1// SPDX-License-Identifier: GPL-2.0
2
3/* Copyright (c) 2019 Facebook */
4
5#include <assert.h>
6#include <limits.h>
7#include <unistd.h>
8#include <sys/file.h>
9#include <sys/time.h>
10#include <linux/err.h>
11#include <linux/zalloc.h>
12#include <api/fs/fs.h>
13#include <perf/bpf_perf.h>
14
15#include "bpf_counter.h"
16#include "bpf-utils.h"
17#include "counts.h"
18#include "debug.h"
19#include "evsel.h"
20#include "evlist.h"
21#include "target.h"
22#include "cgroup.h"
23#include "cpumap.h"
24#include "thread_map.h"
25
26#include "bpf_skel/bpf_prog_profiler.skel.h"
27#include "bpf_skel/bperf_u.h"
28#include "bpf_skel/bperf_leader.skel.h"
29#include "bpf_skel/bperf_follower.skel.h"
30
31#define ATTR_MAP_SIZE 16
32
33static inline void *u64_to_ptr(__u64 ptr)
34{
35	return (void *)(unsigned long)ptr;
36}
37
38static struct bpf_counter *bpf_counter_alloc(void)
39{
40	struct bpf_counter *counter;
41
42	counter = zalloc(sizeof(*counter));
43	if (counter)
44		INIT_LIST_HEAD(&counter->list);
45	return counter;
46}
47
48static int bpf_program_profiler__destroy(struct evsel *evsel)
49{
50	struct bpf_counter *counter, *tmp;
51
52	list_for_each_entry_safe(counter, tmp,
53				 &evsel->bpf_counter_list, list) {
54		list_del_init(&counter->list);
55		bpf_prog_profiler_bpf__destroy(counter->skel);
56		free(counter);
57	}
58	assert(list_empty(&evsel->bpf_counter_list));
59
60	return 0;
61}
62
63static char *bpf_target_prog_name(int tgt_fd)
64{
65	struct bpf_func_info *func_info;
66	struct perf_bpil *info_linear;
67	const struct btf_type *t;
68	struct btf *btf = NULL;
69	char *name = NULL;
70
71	info_linear = get_bpf_prog_info_linear(tgt_fd, 1UL << PERF_BPIL_FUNC_INFO);
72	if (IS_ERR_OR_NULL(info_linear)) {
73		pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd);
74		return NULL;
75	}
76
77	if (info_linear->info.btf_id == 0) {
78		pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd);
79		goto out;
80	}
81
82	btf = btf__load_from_kernel_by_id(info_linear->info.btf_id);
83	if (libbpf_get_error(btf)) {
84		pr_debug("failed to load btf for prog FD %d\n", tgt_fd);
85		goto out;
86	}
87
88	func_info = u64_to_ptr(info_linear->info.func_info);
89	t = btf__type_by_id(btf, func_info[0].type_id);
90	if (!t) {
91		pr_debug("btf %d doesn't have type %d\n",
92			 info_linear->info.btf_id, func_info[0].type_id);
93		goto out;
94	}
95	name = strdup(btf__name_by_offset(btf, t->name_off));
96out:
97	btf__free(btf);
98	free(info_linear);
99	return name;
100}
101
102static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id)
103{
104	struct bpf_prog_profiler_bpf *skel;
105	struct bpf_counter *counter;
106	struct bpf_program *prog;
107	char *prog_name;
108	int prog_fd;
109	int err;
110
111	prog_fd = bpf_prog_get_fd_by_id(prog_id);
112	if (prog_fd < 0) {
113		pr_err("Failed to open fd for bpf prog %u\n", prog_id);
114		return -1;
115	}
116	counter = bpf_counter_alloc();
117	if (!counter) {
118		close(prog_fd);
119		return -1;
120	}
121
122	skel = bpf_prog_profiler_bpf__open();
123	if (!skel) {
124		pr_err("Failed to open bpf skeleton\n");
125		goto err_out;
126	}
127
128	skel->rodata->num_cpu = evsel__nr_cpus(evsel);
129
130	bpf_map__set_max_entries(skel->maps.events, evsel__nr_cpus(evsel));
131	bpf_map__set_max_entries(skel->maps.fentry_readings, 1);
132	bpf_map__set_max_entries(skel->maps.accum_readings, 1);
133
134	prog_name = bpf_target_prog_name(prog_fd);
135	if (!prog_name) {
136		pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id);
137		goto err_out;
138	}
139
140	bpf_object__for_each_program(prog, skel->obj) {
141		err = bpf_program__set_attach_target(prog, prog_fd, prog_name);
142		if (err) {
143			pr_err("bpf_program__set_attach_target failed.\n"
144			       "Does bpf prog %u have BTF?\n", prog_id);
145			goto err_out;
146		}
147	}
148	set_max_rlimit();
149	err = bpf_prog_profiler_bpf__load(skel);
150	if (err) {
151		pr_err("bpf_prog_profiler_bpf__load failed\n");
152		goto err_out;
153	}
154
155	assert(skel != NULL);
156	counter->skel = skel;
157	list_add(&counter->list, &evsel->bpf_counter_list);
158	close(prog_fd);
159	return 0;
160err_out:
161	bpf_prog_profiler_bpf__destroy(skel);
162	free(counter);
163	close(prog_fd);
164	return -1;
165}
166
