xref: /kernel/linux/linux-6.6/tools/perf/util/cpumap.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2#include <api/fs/fs.h>
3#include "cpumap.h"
4#include "debug.h"
5#include "event.h"
6#include <assert.h>
7#include <dirent.h>
8#include <stdio.h>
9#include <stdlib.h>
10#include <linux/bitmap.h>
11#include "asm/bug.h"
12
13#include <linux/ctype.h>
14#include <linux/zalloc.h>
15#include <internal/cpumap.h>
16
17static struct perf_cpu max_cpu_num;
18static struct perf_cpu max_present_cpu_num;
19static int max_node_num;
20/**
21 * The numa node X as read from /sys/devices/system/node/nodeX indexed by the
22 * CPU number.
23 */
24static int *cpunode_map;
25
26bool perf_record_cpu_map_data__test_bit(int i,
27					const struct perf_record_cpu_map_data *data)
28{
29	int bit_word32 = i / 32;
30	__u32 bit_mask32 = 1U << (i & 31);
31	int bit_word64 = i / 64;
32	__u64 bit_mask64 = ((__u64)1) << (i & 63);
33
34	return (data->mask32_data.long_size == 4)
35		? (bit_word32 < data->mask32_data.nr) &&
36		(data->mask32_data.mask[bit_word32] & bit_mask32) != 0
37		: (bit_word64 < data->mask64_data.nr) &&
38		(data->mask64_data.mask[bit_word64] & bit_mask64) != 0;
39}
40
41/* Read ith mask value from data into the given 64-bit sized bitmap */
42static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data,
43						    int i, unsigned long *bitmap)
44{
45#if __SIZEOF_LONG__ == 8
46	if (data->mask32_data.long_size == 4)
47		bitmap[0] = data->mask32_data.mask[i];
48	else
49		bitmap[0] = data->mask64_data.mask[i];
50#else
51	if (data->mask32_data.long_size == 4) {
52		bitmap[0] = data->mask32_data.mask[i];
53		bitmap[1] = 0;
54	} else {
55#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
56		bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32);
57		bitmap[1] = (unsigned long)data->mask64_data.mask[i];
58#else
59		bitmap[0] = (unsigned long)data->mask64_data.mask[i];
60		bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32);
61#endif
62	}
63#endif
64}
65static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data)
66{
67	struct perf_cpu_map *map;
68
69	map = perf_cpu_map__empty_new(data->cpus_data.nr);
70	if (map) {
71		unsigned i;
72
73		for (i = 0; i < data->cpus_data.nr; i++) {
74			/*
75			 * Special treatment for -1, which is not real cpu number,
76			 * and we need to use (int) -1 to initialize map[i],
77			 * otherwise it would become 65535.
78			 */
79			if (data->cpus_data.cpu[i] == (u16) -1)
80				RC_CHK_ACCESS(map)->map[i].cpu = -1;
81			else
82				RC_CHK_ACCESS(map)->map[i].cpu = (int) data->cpus_data.cpu[i];
83		}
84	}
85
86	return map;
87}
88
89static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data)
90{
91	DECLARE_BITMAP(local_copy, 64);
92	int weight = 0, mask_nr = data->mask32_data.nr;
93	struct perf_cpu_map *map;
94
95	for (int i = 0; i < mask_nr; i++) {
96		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
97		weight += bitmap_weight(local_copy, 64);
98	}
99
100	map = perf_cpu_map__empty_new(weight);
101	if (!map)
102		return NULL;
103
104	for (int i = 0, j = 0; i < mask_nr; i++) {
105		int cpus_per_i = (i * data->mask32_data.long_size  * BITS_PER_BYTE);
106		int cpu;
107
108		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
109		for_each_set_bit(cpu, local_copy, 64)
110			RC_CHK_ACCESS(map)->map[j++].cpu = cpu + cpus_per_i;
111	}
112	return map;
113
114}
115
116static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data)
117{
118	struct perf_cpu_map *map;
119	unsigned int i = 0;
120
121	map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu -
122				data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu);
123	if (!map)
124		return NULL;
125
126	if (data->range_cpu_data.any_cpu)
127		RC_CHK_ACCESS(map)->map[i++].cpu = -1;
128
129	for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu;
130	     i++, cpu++)
131		RC_CHK_ACCESS(map)->map[i].cpu = cpu;
132
133	return map;
134}
135
136struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data)
137{
138	switch (data->type) {
139	case PERF_CPU_MAP__CPUS:
