\n", threads->nr);
1136
1137		for (nd = rb_first_cached(&threads->entries); nd;
1138		     nd = rb_next(nd)) {
1139			struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread;
1140
1141			ret += thread__fprintf(pos, fp);
1142		}
1143
1144		up_read(&threads->lock);
1145	}
1146	return ret;
1147}
1148
1149static struct dso *machine__get_kernel(struct machine *machine)
1150{
1151	const char *vmlinux_name = machine->mmap_name;
1152	struct dso *kernel;
1153
1154	if (machine__is_host(machine)) {
1155		if (symbol_conf.vmlinux_name)
1156			vmlinux_name = symbol_conf.vmlinux_name;
1157
1158		kernel = machine__findnew_kernel(machine, vmlinux_name,
1159						 "[kernel]", DSO_SPACE__KERNEL);
1160	} else {
1161		if (symbol_conf.default_guest_vmlinux_name)
1162			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1163
1164		kernel = machine__findnew_kernel(machine, vmlinux_name,
1165						 "[guest.kernel]",
1166						 DSO_SPACE__KERNEL_GUEST);
1167	}
1168
1169	if (kernel != NULL && (!kernel->has_build_id))
1170		dso__read_running_kernel_build_id(kernel, machine);
1171
1172	return kernel;
1173}
1174
1175void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1176				    size_t bufsz)
1177{
1178	if (machine__is_default_guest(machine))
1179		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1180	else
1181		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1182}
1183
1184const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1185
1186/* Figure out the start address of kernel map from /proc/kallsyms.
1187 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1188 * symbol_name if it's not that important.
1189 */
1190static int machine__get_running_kernel_start(struct machine *machine,
1191					     const char **symbol_name,
1192					     u64 *start, u64 *end)
1193{
1194	char filename[PATH_MAX];
1195	int i, err = -1;
1196	const char *name;
1197	u64 addr = 0;
1198
1199	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1200
1201	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1202		return 0;
1203
1204	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1205		err = kallsyms__get_function_start(filename, name, &addr);
1206		if (!err)
1207			break;
1208	}
1209
1210	if (err)
1211		return -1;
1212
1213	if (symbol_name)
1214		*symbol_name = name;
1215
1216	*start = addr;
1217
1218	err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1219	if (err)
1220		err = kallsyms__get_function_start(filename, "_etext", &addr);
1221	if (!err)
1222		*end = addr;
1223
1224	return 0;
1225}
1226
1227int machine__create_extra_kernel_map(struct machine *machine,
1228				     struct dso *kernel,
1229				     struct extra_kernel_map *xm)
1230{
1231	struct kmap *kmap;
1232	struct map *map;
1233	int err;
1234
1235	map = map__new2(xm->start, kernel);
1236	if (!map)
1237		return -ENOMEM;
1238
1239	map__set_end(map, xm->end);
1240	map__set_pgoff(map, xm->pgoff);
1241
1242	kmap = map__kmap(map);
1243
1244	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1245
1246	err = maps__insert(machine__kernel_maps(machine), map);
1247
1248	if (!err) {
1249		pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1250			kmap->name, map__start(map), map__end(map));
1251	}
1252
1253	map__put(map);
1254
1255	return err;
1256}
1257
1258static u64 find_entry_trampoline(struct dso *dso)
1259{
1260	/* Duplicates are removed so lookup all aliases */
1261	const char *syms[] = {
1262		"_entry_trampoline",
1263		"__entry_trampoline_start",
1264		"entry_SYSCALL_64_trampoline",
1265	};
1266	struct symbol *sym = dso__first_symbol(dso);
1267	unsigned int i;
1268
1269	for (; sym; sym = dso__next_symbol(sym)) {
1270		if (sym->binding != STB_GLOBAL)
1271			continue;
1272		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1273			if (!strcmp(sym->name, syms[i]))
1274				return sym->start;
1275		}
1276	}
1277
1278	return 0;
1279}
1280
1281/*
1282 * These values can be used for kernels that do not have symbols for the entry
1283 * trampolines in kallsyms.
1284 */
1285#define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1286#define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1287#define X86_64_ENTRY_TRAMPOLINE		0x6000
1288
1289/* Map x86_64 PTI entry trampolines */
1290int machine__map_x86_64_entry_trampolines(struct machine *machine,
1291					  struct dso *kernel)
1292{
1293	struct maps *kmaps = machine__kernel_maps(machine);
1294	int nr_cpus_avail, cpu;
1295	bool found = false;
1296	struct map_rb_node *rb_node;
1297	u64 pgoff;
1298
1299	/*
1300	 * In the vmlinux case, pgoff is a virtual address which must now be
1301	 * mapped to a vmlinux offset.
1302	 */
1303	maps__for_each_entry(kmaps, rb_node) {
1304		struct map *dest_map, *map = rb_node->map;
1305		struct kmap *kmap = __map__kmap(map);
1306
1307		if (!kmap || !is_entry_trampoline(kmap->name))
1308			continue;
1309
1310		dest_map = maps__find(kmaps, map__pgoff(map));
1311		if (dest_map != map)
1312			map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1313		found = true;
1314	}
1315	if (found || machine->trampolines_mapped)
1316		return 0;
1317
1318	pgoff = find_entry_trampoline(kernel);
1319	if (!pgoff)
1320		return 0;
1321
1322	nr_cpus_avail = machine__nr_cpus_avail(machine);
1323
1324	/* Add a 1 page map for each CPU's entry trampoline */
1325	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1326		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1327			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1328			 X86_64_ENTRY_TRAMPOLINE;
1329		struct extra_kernel_map xm = {
1330			.start = va,
1331			.end   = va + page_size,
1332			.pgoff = pgoff,
1333		};
1334
1335		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1336
1337		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1338			return -1;
1339	}
1340
1341	machine->trampolines_mapped = nr_cpus_avail;
1342
1343	return 0;
1344}
1345
1346int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1347					     struct dso *kernel __maybe_unused)
1348{
1349	return 0;
1350}
1351
1352static int
1353__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1354{
1355	/* In case of renewal the kernel map, destroy previous one */
1356	machine__destroy_kernel_maps(machine);
1357
1358	map__put(machine->vmlinux_map);
1359	machine->vmlinux_map = map__new2(0, kernel);
1360	if (machine->vmlinux_map == NULL)
1361		return -ENOMEM;
1362
1363	map__set_map_ip(machine->vmlinux_map, identity__map_ip);
1364	map__set_unmap_ip(machine->vmlinux_map, identity__map_ip);
1365	return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1366}
1367
1368void machine__destroy_kernel_maps(struct machine *machine)
1369{
1370	struct kmap *kmap;
1371	struct map *map = machine__kernel_map(machine);
1372
1373	if (map == NULL)
1374		return;
1375
1376	kmap = map__kmap(map);
1377	maps__remove(machine__kernel_maps(machine), map);
1378	if (kmap && kmap->ref_reloc_sym) {
1379		zfree((char **)&kmap->ref_reloc_sym->name);
1380		zfree(&kmap->ref_reloc_sym);
1381	}
1382
1383	map__zput(machine->vmlinux_map);
1384}
1385
1386int machines__create_guest_kernel_maps(struct machines *machines)
1387{
1388	int ret = 0;
1389	struct dirent **namelist = NULL;
1390	int i, items = 0;
1391	char path[PATH_MAX];
1392	pid_t pid;
1393	char *endp;
1394
1395	if (symbol_conf.default_guest_vmlinux_name ||
1396	    symbol_conf.default_guest_modules ||
1397	    symbol_conf.default_guest_kallsyms) {
1398		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1399	}
1400
1401	if (symbol_conf.guestmount) {
1402		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1403		if (items <= 0)
1404			return -ENOENT;
1405		for (i = 0; i < items; i++) {
1406			if (!isdigit(namelist[i]->d_name[0])) {
1407				/* Filter out . and .. */
1408				continue;
1409			}
1410			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1411			if ((*endp != '\0') ||
1412			    (endp == namelist[i]->d_name) ||
1413			    (errno == ERANGE)) {
1414				pr_debug("invalid directory (%s). Skipping.\n",
1415					 namelist[i]->d_name);
1416				continue;
1417			}
1418			sprintf(path, "%s/%s/proc/kallsyms",
1419				symbol_conf.guestmount,
1420				namelist[i]->d_name);
1421			ret = access(path, R_OK);
1422			if (ret) {
1423				pr_debug("Can't access file %s\n", path);
1424				goto failure;
1425			}
1426			machines__create_kernel_maps(machines, pid);
1427		}
1428failure:
1429		free(namelist);
1430	}
1431
1432	return ret;
1433}
1434
1435void machines__destroy_kernel_maps(struct machines *machines)
1436{
1437	struct rb_node *next = rb_first_cached(&machines->guests);
1438
1439	machine__destroy_kernel_maps(&machines->host);
1440
1441	while (next) {
1442		struct machine *pos = rb_entry(next, struct machine, rb_node);
1443
1444		next = rb_next(&pos->rb_node);
1445		rb_erase_cached(&pos->rb_node, &machines->guests);
1446		machine__delete(pos);
1447	}
1448}
1449
1450int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1451{
1452	struct machine *machine = machines__findnew(machines, pid);
1453
1454	if (machine == NULL)
1455		return -1;
1456
1457	return machine__create_kernel_maps(machine);
1458}
1459
1460int machine__load_kallsyms(struct machine *machine, const char *filename)
1461{
1462	struct map *map = machine__kernel_map(machine);
1463	struct dso *dso = map__dso(map);
1464	int ret = __dso__load_kallsyms(dso, filename, map, true);
1465
1466	if (ret > 0) {
1467		dso__set_loaded(dso);
1468		/*
1469		 * Since /proc/kallsyms will have multiple sessions for the
1470		 * kernel, with modules between them, fixup the end of all
1471		 * sections.