167static int bpf_program_profiler__load(struct evsel *evsel, struct target *target)
168{
169	char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p;
170	u32 prog_id;
171	int ret;
172
173	bpf_str_ = bpf_str = strdup(target->bpf_str);
174	if (!bpf_str)
175		return -1;
176
177	while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) {
178		prog_id = strtoul(tok, &p, 10);
179		if (prog_id == 0 || prog_id == UINT_MAX ||
180		    (*p != '\0' && *p != ',')) {
181			pr_err("Failed to parse bpf prog ids %s\n",
182			       target->bpf_str);
183			return -1;
184		}
185
186		ret = bpf_program_profiler_load_one(evsel, prog_id);
187		if (ret) {
188			bpf_program_profiler__destroy(evsel);
189			free(bpf_str_);
190			return -1;
191		}
192		bpf_str = NULL;
193	}
194	free(bpf_str_);
195	return 0;
196}
197
198static int bpf_program_profiler__enable(struct evsel *evsel)
199{
200	struct bpf_counter *counter;
201	int ret;
202
203	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
204		assert(counter->skel != NULL);
205		ret = bpf_prog_profiler_bpf__attach(counter->skel);
206		if (ret) {
207			bpf_program_profiler__destroy(evsel);
208			return ret;
209		}
210	}
211	return 0;
212}
213
214static int bpf_program_profiler__disable(struct evsel *evsel)
215{
216	struct bpf_counter *counter;
217
218	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
219		assert(counter->skel != NULL);
220		bpf_prog_profiler_bpf__detach(counter->skel);
221	}
222	return 0;
223}
224
225static int bpf_program_profiler__read(struct evsel *evsel)
226{
227	// BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible
228	// Sometimes possible > online, like on a Ryzen 3900X that has 24
229	// threads but its possible showed 0-31 -acme
230	int num_cpu_bpf = libbpf_num_possible_cpus();
231	struct bpf_perf_event_value values[num_cpu_bpf];
232	struct bpf_counter *counter;
233	struct perf_counts_values *counts;
234	int reading_map_fd;
235	__u32 key = 0;
236	int err, idx, bpf_cpu;
237
238	if (list_empty(&evsel->bpf_counter_list))
239		return -EAGAIN;
240
241	perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
242		counts = perf_counts(evsel->counts, idx, 0);
243		counts->val = 0;
244		counts->ena = 0;
245		counts->run = 0;
246	}
247	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
248		struct bpf_prog_profiler_bpf *skel = counter->skel;
249
250		assert(skel != NULL);
251		reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
252
253		err = bpf_map_lookup_elem(reading_map_fd, &key, values);
254		if (err) {
255			pr_err("failed to read value\n");
256			return err;
257		}
258
259		for (bpf_cpu = 0; bpf_cpu < num_cpu_bpf; bpf_cpu++) {
260			idx = perf_cpu_map__idx(evsel__cpus(evsel),
261						(struct perf_cpu){.cpu = bpf_cpu});
262			if (idx == -1)
263				continue;
264			counts = perf_counts(evsel->counts, idx, 0);
265			counts->val += values[bpf_cpu].counter;
266			counts->ena += values[bpf_cpu].enabled;
267			counts->run += values[bpf_cpu].running;
268		}
269	}
270	return 0;
271}
272
273static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu_map_idx,
274					    int fd)
275{
276	struct bpf_prog_profiler_bpf *skel;
277	struct bpf_counter *counter;
278	int ret;
279
280	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
281		skel = counter->skel;
282		assert(skel != NULL);
283
284		ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events),
285					  &cpu_map_idx, &fd, BPF_ANY);
286		if (ret)
287			return ret;
288	}
289	return 0;
290}
291
292struct bpf_counter_ops bpf_program_profiler_ops = {
293	.load       = bpf_program_profiler__load,
294	.enable	    = bpf_program_profiler__enable,
295	.disable    = bpf_program_profiler__disable,
296	.read       = bpf_program_profiler__read,
297	.destroy    = bpf_program_profiler__destroy,
298	.install_pe = bpf_program_profiler__install_pe,
299};
300
301static bool bperf_attr_map_compatible(int attr_map_fd)
302{
303	struct bpf_map_info map_info = {0};
304	__u32 map_info_len = sizeof(map_info);
305	int err;
306
307	err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len);
308
309	if (err)
310		return false;
311	return (map_info.key_size == sizeof(struct perf_event_attr)) &&
312		(map_info.value_size == sizeof(struct perf_event_attr_map_entry));
313}
314
315static int bperf_lock_attr_map(struct target *target)