140		return cpu_map__from_entries(data);
141	case PERF_CPU_MAP__MASK:
142		return cpu_map__from_mask(data);
143	case PERF_CPU_MAP__RANGE_CPUS:
144		return cpu_map__from_range(data);
145	default:
146		pr_err("cpu_map__new_data unknown type %d\n", data->type);
147		return NULL;
148	}
149}
150
151size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp)
152{
153#define BUFSIZE 1024
154	char buf[BUFSIZE];
155
156	cpu_map__snprint(map, buf, sizeof(buf));
157	return fprintf(fp, "%s\n", buf);
158#undef BUFSIZE
159}
160
161struct perf_cpu_map *perf_cpu_map__empty_new(int nr)
162{
163	struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr);
164
165	if (cpus != NULL) {
166		for (int i = 0; i < nr; i++)
167			RC_CHK_ACCESS(cpus)->map[i].cpu = -1;
168	}
169
170	return cpus;
171}
172
173struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr)
174{
175	struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr);
176
177	if (cpus != NULL) {
178		int i;
179
180		cpus->nr = nr;
181		for (i = 0; i < nr; i++)
182			cpus->map[i] = aggr_cpu_id__empty();
183
184		refcount_set(&cpus->refcnt, 1);
185	}
186
187	return cpus;
188}
189
190static int cpu__get_topology_int(int cpu, const char *name, int *value)
191{
192	char path[PATH_MAX];
193
194	snprintf(path, PATH_MAX,
195		"devices/system/cpu/cpu%d/topology/%s", cpu, name);
196
197	return sysfs__read_int(path, value);
198}
199
200int cpu__get_socket_id(struct perf_cpu cpu)
201{
202	int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value);
203	return ret ?: value;
204}
205
206struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused)
207{
208	struct aggr_cpu_id id = aggr_cpu_id__empty();
209
210	id.socket = cpu__get_socket_id(cpu);
211	return id;
212}
213
214static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer)
215{
216	struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer;
217	struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer;
218
219	if (a->node != b->node)
220		return a->node - b->node;
221	else if (a->socket != b->socket)
222		return a->socket - b->socket;
223	else if (a->die != b->die)
224		return a->die - b->die;
225	else if (a->cache_lvl != b->cache_lvl)
226		return a->cache_lvl - b->cache_lvl;
227	else if (a->cache != b->cache)
228		return a->cache - b->cache;
229	else if (a->core != b->core)
230		return a->core - b->core;
231	else
232		return a->thread_idx - b->thread_idx;
233}
234
235struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus,
236				       aggr_cpu_id_get_t get_id,
237				       void *data, bool needs_sort)
238{
239	int idx;
240	struct perf_cpu cpu;
241	struct cpu_aggr_map *c = cpu_aggr_map__empty_new(perf_cpu_map__nr(cpus));
242
243	if (!c)
244		return NULL;
245
246	/* Reset size as it may only be partially filled */
247	c->nr = 0;
248
249	perf_cpu_map__for_each_cpu(cpu, idx, cpus) {
250		bool duplicate = false;
251		struct aggr_cpu_id cpu_id = get_id(cpu, data);
252
253		for (int j = 0; j < c->nr; j++) {
254			if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) {
255				duplicate = true;
256				break;
257			}
258		}
259		if (!duplicate) {
260			c->map[c->nr] = cpu_id;
261			c->nr++;
262		}
263	}
264	/* Trim. */
265	if (c->nr != perf_cpu_map__nr(cpus)) {
266		struct cpu_aggr_map *trimmed_c =
267			realloc(c,
268				sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr);
269
270		if (trimmed_c)
271			c = trimmed_c;
272	}
273
274	/* ensure we process id in increasing order */
275	if (needs_sort)
276		qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp);
277
278	return c;
279
280}
281
282int cpu__get_die_id(struct perf_cpu cpu)
283{
284	int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value);
285
286	return ret ?: value;
287}
288
289struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data)
290{
291	struct aggr_cpu_id id;
292	int die;
293
294	die = cpu__get_die_id(cpu);
295	/* There is no die_id on legacy system. */
296	if (die == -1)
297		die = 0;
298
299	/*
300	 * die_id is relative to socket, so start
301	 * with the socket ID and then add die to
302	 * make a unique ID.