1472		 */
1473		maps__fixup_end(machine__kernel_maps(machine));
1474	}
1475
1476	return ret;
1477}
1478
1479int machine__load_vmlinux_path(struct machine *machine)
1480{
1481	struct map *map = machine__kernel_map(machine);
1482	struct dso *dso = map__dso(map);
1483	int ret = dso__load_vmlinux_path(dso, map);
1484
1485	if (ret > 0)
1486		dso__set_loaded(dso);
1487
1488	return ret;
1489}
1490
1491static char *get_kernel_version(const char *root_dir)
1492{
1493	char version[PATH_MAX];
1494	FILE *file;
1495	char *name, *tmp;
1496	const char *prefix = "Linux version ";
1497
1498	sprintf(version, "%s/proc/version", root_dir);
1499	file = fopen(version, "r");
1500	if (!file)
1501		return NULL;
1502
1503	tmp = fgets(version, sizeof(version), file);
1504	fclose(file);
1505	if (!tmp)
1506		return NULL;
1507
1508	name = strstr(version, prefix);
1509	if (!name)
1510		return NULL;
1511	name += strlen(prefix);
1512	tmp = strchr(name, ' ');
1513	if (tmp)
1514		*tmp = '\0';
1515
1516	return strdup(name);
1517}
1518
1519static bool is_kmod_dso(struct dso *dso)
1520{
1521	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1522	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1523}
1524
1525static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1526{
1527	char *long_name;
1528	struct dso *dso;
1529	struct map *map = maps__find_by_name(maps, m->name);
1530
1531	if (map == NULL)
1532		return 0;
1533
1534	long_name = strdup(path);
1535	if (long_name == NULL)
1536		return -ENOMEM;
1537
1538	dso = map__dso(map);
1539	dso__set_long_name(dso, long_name, true);
1540	dso__kernel_module_get_build_id(dso, "");
1541
1542	/*
1543	 * Full name could reveal us kmod compression, so
1544	 * we need to update the symtab_type if needed.
1545	 */
1546	if (m->comp && is_kmod_dso(dso)) {
1547		dso->symtab_type++;
1548		dso->comp = m->comp;
1549	}
1550
1551	return 0;
1552}
1553
1554static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1555{
1556	struct dirent *dent;
1557	DIR *dir = opendir(dir_name);
1558	int ret = 0;
1559
1560	if (!dir) {
1561		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1562		return -1;
1563	}
1564
1565	while ((dent = readdir(dir)) != NULL) {
1566		char path[PATH_MAX];
1567		struct stat st;
1568
1569		/*sshfs might return bad dent->d_type, so we have to stat*/
1570		path__join(path, sizeof(path), dir_name, dent->d_name);
1571		if (stat(path, &st))
1572			continue;
1573
1574		if (S_ISDIR(st.st_mode)) {
1575			if (!strcmp(dent->d_name, ".") ||
1576			    !strcmp(dent->d_name, ".."))
1577				continue;
1578
1579			/* Do not follow top-level source and build symlinks */
1580			if (depth == 0) {
1581				if (!strcmp(dent->d_name, "source") ||
1582				    !strcmp(dent->d_name, "build"))
1583					continue;
1584			}
1585
1586			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1587			if (ret < 0)
1588				goto out;
1589		} else {
1590			struct kmod_path m;
1591
1592			ret = kmod_path__parse_name(&m, dent->d_name);
1593			if (ret)
1594				goto out;
1595
1596			if (m.kmod)
1597				ret = maps__set_module_path(maps, path, &m);
1598
1599			zfree(&m.name);
1600
1601			if (ret)
1602				goto out;
1603		}
1604	}
1605
1606out:
1607	closedir(dir);
1608	return ret;
1609}
1610
1611static int machine__set_modules_path(struct machine *machine)
1612{
1613	char *version;
1614	char modules_path[PATH_MAX];
1615
1616	version = get_kernel_version(machine->root_dir);
1617	if (!version)
1618		return -1;
1619
1620	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1621		 machine->root_dir, version);
1622	free(version);
1623
1624	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1625}
1626int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1627				u64 *size __maybe_unused,
1628				const char *name __maybe_unused)
1629{
1630	return 0;
1631}
1632
1633static int machine__create_module(void *arg, const char *name, u64 start,
1634				  u64 size)
1635{
1636	struct machine *machine = arg;
1637	struct map *map;
1638
1639	if (arch__fix_module_text_start(&start, &size, name) < 0)
1640		return -1;
1641
1642	map = machine__addnew_module_map(machine, start, name);
1643	if (map == NULL)
1644		return -1;
1645	map__set_end(map, start + size);
1646
1647	dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1648	map__put(map);
1649	return 0;
1650}
1651
1652static int machine__create_modules(struct machine *machine)
1653{
1654	const char *modules;
1655	char path[PATH_MAX];
1656
1657	if (machine__is_default_guest(machine)) {
1658		modules = symbol_conf.default_guest_modules;
1659	} else {
1660		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1661		modules = path;
1662	}
1663
1664	if (symbol__restricted_filename(modules, "/proc/modules"))
1665		return -1;
1666
1667	if (modules__parse(modules, machine, machine__create_module))
1668		return -1;
1669
1670	if (!machine__set_modules_path(machine))
1671		return 0;
1672
1673	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1674
1675	return 0;
1676}
1677
1678static void machine__set_kernel_mmap(struct machine *machine,
1679				     u64 start, u64 end)
1680{
1681	map__set_start(machine->vmlinux_map, start);
1682	map__set_end(machine->vmlinux_map, end);
1683	/*
1684	 * Be a bit paranoid here, some perf.data file came with
1685	 * a zero sized synthesized MMAP event for the kernel.