316{
317	char path[PATH_MAX];
318	int map_fd, err;
319
320	if (target->attr_map) {
321		scnprintf(path, PATH_MAX, "%s", target->attr_map);
322	} else {
323		scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(),
324			  BPF_PERF_DEFAULT_ATTR_MAP_PATH);
325	}
326
327	if (access(path, F_OK)) {
328		map_fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL,
329					sizeof(struct perf_event_attr),
330					sizeof(struct perf_event_attr_map_entry),
331					ATTR_MAP_SIZE, NULL);
332		if (map_fd < 0)
333			return -1;
334
335		err = bpf_obj_pin(map_fd, path);
336		if (err) {
337			/* someone pinned the map in parallel? */
338			close(map_fd);
339			map_fd = bpf_obj_get(path);
340			if (map_fd < 0)
341				return -1;
342		}
343	} else {
344		map_fd = bpf_obj_get(path);
345		if (map_fd < 0)
346			return -1;
347	}
348
349	if (!bperf_attr_map_compatible(map_fd)) {
350		close(map_fd);
351		return -1;
352
353	}
354	err = flock(map_fd, LOCK_EX);
355	if (err) {
356		close(map_fd);
357		return -1;
358	}
359	return map_fd;
360}
361
362static int bperf_check_target(struct evsel *evsel,
363			      struct target *target,
364			      enum bperf_filter_type *filter_type,
365			      __u32 *filter_entry_cnt)
366{
367	if (evsel->core.leader->nr_members > 1) {
368		pr_err("bpf managed perf events do not yet support groups.\n");
369		return -1;
370	}
371
372	/* determine filter type based on target */
373	if (target->system_wide) {
374		*filter_type = BPERF_FILTER_GLOBAL;
375		*filter_entry_cnt = 1;
376	} else if (target->cpu_list) {
377		*filter_type = BPERF_FILTER_CPU;
378		*filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel));
379	} else if (target->tid) {
380		*filter_type = BPERF_FILTER_PID;
381		*filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
382	} else if (target->pid || evsel->evlist->workload.pid != -1) {
383		*filter_type = BPERF_FILTER_TGID;
384		*filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
385	} else {
386		pr_err("bpf managed perf events do not yet support these targets.\n");
387		return -1;
388	}
389
390	return 0;
391}
392
393static	struct perf_cpu_map *all_cpu_map;
394
395static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
396				       struct perf_event_attr_map_entry *entry)
397{
398	struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
399	int link_fd, diff_map_fd, err;
400	struct bpf_link *link = NULL;
401
402	if (!skel) {
403		pr_err("Failed to open leader skeleton\n");
404		return -1;
405	}
406
407	bpf_map__set_max_entries(skel->maps.events, libbpf_num_possible_cpus());
408	err = bperf_leader_bpf__load(skel);
409	if (err) {
410		pr_err("Failed to load leader skeleton\n");
411		goto out;
412	}
413
414	link = bpf_program__attach(skel->progs.on_switch);
415	if (IS_ERR(link)) {
416		pr_err("Failed to attach leader program\n");
417		err = PTR_ERR(link);
418		goto out;
419	}
420
421	link_fd = bpf_link__fd(link);
422	diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
423	entry->link_id = bpf_link_get_id(link_fd);
424	entry->diff_map_id = bpf_map_get_id(diff_map_fd);
425	err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
426	assert(err == 0);
427
428	evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
429	assert(evsel->bperf_leader_link_fd >= 0);
430
431	/*
432	 * save leader_skel for install_pe, which is called within
433	 * following evsel__open_per_cpu call
434	 */
435	evsel->leader_skel = skel;
436	evsel__open_per_cpu(evsel, all_cpu_map, -1);
437
438out:
439	bperf_leader_bpf__destroy(skel);
440	bpf_link__destroy(link);
441	return err;
442}
443
444static int bperf__load(struct evsel *evsel, struct target *target)
445{
446	struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
447	int attr_map_fd, diff_map_fd = -1, err;
448	enum bperf_filter_type filter_type;
449	__u32 filter_entry_cnt, i;
450
451	if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
452		return -1;
453
454	if (!all_cpu_map) {
455		all_cpu_map = perf_cpu_map__new(NULL);
456		if (!all_cpu_map)
457			return -1;
458	}
459
460	evsel->bperf_leader_prog_fd = -1;
461	evsel->bperf_leader_link_fd = -1;
462
463	/*
464	 * Step 1: hold a fd on the leader program and the bpf_link, if
465	 * the program is not already gone, reload the program.