303	 */
304	id = aggr_cpu_id__socket(cpu, data);
305	if (aggr_cpu_id__is_empty(&id))
306		return id;
307
308	id.die = die;
309	return id;
310}
311
312int cpu__get_core_id(struct perf_cpu cpu)
313{
314	int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value);
315	return ret ?: value;
316}
317
318struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data)
319{
320	struct aggr_cpu_id id;
321	int core = cpu__get_core_id(cpu);
322
323	/* aggr_cpu_id__die returns a struct with socket and die set. */
324	id = aggr_cpu_id__die(cpu, data);
325	if (aggr_cpu_id__is_empty(&id))
326		return id;
327
328	/*
329	 * core_id is relative to socket and die, we need a global id.
330	 * So we combine the result from cpu_map__get_die with the core id
331	 */
332	id.core = core;
333	return id;
334
335}
336
337struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data)
338{
339	struct aggr_cpu_id id;
340
341	/* aggr_cpu_id__core returns a struct with socket, die and core set. */
342	id = aggr_cpu_id__core(cpu, data);
343	if (aggr_cpu_id__is_empty(&id))
344		return id;
345
346	id.cpu = cpu;
347	return id;
348
349}
350
351struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused)
352{
353	struct aggr_cpu_id id = aggr_cpu_id__empty();
354
355	id.node = cpu__get_node(cpu);
356	return id;
357}
358
359struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused)
360{
361	struct aggr_cpu_id id = aggr_cpu_id__empty();
362
363	/* it always aggregates to the cpu 0 */
364	cpu.cpu = 0;
365	id.cpu = cpu;
366	return id;
367}
368
369/* setup simple routines to easily access node numbers given a cpu number */
370static int get_max_num(char *path, int *max)
371{
372	size_t num;
373	char *buf;
374	int err = 0;
375
376	if (filename__read_str(path, &buf, &num))
377		return -1;
378
379	buf[num] = '\0';
380
381	/* start on the right, to find highest node num */
382	while (--num) {
383		if ((buf[num] == ',') || (buf[num] == '-')) {
384			num++;
385			break;
386		}
387	}
388	if (sscanf(&buf[num], "%d", max) < 1) {
389		err = -1;
390		goto out;
391	}
392
393	/* convert from 0-based to 1-based */
394	(*max)++;
395
396out:
397	free(buf);
398	return err;
399}
400
401/* Determine highest possible cpu in the system for sparse allocation */
402static void set_max_cpu_num(void)
403{
404	const char *mnt;
405	char path[PATH_MAX];
406	int ret = -1;
407
408	/* set up default */
409	max_cpu_num.cpu = 4096;
410	max_present_cpu_num.cpu = 4096;
411
412	mnt = sysfs__mountpoint();
413	if (!mnt)
414		goto out;
415
416	/* get the highest possible cpu number for a sparse allocation */
417	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
418	if (ret >= PATH_MAX) {
419		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
420		goto out;
421	}
422
423	ret = get_max_num(path, &max_cpu_num.cpu);
424	if (ret)
425		goto out;
426
427	/* get the highest present cpu number for a sparse allocation */
428	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
429	if (ret >= PATH_MAX) {
430		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
431		goto out;
432	}
433
434	ret = get_max_num(path, &max_present_cpu_num.cpu);
435
436out:
437	if (ret)
438		pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu);
439}
440
441/* Determine highest possible node in the system for sparse allocation */
442static void set_max_node_num(void)
443{
444	const char *mnt;
445	char path[PATH_MAX];
446	int ret = -1;
447
448	/* set up default */
449	max_node_num = 8;
450
451	mnt = sysfs__mountpoint();
452	if (!mnt)
453		goto out;
454
455	/* get the highest possible cpu number for a sparse allocation */
456	ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
457	if (ret >= PATH_MAX) {
458		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
459		goto out;
460	}
461
462	ret = get_max_num(path, &max_node_num);
463
464out:
465	if (ret)
466		pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
467}
468
469int cpu__max_node(void)
470{
471	if (unlikely(!max_node_num))
472		set_max_node_num();
473
474	return max_node_num;
475}
476
477struct perf_cpu cpu__max_cpu(void)
478{
479	if (unlikely(!max_cpu_num.cpu))
480		set_max_cpu_num();
481
482	return max_cpu_num;
483}
484
485struct perf_cpu cpu__max_present_cpu(void)
486{
487	if (unlikely(!max_present_cpu_num.cpu))
488		set_max_cpu_num();
489
490	return max_present_cpu_num;
491}
492
493
494int cpu__get_node(struct perf_cpu cpu)
495{
496	if (unlikely(cpunode_map == NULL)) {
497		pr_debug("cpu_map not initialized\n");
498		return -1;
499	}
500
501	return cpunode_map[cpu.cpu];
502}
503
504static int init_cpunode_map(void)
505{
506	int i;
507
508	set_max_cpu_num();
509	set_max_node_num();
510
511	cpunode_map = calloc(max_cpu_num.cpu, sizeof(int));
512	if (!cpunode_map) {
513		pr_err("%s: calloc failed\n", __func__);
514		return -1;
515	}
516
517	for (i = 0; i < max_cpu_num.cpu; i++)
518		cpunode_map[i] = -1;
519
520	return 0;
521}
522
523int cpu__setup_cpunode_map(void)
524{
525	struct dirent *dent1, *dent2;
526	DIR *dir1, *dir2;
527	unsigned int cpu, mem;
528	char buf[PATH_MAX];
529	char path[PATH_MAX];
530	const char *mnt;
531	int n;
532
533	/* initialize globals */
534	if (init_cpunode_map())
535		return -1;
536
537	mnt = sysfs__mountpoint();
538	if (!mnt)
539		return 0;
540
541	n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
542	if (n >= PATH_MAX) {
543		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
544		return -1;
545	}
546
547	dir1 = opendir(path);
548	if (!dir1)
549		return 0;
550
551	/* walk tree and setup map */
552	while ((dent1 = readdir(dir1)) != NULL) {
553		if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
554			continue;
555
556		n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
557		if (n >= PATH_MAX) {
558			pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
559			continue;
560		}
561
562		dir2 = opendir(buf);
563		if (!dir2)
564			continue;
565		while ((dent2 = readdir(dir2)) != NULL) {
566			if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
567				continue;
568			cpunode_map[cpu] = mem;
569		}
570		closedir(dir2);
571	}
572	closedir(dir1);
573	return 0;
574}
575
576size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size)
577{
578	int i, start = -1;
579	bool first = true;
580	size_t ret = 0;
581
582#define COMMA first ? "" : ","
583