1686	 */
1687	if (start == 0 && end == 0)
1688		map__set_end(machine->vmlinux_map, ~0ULL);
1689}
1690
1691static int machine__update_kernel_mmap(struct machine *machine,
1692				     u64 start, u64 end)
1693{
1694	struct map *orig, *updated;
1695	int err;
1696
1697	orig = machine->vmlinux_map;
1698	updated = map__get(orig);
1699
1700	machine->vmlinux_map = updated;
1701	machine__set_kernel_mmap(machine, start, end);
1702	maps__remove(machine__kernel_maps(machine), orig);
1703	err = maps__insert(machine__kernel_maps(machine), updated);
1704	map__put(orig);
1705
1706	return err;
1707}
1708
1709int machine__create_kernel_maps(struct machine *machine)
1710{
1711	struct dso *kernel = machine__get_kernel(machine);
1712	const char *name = NULL;
1713	u64 start = 0, end = ~0ULL;
1714	int ret;
1715
1716	if (kernel == NULL)
1717		return -1;
1718
1719	ret = __machine__create_kernel_maps(machine, kernel);
1720	if (ret < 0)
1721		goto out_put;
1722
1723	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1724		if (machine__is_host(machine))
1725			pr_debug("Problems creating module maps, "
1726				 "continuing anyway...\n");
1727		else
1728			pr_debug("Problems creating module maps for guest %d, "
1729				 "continuing anyway...\n", machine->pid);
1730	}
1731
1732	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1733		if (name &&
1734		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1735			machine__destroy_kernel_maps(machine);
1736			ret = -1;
1737			goto out_put;
1738		}
1739
1740		/*
1741		 * we have a real start address now, so re-order the kmaps
1742		 * assume it's the last in the kmaps
1743		 */
1744		ret = machine__update_kernel_mmap(machine, start, end);
1745		if (ret < 0)
1746			goto out_put;
1747	}
1748
1749	if (machine__create_extra_kernel_maps(machine, kernel))
1750		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1751
1752	if (end == ~0ULL) {
1753		/* update end address of the kernel map using adjacent module address */
1754		struct map_rb_node *rb_node = maps__find_node(machine__kernel_maps(machine),
1755							machine__kernel_map(machine));
1756		struct map_rb_node *next = map_rb_node__next(rb_node);
1757
1758		if (next)
1759			machine__set_kernel_mmap(machine, start, map__start(next->map));
1760	}
1761
1762out_put:
1763	dso__put(kernel);
1764	return ret;
1765}
1766
1767static bool machine__uses_kcore(struct machine *machine)
1768{
1769	struct dso *dso;
1770
1771	list_for_each_entry(dso, &machine->dsos.head, node) {
1772		if (dso__is_kcore(dso))
1773			return true;
1774	}
1775
1776	return false;
1777}
1778
1779static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1780					     struct extra_kernel_map *xm)
1781{
1782	return machine__is(machine, "x86_64") &&
1783	       is_entry_trampoline(xm->name);
1784}
1785
1786static int machine__process_extra_kernel_map(struct machine *machine,
1787					     struct extra_kernel_map *xm)
1788{
1789	struct dso *kernel = machine__kernel_dso(machine);
1790
1791	if (kernel == NULL)
1792		return -1;
1793
1794	return machine__create_extra_kernel_map(machine, kernel, xm);
1795}
1796
1797static int machine__process_kernel_mmap_event(struct machine *machine,
1798					      struct extra_kernel_map *xm,
1799					      struct build_id *bid)
1800{
1801	enum dso_space_type dso_space;
1802	bool is_kernel_mmap;
1803	const char *mmap_name = machine->mmap_name;
1804
1805	/* If we have maps from kcore then we do not need or want any others */
1806	if (machine__uses_kcore(machine))
1807		return 0;
1808
1809	if (machine__is_host(machine))
1810		dso_space = DSO_SPACE__KERNEL;
1811	else
1812		dso_space = DSO_SPACE__KERNEL_GUEST;
1813
1814	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1815	if (!is_kernel_mmap && !machine__is_host(machine)) {
1816		/*
1817		 * If the event was recorded inside the guest and injected into
1818		 * the host perf.data file, then it will match a host mmap_name,
1819		 * so try that - see machine__set_mmap_name().
1820		 */
1821		mmap_name = "[kernel.kallsyms]";
1822		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1823	}
1824	if (xm->name[0] == '/' ||
1825	    (!is_kernel_mmap && xm->name[0] == '[')) {
1826		struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1827
1828		if (map == NULL)
1829			goto out_problem;
1830
1831		map__set_end(map, map__start(map) + xm->end - xm->start);
1832
1833		if (build_id__is_defined(bid))
1834			dso__set_build_id(map__dso(map), bid);
1835
1836		map__put(map);
1837	} else if (is_kernel_mmap) {
1838		const char *symbol_name = xm->name + strlen(mmap_name);
1839		/*
1840		 * Should be there already, from the build-id table in
1841		 * the header.
1842		 */
1843		struct dso *kernel = NULL;
1844		struct dso *dso;
1845
1846		down_read(&machine->dsos.lock);
1847
1848		list_for_each_entry(dso, &machine->dsos.head, node) {
1849
1850			/*
1851			 * The cpumode passed to is_kernel_module is not the
1852			 * cpumode of *this* event. If we insist on passing
1853			 * correct cpumode to is_kernel_module, we should
1854			 * record the cpumode when we adding this dso to the
1855			 * linked list.
1856			 *
1857			 * However we don't really need passing correct
1858			 * cpumode.  We know the correct cpumode must be kernel
1859			 * mode (if not, we should not link it onto kernel_dsos
1860			 * list).
1861			 *
1862			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1863			 * is_kernel_module() treats it as a kernel cpumode.
1864			 */
1865
1866			if (!dso->kernel ||
1867			    is_kernel_module(dso->long_name,
1868					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1869				continue;
1870
1871
1872			kernel = dso__get(dso);
1873			break;
1874		}
1875
1876		up_read(&machine->dsos.lock);
1877
1878		if (kernel == NULL)
1879			kernel = machine__findnew_dso(machine, machine->mmap_name);
1880		if (kernel == NULL)
1881			goto out_problem;
1882
1883		kernel->kernel = dso_space;
1884		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1885			dso__put(kernel);
1886			goto out_problem;
1887		}
1888
1889		if (strstr(kernel->long_name, "vmlinux"))
1890			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1891
1892		if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1893			dso__put(kernel);
1894			goto out_problem;
1895		}
1896
1897		if (build_id__is_defined(bid))
1898			dso__set_build_id(kernel, bid);
1899
1900		/*
1901		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1902		 * symbol. Effectively having zero here means that at record
1903		 * time /proc/sys/kernel/kptr_restrict was non zero.
1904		 */
1905		if (xm->pgoff != 0) {
1906			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1907							symbol_name,
1908							xm->pgoff);
1909		}
1910
1911		if (machine__is_default_guest(machine)) {
1912			/*
1913			 * preload dso of guest kernel and modules
1914			 */
1915			dso__load(kernel, machine__kernel_map(machine));
1916		}
1917		dso__put(kernel);
1918	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1919		return machine__process_extra_kernel_map(machine, xm);
1920	}
1921	return 0;
1922out_problem:
1923	return -1;
1924}
1925
1926int machine__process_mmap2_event(struct machine *machine,
1927				 union perf_event *event,
1928				 struct perf_sample *sample)
1929{
1930	struct thread *thread;
1931	struct map *map;
1932	struct dso_id dso_id = {
1933		.maj = event->mmap2.maj,
1934		.min = event->mmap2.min,
1935		.ino = event->mmap2.ino,
1936		.ino_generation = event->mmap2.ino_generation,
1937	};
1938	struct build_id __bid, *bid = NULL;
1939	int ret = 0;
1940
1941	if (dump_trace)
1942		perf_event__fprintf_mmap2(event, stdout);
1943
1944	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1945		bid = &__bid;
1946		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1947	}
1948
1949	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1950	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1951		struct extra_kernel_map xm = {
1952			.start = event->mmap2.start,
1953			.end   = event->mmap2.start + event->mmap2.len,
1954			.pgoff = event->mmap2.pgoff,
1955		};
1956
1957		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1958		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1959		if (ret < 0)
1960			goto out_problem;
1961		return 0;
1962	}
1963
1964	thread = machine__findnew_thread(machine, event->mmap2.pid,
1965					event->mmap2.tid);
1966	if (thread == NULL)
1967		goto out_problem;
1968
1969	map = map__new(machine, event->mmap2.start,
1970			event->mmap2.len, event->mmap2.pgoff,
1971			&dso_id, event->mmap2.prot,
1972			event->mmap2.flags, bid,
1973			event->mmap2.filename, thread);
1974
1975	if (map == NULL)
1976		goto out_problem_map;
1977
1978	ret = thread__insert_map(thread, map);
1979	if (ret)
1980		goto out_problem_insert;
1981
1982	thread__put(thread);
1983	map__put(map);
1984	return 0;
1985
1986out_problem_insert:
1987	map__put(map);
1988out_problem_map:
1989	thread__put(thread);
1990out_problem:
1991	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1992	return 0;
1993}
1994
1995int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1996				struct perf_sample *sample)
1997{
1998	struct thread *thread;
1999	struct map *map;
2000	u32 prot = 0;
2001	int ret = 0;
2002
2003	if (dump_trace)
2004		perf_event__fprintf_mmap(event, stdout);
2005
2006	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
2007	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
2008		struct extra_kernel_map xm = {
2009			.start = event->mmap.start,
2010			.end   = event->mmap.start + event->mmap.len,
2011			.pgoff = event->mmap.pgoff,
2012		};
2013
2014		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
2015		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
2016		if (ret < 0)
2017			goto out_problem;
2018		return 0;
2019	}
2020
2021	thread = machine__findnew_thread(machine, event->mmap.pid,
2022					 event->mmap.tid);
2023	if (thread == NULL)
2024		goto out_problem;
2025
2026	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
2027		prot = PROT_EXEC;
2028
2029	map = map__new(machine, event->mmap.start,
2030			event->mmap.len, event->mmap.pgoff,
2031			NULL, prot, 0, NULL, event->mmap.filename, thread);
2032
2033	if (map == NULL)
2034		goto out_problem_map;
2035
2036	ret = thread__insert_map(thread, map);
2037	if (ret)
2038		goto out_problem_insert;
2039
2040	thread__put(thread);
2041	map__put(map);
2042	return 0;
2043
2044out_problem_insert:
2045	map__put(map);
2046out_problem_map:
2047	thread__put(thread);
2048out_problem:
2049	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
2050	return 0;
2051}
2052
2053static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
2054				     struct thread *th, bool lock)
2055{
2056	struct threads *threads = machine__threads(machine, thread__tid(th));
2057
2058	if (!nd)
2059		nd = thread_rb_node__find(th, &threads->entries.rb_root);
2060
2061	if (threads->last_match && RC_CHK_ACCESS(threads->last_match) == RC_CHK_ACCESS(th))
2062		threads__set_last_match(threads, NULL);
2063
2064	if (lock)
2065		down_write(&threads->lock);
2066
2067	BUG_ON(refcount_read(thread__refcnt(th)) == 0);
2068
2069	thread__put(nd->thread);
2070	rb_erase_cached(&nd->rb_node, &threads->entries);
2071	RB_CLEAR_NODE(&nd->rb_node);
2072	--threads->nr;
2073
2074	free(nd);
2075
2076	if (lock)
2077		up_write(&threads->lock);
2078}
2079
2080void machine__remove_thread(struct machine *machine, struct thread *th)
2081{
2082	return __machine__remove_thread(machine, NULL, th, true);
2083}
2084
2085int machine__process_fork_event(struct machine *machine, union perf_event *event,
2086				struct perf_sample *sample)
2087{
2088	struct thread *thread = machine__find_thread(machine,
2089						     event->fork.pid,
2090						     event->fork.tid);
2091	struct thread *parent = machine__findnew_thread(machine,
2092							event->fork.ppid,
2093							event->fork.ptid);
2094	bool do_maps_clone = true;
2095	int err = 0;
2096
2097	if (dump_trace)
2098		perf_event__fprintf_task(event, stdout);
2099
2100	/*
2101	 * There may be an existing thread that is not actually the parent,
2102	 * either because we are processing events out of order, or because the
2103	 * (fork) event that would have removed the thread was lost. Assume the
2104	 * latter case and continue on as best we can.