466	 * Use flock() to ensure exclusive access to the perf_event_attr
467	 * map.
468	 */
469	attr_map_fd = bperf_lock_attr_map(target);
470	if (attr_map_fd < 0) {
471		pr_err("Failed to lock perf_event_attr map\n");
472		return -1;
473	}
474
475	err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
476	if (err) {
477		err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
478		if (err)
479			goto out;
480	}
481
482	evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
483	if (evsel->bperf_leader_link_fd < 0 &&
484	    bperf_reload_leader_program(evsel, attr_map_fd, &entry)) {
485		err = -1;
486		goto out;
487	}
488	/*
489	 * The bpf_link holds reference to the leader program, and the
490	 * leader program holds reference to the maps. Therefore, if
491	 * link_id is valid, diff_map_id should also be valid.
492	 */
493	evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
494		bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
495	assert(evsel->bperf_leader_prog_fd >= 0);
496
497	diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
498	assert(diff_map_fd >= 0);
499
500	/*
501	 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check
502	 * whether the kernel support it
503	 */
504	err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0);
505	if (err) {
506		pr_err("The kernel does not support test_run for raw_tp BPF programs.\n"
507		       "Therefore, --use-bpf might show inaccurate readings\n");
508		goto out;
509	}
510
511	/* Step 2: load the follower skeleton */
512	evsel->follower_skel = bperf_follower_bpf__open();
513	if (!evsel->follower_skel) {
514		err = -1;
515		pr_err("Failed to open follower skeleton\n");
516		goto out;
517	}
518
519	/* attach fexit program to the leader program */
520	bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX,
521				       evsel->bperf_leader_prog_fd, "on_switch");
522
523	/* connect to leader diff_reading map */
524	bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd);
525
526	/* set up reading map */
527	bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings,
528				 filter_entry_cnt);
529	/* set up follower filter based on target */
530	bpf_map__set_max_entries(evsel->follower_skel->maps.filter,
531				 filter_entry_cnt);
532	err = bperf_follower_bpf__load(evsel->follower_skel);
533	if (err) {
534		pr_err("Failed to load follower skeleton\n");
535		bperf_follower_bpf__destroy(evsel->follower_skel);
536		evsel->follower_skel = NULL;
537		goto out;
538	}
539
540	for (i = 0; i < filter_entry_cnt; i++) {
541		int filter_map_fd;
542		__u32 key;
543
544		if (filter_type == BPERF_FILTER_PID ||
545		    filter_type == BPERF_FILTER_TGID)
546			key = perf_thread_map__pid(evsel->core.threads, i);
547		else if (filter_type == BPERF_FILTER_CPU)
548			key = perf_cpu_map__cpu(evsel->core.cpus, i).cpu;
549		else
550			break;
551
552		filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter);
553		bpf_map_update_elem(filter_map_fd, &key, &i, BPF_ANY);
554	}
555
556	evsel->follower_skel->bss->type = filter_type;
557
558	err = bperf_follower_bpf__attach(evsel->follower_skel);
559
560out:
561	if (err && evsel->bperf_leader_link_fd >= 0)
562		close(evsel->bperf_leader_link_fd);
563	if (err && evsel->bperf_leader_prog_fd >= 0)
564		close(evsel->bperf_leader_prog_fd);
565	if (diff_map_fd >= 0)
566		close(diff_map_fd);
567
568	flock(attr_map_fd, LOCK_UN);
569	close(attr_map_fd);
570
571	return err;
572}
573
574static int bperf__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
575{
576	struct bperf_leader_bpf *skel = evsel->leader_skel;
577
578	return bpf_map_update_elem(bpf_map__fd(skel->maps.events),
579				   &cpu_map_idx, &fd, BPF_ANY);
580}
581
582/*
583 * trigger the leader prog on each cpu, so the accum_reading map could get
584 * the latest readings.