584	for (i = 0; i < perf_cpu_map__nr(map) + 1; i++) {
585		struct perf_cpu cpu = { .cpu = INT_MAX };
586		bool last = i == perf_cpu_map__nr(map);
587
588		if (!last)
589			cpu = perf_cpu_map__cpu(map, i);
590
591		if (start == -1) {
592			start = i;
593			if (last) {
594				ret += snprintf(buf + ret, size - ret,
595						"%s%d", COMMA,
596						perf_cpu_map__cpu(map, i).cpu);
597			}
598		} else if (((i - start) != (cpu.cpu - perf_cpu_map__cpu(map, start).cpu)) || last) {
599			int end = i - 1;
600
601			if (start == end) {
602				ret += snprintf(buf + ret, size - ret,
603						"%s%d", COMMA,
604						perf_cpu_map__cpu(map, start).cpu);
605			} else {
606				ret += snprintf(buf + ret, size - ret,
607						"%s%d-%d", COMMA,
608						perf_cpu_map__cpu(map, start).cpu, perf_cpu_map__cpu(map, end).cpu);
609			}
610			first = false;
611			start = i;
612		}
613	}
614
615#undef COMMA
616
617	pr_debug2("cpumask list: %s\n", buf);
618	return ret;
619}
620
621static char hex_char(unsigned char val)
622{
623	if (val < 10)
624		return val + '0';
625	if (val < 16)
626		return val - 10 + 'a';
627	return '?';
628}
629
630size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size)
631{
632	int i, cpu;
633	char *ptr = buf;
634	unsigned char *bitmap;
635	struct perf_cpu last_cpu = perf_cpu_map__cpu(map, perf_cpu_map__nr(map) - 1);
636
637	if (buf == NULL)
638		return 0;
639
640	bitmap = zalloc(last_cpu.cpu / 8 + 1);
641	if (bitmap == NULL) {
642		buf[0] = '\0';
643		return 0;
644	}
645
646	for (i = 0; i < perf_cpu_map__nr(map); i++) {
647		cpu = perf_cpu_map__cpu(map, i).cpu;
648		bitmap[cpu / 8] |= 1 << (cpu % 8);
649	}
650
651	for (cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) {
652		unsigned char bits = bitmap[cpu / 8];
653
654		if (cpu % 8)
655			bits >>= 4;
656		else
657			bits &= 0xf;
658
659		*ptr++ = hex_char(bits);
660		if ((cpu % 32) == 0 && cpu > 0)
661			*ptr++ = ',';
662	}
663	*ptr = '\0';
664	free(bitmap);
665
666	buf[size - 1] = '\0';
667	return ptr - buf;
668}
669
670struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */
671{
672	static struct perf_cpu_map *online;
673
674	if (!online)
675		online = perf_cpu_map__new(NULL); /* from /sys/devices/system/cpu/online */
676
677	return online;
678}
679
680bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b)
681{
682	return a->thread_idx == b->thread_idx &&
683		a->node == b->node &&
684		a->socket == b->socket &&
685		a->die == b->die &&
686		a->cache_lvl == b->cache_lvl &&
687		a->cache == b->cache &&
688		a->core == b->core &&
689		a->cpu.cpu == b->cpu.cpu;
690}
691
692bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a)
693{
694	return a->thread_idx == -1 &&
695		a->node == -1 &&
696		a->socket == -1 &&
697		a->die == -1 &&
698		a->cache_lvl == -1 &&
699		a->cache == -1 &&
700		a->core == -1 &&
701		a->cpu.cpu == -1;
702}
703
704struct aggr_cpu_id aggr_cpu_id__empty(void)
705{
706	struct aggr_cpu_id ret = {
707		.thread_idx = -1,
708		.node = -1,
709		.socket = -1,
710		.die = -1,
711		.cache_lvl = -1,
712		.cache = -1,
713		.core = -1,
714		.cpu = (struct perf_cpu){ .cpu = -1 },
715	};
716	return ret;
717}
718