2105	 */
2106	if (thread__pid(parent) != (pid_t)event->fork.ppid) {
2107		dump_printf("removing erroneous parent thread %d/%d\n",
2108			    thread__pid(parent), thread__tid(parent));
2109		machine__remove_thread(machine, parent);
2110		thread__put(parent);
2111		parent = machine__findnew_thread(machine, event->fork.ppid,
2112						 event->fork.ptid);
2113	}
2114
2115	/* if a thread currently exists for the thread id remove it */
2116	if (thread != NULL) {
2117		machine__remove_thread(machine, thread);
2118		thread__put(thread);
2119	}
2120
2121	thread = machine__findnew_thread(machine, event->fork.pid,
2122					 event->fork.tid);
2123	/*
2124	 * When synthesizing FORK events, we are trying to create thread
2125	 * objects for the already running tasks on the machine.
2126	 *
2127	 * Normally, for a kernel FORK event, we want to clone the parent's
2128	 * maps because that is what the kernel just did.
2129	 *
2130	 * But when synthesizing, this should not be done.  If we do, we end up
2131	 * with overlapping maps as we process the synthesized MMAP2 events that
2132	 * get delivered shortly thereafter.
2133	 *
2134	 * Use the FORK event misc flags in an internal way to signal this
2135	 * situation, so we can elide the map clone when appropriate.
2136	 */
2137	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2138		do_maps_clone = false;
2139
2140	if (thread == NULL || parent == NULL ||
2141	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2142		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2143		err = -1;
2144	}
2145	thread__put(thread);
2146	thread__put(parent);
2147
2148	return err;
2149}
2150
2151int machine__process_exit_event(struct machine *machine, union perf_event *event,
2152				struct perf_sample *sample __maybe_unused)
2153{
2154	struct thread *thread = machine__find_thread(machine,
2155						     event->fork.pid,
2156						     event->fork.tid);
2157
2158	if (dump_trace)
2159		perf_event__fprintf_task(event, stdout);
2160
2161	if (thread != NULL)
2162		thread__put(thread);
2163
2164	return 0;
2165}
2166
2167int machine__process_event(struct machine *machine, union perf_event *event,
2168			   struct perf_sample *sample)
2169{
2170	int ret;
2171
2172	switch (event->header.type) {
2173	case PERF_RECORD_COMM:
2174		ret = machine__process_comm_event(machine, event, sample); break;
2175	case PERF_RECORD_MMAP:
2176		ret = machine__process_mmap_event(machine, event, sample); break;
2177	case PERF_RECORD_NAMESPACES:
2178		ret = machine__process_namespaces_event(machine, event, sample); break;
2179	case PERF_RECORD_CGROUP:
2180		ret = machine__process_cgroup_event(machine, event, sample); break;
2181	case PERF_RECORD_MMAP2:
2182		ret = machine__process_mmap2_event(machine, event, sample); break;
2183	case PERF_RECORD_FORK:
2184		ret = machine__process_fork_event(machine, event, sample); break;
2185	case PERF_RECORD_EXIT:
2186		ret = machine__process_exit_event(machine, event, sample); break;
2187	case PERF_RECORD_LOST:
2188		ret = machine__process_lost_event(machine, event, sample); break;
2189	case PERF_RECORD_AUX:
2190		ret = machine__process_aux_event(machine, event); break;
2191	case PERF_RECORD_ITRACE_START:
2192		ret = machine__process_itrace_start_event(machine, event); break;
2193	case PERF_RECORD_LOST_SAMPLES:
2194		ret = machine__process_lost_samples_event(machine, event, sample); break;
2195	case PERF_RECORD_SWITCH:
2196	case PERF_RECORD_SWITCH_CPU_WIDE:
2197		ret = machine__process_switch_event(machine, event); break;
2198	case PERF_RECORD_KSYMBOL:
2199		ret = machine__process_ksymbol(machine, event, sample); break;
2200	case PERF_RECORD_BPF_EVENT:
2201		ret = machine__process_bpf(machine, event, sample); break;
2202	case PERF_RECORD_TEXT_POKE:
2203		ret = machine__process_text_poke(machine, event, sample); break;
2204	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2205		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2206	default:
2207		ret = -1;
2208		break;
2209	}
2210
2211	return ret;
2212}
2213
2214static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2215{
2216	if (!regexec(regex, sym->name, 0, NULL, 0))
2217		return true;
2218	return false;
2219}
2220
2221static void ip__resolve_ams(struct thread *thread,
2222			    struct addr_map_symbol *ams,
2223			    u64 ip)
2224{
2225	struct addr_location al;
2226
2227	addr_location__init(&al);
2228	/*
2229	 * We cannot use the header.misc hint to determine whether a
2230	 * branch stack address is user, kernel, guest, hypervisor.
2231	 * Branches may straddle the kernel/user/hypervisor boundaries.