585 */
586static int bperf_sync_counters(struct evsel *evsel)
587{
588	int num_cpu, i, cpu;
589
590	num_cpu = perf_cpu_map__nr(all_cpu_map);
591	for (i = 0; i < num_cpu; i++) {
592		cpu = perf_cpu_map__cpu(all_cpu_map, i).cpu;
593		bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu);
594	}
595	return 0;
596}
597
598static int bperf__enable(struct evsel *evsel)
599{
600	evsel->follower_skel->bss->enabled = 1;
601	return 0;
602}
603
604static int bperf__disable(struct evsel *evsel)
605{
606	evsel->follower_skel->bss->enabled = 0;
607	return 0;
608}
609
610static int bperf__read(struct evsel *evsel)
611{
612	struct bperf_follower_bpf *skel = evsel->follower_skel;
613	__u32 num_cpu_bpf = cpu__max_cpu().cpu;
614	struct bpf_perf_event_value values[num_cpu_bpf];
615	struct perf_counts_values *counts;
616	int reading_map_fd, err = 0;
617	__u32 i;
618	int j;
619
620	bperf_sync_counters(evsel);
621	reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
622
623	for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) {
624		struct perf_cpu entry;
625		__u32 cpu;
626
627		err = bpf_map_lookup_elem(reading_map_fd, &i, values);
628		if (err)
629			goto out;
630		switch (evsel->follower_skel->bss->type) {
631		case BPERF_FILTER_GLOBAL:
632			assert(i == 0);
633
634			perf_cpu_map__for_each_cpu(entry, j, evsel__cpus(evsel)) {
635				counts = perf_counts(evsel->counts, j, 0);
636				counts->val = values[entry.cpu].counter;
637				counts->ena = values[entry.cpu].enabled;
638				counts->run = values[entry.cpu].running;
639			}
640			break;
641		case BPERF_FILTER_CPU:
642			cpu = perf_cpu_map__cpu(evsel__cpus(evsel), i).cpu;
643			assert(cpu >= 0);
644			counts = perf_counts(evsel->counts, i, 0);
645			counts->val = values[cpu].counter;
646			counts->ena = values[cpu].enabled;
647			counts->run = values[cpu].running;
648			break;
649		case BPERF_FILTER_PID:
650		case BPERF_FILTER_TGID:
651			counts = perf_counts(evsel->counts, 0, i);
652			counts->val = 0;
653			counts->ena = 0;
654			counts->run = 0;
655
656			for (cpu = 0; cpu < num_cpu_bpf; cpu++) {
657				counts->val += values[cpu].counter;
658				counts->ena += values[cpu].enabled;
659				counts->run += values[cpu].running;
660			}
661			break;
662		default:
663			break;
664		}
665	}
666out:
667	return err;
668}
669
670static int bperf__destroy(struct evsel *evsel)
671{
672	bperf_follower_bpf__destroy(evsel->follower_skel);
673	close(evsel->bperf_leader_prog_fd);
674	close(evsel->bperf_leader_link_fd);
675	return 0;
676}
677
678/*
679 * bperf: share hardware PMCs with BPF
680 *
681 * perf uses performance monitoring counters (PMC) to monitor system
682 * performance. The PMCs are limited hardware resources. For example,
683 * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
684 *
685 * Modern data center systems use these PMCs in many different ways:
686 * system level monitoring, (maybe nested) container level monitoring, per
687 * process monitoring, profiling (in sample mode), etc. In some cases,
688 * there are more active perf_events than available hardware PMCs. To allow
689 * all perf_events to have a chance to run, it is necessary to do expensive
690 * time multiplexing of events.