2232	 * Thus, we have to try consecutively until we find a match
2233	 * or else, the symbol is unknown
2234	 */
2235	thread__find_cpumode_addr_location(thread, ip, &al);
2236
2237	ams->addr = ip;
2238	ams->al_addr = al.addr;
2239	ams->al_level = al.level;
2240	ams->ms.maps = maps__get(al.maps);
2241	ams->ms.sym = al.sym;
2242	ams->ms.map = map__get(al.map);
2243	ams->phys_addr = 0;
2244	ams->data_page_size = 0;
2245	addr_location__exit(&al);
2246}
2247
2248static void ip__resolve_data(struct thread *thread,
2249			     u8 m, struct addr_map_symbol *ams,
2250			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2251{
2252	struct addr_location al;
2253
2254	addr_location__init(&al);
2255
2256	thread__find_symbol(thread, m, addr, &al);
2257
2258	ams->addr = addr;
2259	ams->al_addr = al.addr;
2260	ams->al_level = al.level;
2261	ams->ms.maps = maps__get(al.maps);
2262	ams->ms.sym = al.sym;
2263	ams->ms.map = map__get(al.map);
2264	ams->phys_addr = phys_addr;
2265	ams->data_page_size = daddr_page_size;
2266	addr_location__exit(&al);
2267}
2268
2269struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2270				     struct addr_location *al)
2271{
2272	struct mem_info *mi = mem_info__new();
2273
2274	if (!mi)
2275		return NULL;
2276
2277	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2278	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2279			 sample->addr, sample->phys_addr,
2280			 sample->data_page_size);
2281	mi->data_src.val = sample->data_src;
2282
2283	return mi;
2284}
2285
2286static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2287{
2288	struct map *map = ms->map;
2289	char *srcline = NULL;
2290	struct dso *dso;
2291
2292	if (!map || callchain_param.key == CCKEY_FUNCTION)
2293		return srcline;
2294
2295	dso = map__dso(map);
2296	srcline = srcline__tree_find(&dso->srclines, ip);
2297	if (!srcline) {
2298		bool show_sym = false;
2299		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2300
2301		srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2302				      ms->sym, show_sym, show_addr, ip);
2303		srcline__tree_insert(&dso->srclines, ip, srcline);
2304	}
2305
2306	return srcline;
2307}
2308
2309struct iterations {
2310	int nr_loop_iter;
2311	u64 cycles;
2312};
2313
2314static int add_callchain_ip(struct thread *thread,
2315			    struct callchain_cursor *cursor,
2316			    struct symbol **parent,
2317			    struct addr_location *root_al,
2318			    u8 *cpumode,
2319			    u64 ip,
2320			    bool branch,
2321			    struct branch_flags *flags,
2322			    struct iterations *iter,
2323			    u64 branch_from)
2324{
2325	struct map_symbol ms = {};
2326	struct addr_location al;
2327	int nr_loop_iter = 0, err = 0;
2328	u64 iter_cycles = 0;
2329	const char *srcline = NULL;
2330
2331	addr_location__init(&al);
2332	al.filtered = 0;
2333	al.sym = NULL;
2334	al.srcline = NULL;
2335	if (!cpumode) {
2336		thread__find_cpumode_addr_location(thread, ip, &al);
2337	} else {
2338		if (ip >= PERF_CONTEXT_MAX) {
2339			switch (ip) {
2340			case PERF_CONTEXT_HV:
2341				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2342				break;
2343			case PERF_CONTEXT_KERNEL:
2344				*cpumode = PERF_RECORD_MISC_KERNEL;
2345				break;
2346			case PERF_CONTEXT_USER:
2347				*cpumode = PERF_RECORD_MISC_USER;
2348				break;
2349			default:
2350				pr_debug("invalid callchain context: "
2351					 "%"PRId64"\n", (s64) ip);
2352				/*
2353				 * It seems the callchain is corrupted.
2354				 * Discard all.
2355				 */
2356				callchain_cursor_reset(cursor);
2357				err = 1;
2358				goto out;
2359			}
2360			goto out;
2361		}
2362		thread__find_symbol(thread, *cpumode, ip, &al);
2363	}
2364
2365	if (al.sym != NULL) {
2366		if (perf_hpp_list.parent && !*parent &&
2367		    symbol__match_regex(al.sym, &parent_regex))
2368			*parent = al.sym;
2369		else if (have_ignore_callees && root_al &&
2370		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2371			/* Treat this symbol as the root,
2372			   forgetting its callees. */
2373			addr_location__copy(root_al, &al);
2374			callchain_cursor_reset(cursor);
2375		}
2376	}
2377
2378	if (symbol_conf.hide_unresolved && al.sym == NULL)
2379		goto out;
2380
2381	if (iter) {
2382		nr_loop_iter = iter->nr_loop_iter;
2383		iter_cycles = iter->cycles;
2384	}
2385
2386	ms.maps = maps__get(al.maps);
2387	ms.map = map__get(al.map);
2388	ms.sym = al.sym;
2389	srcline = callchain_srcline(&ms, al.addr);
2390	err = callchain_cursor_append(cursor, ip, &ms,
2391				      branch, flags, nr_loop_iter,
2392				      iter_cycles, branch_from, srcline);
2393out:
2394	addr_location__exit(&al);
2395	maps__put(ms.maps);
2396	map__put(ms.map);
2397	return err;
2398}
2399
2400struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2401					   struct addr_location *al)
2402{
2403	unsigned int i;
2404	const struct branch_stack *bs = sample->branch_stack;
2405	struct branch_entry *entries = perf_sample__branch_entries(sample);
2406	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2407
2408	if (!bi)
2409		return NULL;
2410
2411	for (i = 0; i < bs->nr; i++) {
2412		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2413		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2414		bi[i].flags = entries[i].flags;
2415	}
2416	return bi;
2417}
2418
2419static void save_iterations(struct iterations *iter,
2420			    struct branch_entry *be, int nr)
2421{
2422	int i;
2423
2424	iter->nr_loop_iter++;
2425	iter->cycles = 0;
2426
2427	for (i = 0; i < nr; i++)
2428		iter->cycles += be[i].flags.cycles;
2429}
2430
2431#define CHASHSZ 127
2432#define CHASHBITS 7
2433#define NO_ENTRY 0xff
2434
2435#define PERF_MAX_BRANCH_DEPTH 127
2436
2437/* Remove loops. */
2438static int remove_loops(struct branch_entry *l, int nr,
2439			struct iterations *iter)
2440{
2441	int i, j, off;
2442	unsigned char chash[CHASHSZ];
2443
2444	memset(chash, NO_ENTRY, sizeof(chash));
2445
2446	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2447
2448	for (i = 0; i < nr; i++) {
2449		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2450
2451		/* no collision handling for now */
2452		if (chash[h] == NO_ENTRY) {
2453			chash[h] = i;
2454		} else if (l[chash[h]].from == l[i].from) {
2455			bool is_loop = true;
2456			/* check if it is a real loop */
2457			off = 0;
2458			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2459				if (l[j].from != l[i + off].from) {
2460					is_loop = false;
2461					break;
2462				}
2463			if (is_loop) {
2464				j = nr - (i + off);
2465				if (j > 0) {
2466					save_iterations(iter + i + off,
2467						l + i, off);
2468
2469					memmove(iter + i, iter + i + off,
2470						j * sizeof(*iter));
2471
2472					memmove(l + i, l + i + off,
2473						j * sizeof(*l));
2474				}
2475
2476				nr -= off;
2477			}
2478		}
2479	}
2480	return nr;
2481}
2482
2483static int lbr_callchain_add_kernel_ip(struct thread *thread,
2484				       struct callchain_cursor *cursor,
2485				       struct perf_sample *sample,
2486				       struct symbol **parent,
2487				       struct addr_location *root_al,
2488				       u64 branch_from,
2489				       bool callee, int end)
2490{
2491	struct ip_callchain *chain = sample->callchain;
2492	u8 cpumode = PERF_RECORD_MISC_USER;
2493	int err, i;
2494
2495	if (callee) {
2496		for (i = 0; i < end + 1; i++) {
2497			err = add_callchain_ip(thread, cursor, parent,
2498					       root_al, &cpumode, chain->ips[i],
2499					       false, NULL, NULL, branch_from);
2500			if (err)
2501				return err;
2502		}
2503		return 0;
2504	}
2505
2506	for (i = end; i >= 0; i--) {
2507		err = add_callchain_ip(thread, cursor, parent,
2508				       root_al, &cpumode, chain->ips[i],
2509				       false, NULL, NULL, branch_from);
2510		if (err)
2511			return err;
2512	}
2513
2514	return 0;
2515}
2516
2517static void save_lbr_cursor_node(struct thread *thread,
2518				 struct callchain_cursor *cursor,
2519				 int idx)
2520{
2521	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2522
2523	if (!lbr_stitch)
2524		return;
2525
2526	if (cursor->pos == cursor->nr) {
2527		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2528		return;
2529	}
2530
2531	if (!cursor->curr)
2532		cursor->curr = cursor->first;
2533	else
2534		cursor->curr = cursor->curr->next;
2535	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2536	       sizeof(struct callchain_cursor_node));
2537
2538	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2539	cursor->pos++;
2540}
2541
2542static int lbr_callchain_add_lbr_ip(struct thread *thread,
2543				    struct callchain_cursor *cursor,
2544				    struct perf_sample *sample,
2545				    struct symbol **parent,
2546				    struct addr_location *root_al,
2547				    u64 *branch_from,
2548				    bool callee)
2549{
2550	struct branch_stack *lbr_stack = sample->branch_stack;
2551	struct branch_entry *entries = perf_sample__branch_entries(sample);
2552	u8 cpumode = PERF_RECORD_MISC_USER;
2553	int lbr_nr = lbr_stack->nr;
2554	struct branch_flags *flags;
2555	int err, i;
2556	u64 ip;
2557
2558	/*
2559	 * The curr and pos are not used in writing session. They are cleared
2560	 * in callchain_cursor_commit() when the writing session is closed.
2561	 * Using curr and pos to track the current cursor node.
2562	 */
2563	if (thread__lbr_stitch(thread)) {
2564		cursor->curr = NULL;
2565		cursor->pos = cursor->nr;
2566		if (cursor->nr) {
2567			cursor->curr = cursor->first;
2568			for (i = 0; i < (int)(cursor->nr - 1); i++)
2569				cursor->curr = cursor->curr->next;
2570		}
2571	}
2572
2573	if (callee) {
2574		/* Add LBR ip from first entries.to */
2575		ip = entries[0].to;
2576		flags = &entries[0].flags;
2577		*branch_from = entries[0].from;
2578		err = add_callchain_ip(thread, cursor, parent,
2579				       root_al, &cpumode, ip,
2580				       true, flags, NULL,
2581				       *branch_from);
2582		if (err)
2583			return err;
2584
2585		/*
2586		 * The number of cursor node increases.
2587		 * Move the current cursor node.
2588		 * But does not need to save current cursor node for entry 0.
2589		 * It's impossible to stitch the whole LBRs of previous sample.
2590		 */
2591		if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2592			if (!cursor->curr)
2593				cursor->curr = cursor->first;
2594			else
2595				cursor->curr = cursor->curr->next;
2596			cursor->pos++;
2597		}
2598
2599		/* Add LBR ip from entries.from one by one. */
2600		for (i = 0; i < lbr_nr; i++) {
2601			ip = entries[i].from;
2602			flags = &entries[i].flags;
2603			err = add_callchain_ip(thread, cursor, parent,
2604					       root_al, &cpumode, ip,
2605					       true, flags, NULL,
2606					       *branch_from);
2607			if (err)
2608				return err;
2609			save_lbr_cursor_node(thread, cursor, i);
2610		}
2611		return 0;
2612	}
2613
2614	/* Add LBR ip from entries.from one by one. */
2615	for (i = lbr_nr - 1; i >= 0; i--) {
2616		ip = entries[i].from;
2617		flags = &entries[i].flags;
2618		err = add_callchain_ip(thread, cursor, parent,
2619				       root_al, &cpumode, ip,
2620				       true, flags, NULL,
2621				       *branch_from);
2622		if (err)
2623			return err;
2624		save_lbr_cursor_node(thread, cursor, i);
2625	}
2626
2627	if (lbr_nr > 0) {
2628		/* Add LBR ip from first entries.to */
2629		ip = entries[0].to;
2630		flags = &entries[0].flags;
2631		*branch_from = entries[0].from;
2632		err = add_callchain_ip(thread, cursor, parent,
2633				root_al, &cpumode, ip,
2634				true, flags, NULL,
2635				*branch_from);
2636		if (err)
2637			return err;
2638	}
2639
2640	return 0;
2641}
2642
2643static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2644					     struct callchain_cursor *cursor)
2645{
2646	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2647	struct callchain_cursor_node *cnode;
2648	struct stitch_list *stitch_node;
2649	int err;
2650
2651	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2652		cnode = &stitch_node->cursor;
2653
2654		err = callchain_cursor_append(cursor, cnode->ip,
2655					      &cnode->ms,
2656					      cnode->branch,
2657					      &cnode->branch_flags,
2658					      cnode->nr_loop_iter,
2659					      cnode->iter_cycles,
2660					      cnode->branch_from,
2661					      cnode->srcline);
2662		if (err)
2663			return err;
2664	}
2665	return 0;
2666}
2667
2668static struct stitch_list *get_stitch_node(struct thread *thread)
2669{
2670	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2671	struct stitch_list *stitch_node;
2672
2673	if (!list_empty(&lbr_stitch->free_lists)) {
2674		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2675					       struct stitch_list, node);
2676		list_del(&stitch_node->node);
2677
2678		return stitch_node;
2679	}
2680
2681	return malloc(sizeof(struct stitch_list));
2682}
2683
2684static bool has_stitched_lbr(struct thread *thread,
2685			     struct perf_sample *cur,
2686			     struct perf_sample *prev,
2687			     unsigned int max_lbr,
2688			     bool callee)
2689{
2690	struct branch_stack *cur_stack = cur->branch_stack;
2691	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2692	struct branch_stack *prev_stack = prev->branch_stack;
2693	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2694	struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2695	int i, j, nr_identical_branches = 0;
2696	struct stitch_list *stitch_node;
2697	u64 cur_base, distance;
2698
2699	if (!cur_stack || !prev_stack)
2700		return false;
2701
2702	/* Find the physical index of the base-of-stack for current sample. */
2703	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2704
2705	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2706						     (max_lbr + prev_stack->hw_idx - cur_base);
2707	/* Previous sample has shorter stack. Nothing can be stitched. */
2708	if (distance + 1 > prev_stack->nr)
2709		return false;
2710
2711	/*
2712	 * Check if there are identical LBRs between two samples.
2713	 * Identical LBRs must have same from, to and flags values. Also,
2714	 * they have to be saved in the same LBR registers (same physical
2715	 * index).
2716	 *
2717	 * Starts from the base-of-stack of current sample.
2718	 */
2719	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2720		if ((prev_entries[i].from != cur_entries[j].from) ||
2721		    (prev_entries[i].to != cur_entries[j].to) ||
2722		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2723			break;
2724		nr_identical_branches++;
2725	}
2726
2727	if (!nr_identical_branches)
2728		return false;
2729
2730	/*
2731	 * Save the LBRs between the base-of-stack of previous sample
2732	 * and the base-of-stack of current sample into lbr_stitch->lists.
2733	 * These LBRs will be stitched later.
2734	 */
2735	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2736
2737		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2738			continue;
2739
2740		stitch_node = get_stitch_node(thread);
2741		if (!stitch_node)
2742			return false;
2743
2744		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2745		       sizeof(struct callchain_cursor_node));
2746
2747		if (callee)
2748			list_add(&stitch_node->node, &lbr_stitch->lists);
2749		else
2750			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2751	}
2752
2753	return true;
2754}
2755
2756static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2757{
2758	if (thread__lbr_stitch(thread))
2759		return true;
2760
2761	thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2762	if (!thread__lbr_stitch(thread))
2763		goto err;
2764
2765	thread__lbr_stitch(thread)->prev_lbr_cursor =
2766		calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2767	if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2768		goto free_lbr_stitch;
2769
2770	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2771	INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2772
2773	return true;
2774
2775free_lbr_stitch:
2776	free(thread__lbr_stitch(thread));
2777	thread__set_lbr_stitch(thread, NULL);
2778err:
2779	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2780	thread__set_lbr_stitch_enable(thread, false);
2781	return false;
2782}
2783
2784/*
2785 * Resolve LBR callstack chain sample
2786 * Return:
2787 * 1 on success get LBR callchain information
2788 * 0 no available LBR callchain information, should try fp
2789 * negative error code on other errors.
2790 */
2791static int resolve_lbr_callchain_sample(struct thread *thread,
2792					struct callchain_cursor *cursor,
2793					struct perf_sample *sample,
2794					struct symbol **parent,
2795					struct addr_location *root_al,
2796					int max_stack,
2797					unsigned int max_lbr)
2798{
2799	bool callee = (callchain_param.order == ORDER_CALLEE);
2800	struct ip_callchain *chain = sample->callchain;
2801	int chain_nr = min(max_stack, (int)chain->nr), i;
2802	struct lbr_stitch *lbr_stitch;
2803	bool stitched_lbr = false;
2804	u64 branch_from = 0;
2805	int err;
2806
2807	for (i = 0; i < chain_nr; i++) {
2808		if (chain->ips[i] == PERF_CONTEXT_USER)
2809			break;
2810	}
2811
2812	/* LBR only affects the user callchain */
2813	if (i == chain_nr)
2814		return 0;
2815
2816	if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2817	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2818		lbr_stitch = thread__lbr_stitch(thread);
2819
2820		stitched_lbr = has_stitched_lbr(thread, sample,
2821						&lbr_stitch->prev_sample,
2822						max_lbr, callee);
2823
2824		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2825			list_replace_init(&lbr_stitch->lists,
2826					  &lbr_stitch->free_lists);
2827		}
2828		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2829	}
2830
2831	if (callee) {
2832		/* Add kernel ip */
2833		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2834						  parent, root_al, branch_from,
2835						  true, i);
2836		if (err)
2837			goto error;
2838
2839		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2840					       root_al, &branch_from, true);
2841		if (err)
2842			goto error;
2843
2844		if (stitched_lbr) {
2845			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2846			if (err)
2847				goto error;
2848		}
2849
2850	} else {
2851		if (stitched_lbr) {
2852			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2853			if (err)
2854				goto error;
2855		}
2856		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2857					       root_al, &branch_from, false);
2858		if (err)
2859			goto error;
2860
2861		/* Add kernel ip */
2862		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2863						  parent, root_al, branch_from,
2864						  false, i);
2865		if (err)
2866			goto error;
2867	}
2868	return 1;
2869
2870error:
2871	return (err < 0) ? err : 0;
2872}
2873
2874static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2875			     struct callchain_cursor *cursor,
2876			     struct symbol **parent,
2877			     struct addr_location *root_al,
2878			     u8 *cpumode, int ent)
2879{
2880	int err = 0;
2881
2882	while (--ent >= 0) {
2883		u64 ip = chain->ips[ent];
2884
2885		if (ip >= PERF_CONTEXT_MAX) {
2886			err = add_callchain_ip(thread, cursor, parent,
2887					       root_al, cpumode, ip,
2888					       false, NULL, NULL, 0);
2889			break;
2890		}
2891	}
2892	return err;
2893}
2894
2895static u64 get_leaf_frame_caller(struct perf_sample *sample,
2896		struct thread *thread, int usr_idx)
2897{
2898	if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2899		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2900	else
2901		return 0;
2902}
2903
2904static int thread__resolve_callchain_sample(struct thread *thread,
2905					    struct callchain_cursor *cursor,
2906					    struct evsel *evsel,
2907					    struct perf_sample *sample,
2908					    struct symbol **parent,
2909					    struct addr_location *root_al,
2910					    int max_stack)
2911{
2912	struct branch_stack *branch = sample->branch_stack;
2913	struct branch_entry *entries = perf_sample__branch_entries(sample);
2914	struct ip_callchain *chain = sample->callchain;
2915	int chain_nr = 0;
2916	u8 cpumode = PERF_RECORD_MISC_USER;
2917	int i, j, err, nr_entries, usr_idx;
2918	int skip_idx = -1;
2919	int first_call = 0;
2920	u64 leaf_frame_caller;
2921
2922	if (chain)
2923		chain_nr = chain->nr;
2924
2925	if (evsel__has_branch_callstack(evsel)) {
2926		struct perf_env *env = evsel__env(evsel);
2927
2928		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2929						   root_al, max_stack,
2930						   !env ? 0 : env->max_branches);
2931		if (err)
2932			return (err < 0) ? err : 0;
2933	}
2934
2935	/*
2936	 * Based on DWARF debug information, some architectures skip
2937	 * a callchain entry saved by the kernel.
2938	 */
2939	skip_idx = arch_skip_callchain_idx(thread, chain);
2940
2941	/*
2942	 * Add branches to call stack for easier browsing. This gives
2943	 * more context for a sample than just the callers.
2944	 *
2945	 * This uses individual histograms of paths compared to the
2946	 * aggregated histograms the normal LBR mode uses.
2947	 *
2948	 * Limitations for now:
2949	 * - No extra filters
2950	 * - No annotations (should annotate somehow)
2951	 */
2952
2953	if (branch && callchain_param.branch_callstack) {
2954		int nr = min(max_stack, (int)branch->nr);
2955		struct branch_entry be[nr];
2956		struct iterations iter[nr];
2957
2958		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2959			pr_warning("corrupted branch chain. skipping...\n");
2960			goto check_calls;
2961		}
2962
2963		for (i = 0; i < nr; i++) {
2964			if (callchain_param.order == ORDER_CALLEE) {
2965				be[i] = entries[i];
2966
2967				if (chain == NULL)
2968					continue;
2969
2970				/*
2971				 * Check for overlap into the callchain.
2972				 * The return address is one off compared to
2973				 * the branch entry. To adjust for this
2974				 * assume the calling instruction is not longer
2975				 * than 8 bytes.
2976				 */
2977				if (i == skip_idx ||
2978				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2979					first_call++;
2980				else if (be[i].from < chain->ips[first_call] &&
2981				    be[i].from >= chain->ips[first_call] - 8)
2982					first_call++;
2983			} else
2984				be[i] = entries[branch->nr - i - 1];
2985		}
2986
2987		memset(iter, 0, sizeof(struct iterations) * nr);
2988		nr = remove_loops(be, nr, iter);
2989
2990		for (i = 0; i < nr; i++) {
2991			err = add_callchain_ip(thread, cursor, parent,
2992					       root_al,
2993					       NULL, be[i].to,
2994					       true, &be[i].flags,
2995					       NULL, be[i].from);
2996
2997			if (!err)
2998				err = add_callchain_ip(thread, cursor, parent, root_al,
2999						       NULL, be[i].from,
3000						       true, &be[i].flags,
3001						       &iter[i], 0);
3002			if (err == -EINVAL)
3003				break;
3004			if (err)
3005				return err;
3006		}
3007
3008		if (chain_nr == 0)
3009			return 0;
3010
3011		chain_nr -= nr;
3012	}
3013
3014check_calls:
3015	if (chain && callchain_param.order != ORDER_CALLEE) {
3016		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
3017					&cpumode, chain->nr - first_call);
3018		if (err)
3019			return (err < 0) ? err : 0;
3020	}
3021	for (i = first_call, nr_entries = 0;
3022	     i < chain_nr && nr_entries < max_stack; i++) {
3023		u64 ip;
3024
3025		if (callchain_param.order == ORDER_CALLEE)
3026			j = i;
3027		else
3028			j = chain->nr - i - 1;
3029
3030#ifdef HAVE_SKIP_CALLCHAIN_IDX
3031		if (j == skip_idx)
3032			continue;
3033#endif
3034		ip = chain->ips[j];
3035		if (ip < PERF_CONTEXT_MAX)
3036                       ++nr_entries;
3037		else if (callchain_param.order != ORDER_CALLEE) {
3038			err = find_prev_cpumode(chain, thread, cursor, parent,
3039						root_al, &cpumode, j);
3040			if (err)
3041				return (err < 0) ? err : 0;
3042			continue;
3043		}
3044
3045		/*
3046		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
3047		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
3048		 * the index will be different in order to add the missing frame
3049		 * at the right place.
3050		 */
3051
3052		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
3053
3054		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
3055
3056			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
3057
3058			/*
3059			 * check if leaf_frame_Caller != ip to not add the same
3060			 * value twice.
3061			 */
3062
3063			if (leaf_frame_caller && leaf_frame_caller != ip) {
3064
3065				err = add_callchain_ip(thread, cursor, parent,
3066					       root_al, &cpumode, leaf_frame_caller,
3067					       false, NULL, NULL, 0);
3068				if (err)
3069					return (err < 0) ? err : 0;
3070			}
3071		}
3072
3073		err = add_callchain_ip(thread, cursor, parent,
3074				       root_al, &cpumode, ip,
3075				       false, NULL, NULL, 0);
3076
3077		if (err)
3078			return (err < 0) ? err : 0;
3079	}
3080
3081	return 0;
3082}
3083
3084static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3085{
3086	struct symbol *sym = ms->sym;
3087	struct map *map = ms->map;
3088	struct inline_node *inline_node;
3089	struct inline_list *ilist;
3090	struct dso *dso;
3091	u64 addr;
3092	int ret = 1;
3093	struct map_symbol ilist_ms;
3094
3095	if (!symbol_conf.inline_name || !map || !sym)
3096		return ret;
3097
3098	addr = map__dso_map_ip(map, ip);
3099	addr = map__rip_2objdump(map, addr);
3100	dso = map__dso(map);
3101
3102	inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
3103	if (!inline_node) {
3104		inline_node = dso__parse_addr_inlines(dso, addr, sym);
3105		if (!inline_node)
3106			return ret;
3107		inlines__tree_insert(&dso->inlined_nodes, inline_node);
3108	}
3109
3110	ilist_ms = (struct map_symbol) {
3111		.maps = maps__get(ms->maps),
3112		.map = map__get(map),
3113	};
3114	list_for_each_entry(ilist, &inline_node->val, list) {
3115		ilist_ms.sym = ilist->symbol;
3116		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3117					      NULL, 0, 0, 0, ilist->srcline);
3118
3119		if (ret != 0)
3120			return ret;
3121	}
3122	map__put(ilist_ms.map);
3123	maps__put(ilist_ms.maps);
3124
3125	return ret;
3126}
3127
3128static int unwind_entry(struct unwind_entry *entry, void *arg)
3129{
3130	struct callchain_cursor *cursor = arg;
3131	const char *srcline = NULL;
3132	u64 addr = entry->ip;
3133
3134	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3135		return 0;
3136
3137	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3138		return 0;
3139
3140	/*
3141	 * Convert entry->ip from a virtual address to an offset in
3142	 * its corresponding binary.
3143	 */
3144	if (entry->ms.map)
3145		addr = map__dso_map_ip(entry->ms.map, entry->ip);
3146
3147	srcline = callchain_srcline(&entry->ms, addr);
3148	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3149				       false, NULL, 0, 0, 0, srcline);
3150}
3151
3152static int thread__resolve_callchain_unwind(struct thread *thread,
3153					    struct callchain_cursor *cursor,
3154					    struct evsel *evsel,
3155					    struct perf_sample *sample,
3156					    int max_stack)
3157{
3158	/* Can we do dwarf post unwind? */
3159	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3160	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3161		return 0;
3162
3163	/* Bail out if nothing was captured. */
3164	if ((!sample->user_regs.regs) ||
3165	    (!sample->user_stack.size))
3166		return 0;
3167
3168	return unwind__get_entries(unwind_entry, cursor,
3169				   thread, sample, max_stack, false);
3170}
3171
3172int thread__resolve_callchain(struct thread *thread,
3173			      struct callchain_cursor *cursor,
3174			      struct evsel *evsel,
3175			      struct perf_sample *sample,
3176			      struct symbol **parent,
3177			      struct addr_location *root_al,
3178			      int max_stack)
3179{
3180	int ret = 0;
3181
3182	if (cursor == NULL)
3183		return -ENOMEM;
3184
3185	callchain_cursor_reset(cursor);
3186
3187	if (callchain_param.order == ORDER_CALLEE) {
3188		ret = thread__resolve_callchain_sample(thread, cursor,
3189						       evsel, sample,
3190						       parent, root_al,
3191						       max_stack);
3192		if (ret)
3193			return ret;
3194		ret = thread__resolve_callchain_unwind(thread, cursor,
3195						       evsel, sample,
3196						       max_stack);
3197	} else {
3198		ret = thread__resolve_callchain_unwind(thread, cursor,
3199						       evsel, sample,
3200						       max_stack);
3201		if (ret)
3202			return ret;
3203		ret = thread__resolve_callchain_sample(thread, cursor,
3204						       evsel, sample,
3205						       parent, root_al,
3206						       max_stack);
3207	}
3208
3209	return ret;
3210}
3211
3212int machine__for_each_thread(struct machine *machine,
3213			     int (*fn)(struct thread *thread, void *p),
3214			     void *priv)
3215{
3216	struct threads *threads;
3217	struct rb_node *nd;
3218	int rc = 0;
3219	int i;
3220
3221	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3222		threads = &machine->threads[i];
3223		for (nd = rb_first_cached(&threads->entries); nd;
3224		     nd = rb_next(nd)) {
3225			struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
3226
3227			rc = fn(trb->thread, priv);
3228			if (rc != 0)
3229				return rc;
3230		}
3231	}
3232	return rc;
3233}
3234
3235int machines__for_each_thread(struct machines *machines,
3236			      int (*fn)(struct thread *thread, void *p),
3237			      void *priv)
3238{
3239	struct rb_node *nd;
3240	int rc = 0;
3241
3242	rc = machine__for_each_thread(&machines->host, fn, priv);
3243	if (rc != 0)
3244		return rc;
3245
3246	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3247		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3248
3249		rc = machine__for_each_thread(machine, fn, priv);
3250		if (rc != 0)
3251			return rc;
3252	}
3253	return rc;
3254}
3255
3256pid_t machine__get_current_tid(struct machine *machine, int cpu)
3257{
3258	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3259		return -1;
3260
3261	return machine->current_tid[cpu];
3262}
3263
3264int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3265			     pid_t tid)
3266{
3267	struct thread *thread;
3268	const pid_t init_val = -1;
3269
3270	if (cpu < 0)
3271		return -EINVAL;
3272
3273	if (realloc_array_as_needed(machine->current_tid,
3274				    machine->current_tid_sz,
3275				    (unsigned int)cpu,
3276				    &init_val))
3277		return -ENOMEM;
3278
3279	machine->current_tid[cpu] = tid;
3280
3281	thread = machine__findnew_thread(machine, pid, tid);
3282	if (!thread)
3283		return -ENOMEM;
3284
3285	thread__set_cpu(thread, cpu);
3286	thread__put(thread);
3287
3288	return 0;
3289}
3290
3291/*
3292 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3293 * machine__normalized_is() if a normalized arch is needed.
3294 */
3295bool machine__is(struct machine *machine, const char *arch)
3296{
3297	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3298}
3299
3300bool machine__normalized_is(struct machine *machine, const char *arch)
3301{
3302	return machine && !strcmp(perf_env__arch(machine->env), arch);
3303}
3304
3305int machine__nr_cpus_avail(struct machine *machine)
3306{
3307	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3308}
3309
3310int machine__get_kernel_start(struct machine *machine)
3311{
3312	struct map *map = machine__kernel_map(machine);
3313	int err = 0;
3314
3315	/*
3316	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3317	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3318	 * all addresses including kernel addresses are less than 2^32.  In
3319	 * that case (32-bit system), if the kernel mapping is unknown, all
3320	 * addresses will be assumed to be in user space - see
3321	 * machine__kernel_ip().
3322	 */
3323	machine->kernel_start = 1ULL << 63;
3324	if (map) {
3325		err = map__load(map);
3326		/*
3327		 * On x86_64, PTI entry trampolines are less than the
3328		 * start of kernel text, but still above 2^63. So leave
3329		 * kernel_start = 1ULL << 63 for x86_64.
3330		 */
3331		if (!err && !machine__is(machine, "x86_64"))
3332			machine->kernel_start = map__start(map);
3333	}
3334	return err;
3335}
3336
3337u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3338{
3339	u8 addr_cpumode = cpumode;
3340	bool kernel_ip;
3341
3342	if (!machine->single_address_space)
3343		goto out;
3344
3345	kernel_ip = machine__kernel_ip(machine, addr);
3346	switch (cpumode) {
3347	case PERF_RECORD_MISC_KERNEL:
3348	case PERF_RECORD_MISC_USER:
3349		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3350					   PERF_RECORD_MISC_USER;
3351		break;
3352	case PERF_RECORD_MISC_GUEST_KERNEL:
3353	case PERF_RECORD_MISC_GUEST_USER:
3354		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3355					   PERF_RECORD_MISC_GUEST_USER;
3356		break;
3357	default:
3358		break;
3359	}
3360out:
3361	return addr_cpumode;
3362}
3363
3364struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3365{
3366	return dsos__findnew_id(&machine->dsos, filename, id);
3367}
3368
3369struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3370{
3371	return machine__findnew_dso_id(machine, filename, NULL);
3372}
3373
3374char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3375{
3376	struct machine *machine = vmachine;
3377	struct map *map;
3378	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3379
3380	if (sym == NULL)
3381		return NULL;
3382
3383	*modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3384	*addrp = map__unmap_ip(map, sym->start);
3385	return sym->name;
3386}
3387
3388int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3389{
3390	struct dso *pos;
3391	int err = 0;
3392
3393	list_for_each_entry(pos, &machine->dsos.head, node) {
3394		if (fn(pos, machine, priv))
3395			err = -1;
3396	}
3397	return err;
3398}
3399
3400int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3401{
3402	struct maps *maps = machine__kernel_maps(machine);
3403	struct map_rb_node *pos;
3404	int err = 0;
3405
3406	maps__for_each_entry(maps, pos) {
3407		err = fn(pos->map, priv);
3408		if (err != 0) {
3409			break;
3410		}
3411	}
3412	return err;
3413}
3414
3415bool machine__is_lock_function(struct machine *machine, u64 addr)
3416{
3417	if (!machine->sched.text_start) {
3418		struct map *kmap;
3419		struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3420
3421		if (!sym) {
3422			/* to avoid retry */
3423			machine->sched.text_start = 1;
3424			return false;
3425		}
3426
3427		machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3428
3429		/* should not fail from here */
3430		sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3431		machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3432
3433		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3434		machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3435
3436		sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3437		machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3438	}
3439
3440	/* failed to get kernel symbols */
3441	if (machine->sched.text_start == 1)
3442		return false;
3443
3444	/* mutex and rwsem functions are in sched text section */
3445	if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3446		return true;
3447
3448	/* spinlock functions are in lock text section */
3449	if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3450		return true;
3451
3452	return false;
3453}
3454