691 *
692 * On the other hand, many monitoring tools count the common metrics
693 * (cycles, instructions). It is a waste to have multiple tools create
694 * multiple perf_events of "cycles" and occupy multiple PMCs.
695 *
696 * bperf tries to reduce such wastes by allowing multiple perf_events of
697 * "cycles" or "instructions" (at different scopes) to share PMUs. Instead
698 * of having each perf-stat session to read its own perf_events, bperf uses
699 * BPF programs to read the perf_events and aggregate readings to BPF maps.
700 * Then, the perf-stat session(s) reads the values from these BPF maps.
701 *
702 *                                ||
703 *       shared progs and maps <- || -> per session progs and maps
704 *                                ||
705 *   ---------------              ||
706 *   | perf_events |              ||
707 *   ---------------       fexit  ||      -----------------
708 *          |             --------||----> | follower prog |
709 *       --------------- /        || ---  -----------------
710 * cs -> | leader prog |/         ||/        |         |
711 *   --> ---------------         /||  --------------  ------------------
712 *  /       |         |         / ||  | filter map |  | accum_readings |
713 * /  ------------  ------------  ||  --------------  ------------------
714 * |  | prev map |  | diff map |  ||                        |
715 * |  ------------  ------------  ||                        |
716 *  \                             ||                        |
717 * = \ ==================================================== | ============
718 *    \                                                    /   user space
719 *     \                                                  /
720 *      \                                                /
721 *    BPF_PROG_TEST_RUN                    BPF_MAP_LOOKUP_ELEM
722 *        \                                            /
723 *         \                                          /
724 *          \------  perf-stat ----------------------/
725 *
726 * The figure above shows the architecture of bperf. Note that the figure
727 * is divided into 3 regions: shared progs and maps (top left), per session
728 * progs and maps (top right), and user space (bottom).
729 *
730 * The leader prog is triggered on each context switch (cs). The leader
731 * prog reads perf_events and stores the difference (current_reading -
732 * previous_reading) to the diff map. For the same metric, e.g. "cycles",
733 * multiple perf-stat sessions share the same leader prog.
734 *
735 * Each perf-stat session creates a follower prog as fexit program to the
736 * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38)
737 * follower progs to the same leader prog. The follower prog checks current
738 * task and processor ID to decide whether to add the value from the diff
739 * map to its accumulated reading map (accum_readings).
740 *
741 * Finally, perf-stat user space reads the value from accum_reading map.
742 *
743 * Besides context switch, it is also necessary to trigger the leader prog
744 * before perf-stat reads the value. Otherwise, the accum_reading map may
745 * not have the latest reading from the perf_events. This is achieved by
746 * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU.
747 *
748 * Comment before the definition of struct perf_event_attr_map_entry
749 * describes how different sessions of perf-stat share information about
750 * the leader prog.
751 */
752
753struct bpf_counter_ops bperf_ops = {
754	.load       = bperf__load,
755	.enable     = bperf__enable,
756	.disable    = bperf__disable,
757	.read       = bperf__read,
758	.install_pe = bperf__install_pe,
759	.destroy    = bperf__destroy,
760};
761
762extern struct bpf_counter_ops bperf_cgrp_ops;
763
764static inline bool bpf_counter_skip(struct evsel *evsel)
765{
766	return evsel->bpf_counter_ops == NULL;
767}
768
769int bpf_counter__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
770{
771	if (bpf_counter_skip(evsel))
772		return 0;
773	return evsel->bpf_counter_ops->install_pe(evsel, cpu_map_idx, fd);
774}
775
776int bpf_counter__load(struct evsel *evsel, struct target *target)
777{
778	if (target->bpf_str)
779		evsel->bpf_counter_ops = &bpf_program_profiler_ops;
780	else if (cgrp_event_expanded && target->use_bpf)
781		evsel->bpf_counter_ops = &bperf_cgrp_ops;
782	else if (target->use_bpf || evsel->bpf_counter ||
783		 evsel__match_bpf_counter_events(evsel->name))
784		evsel->bpf_counter_ops = &bperf_ops;
785
786	if (evsel->bpf_counter_ops)
787		return evsel->bpf_counter_ops->load(evsel, target);
788	return 0;
789}
790
791int bpf_counter__enable(struct evsel *evsel)
792{
793	if (bpf_counter_skip(evsel))
794		return 0;
795	return evsel->bpf_counter_ops->enable(evsel);
796}
797
798int bpf_counter__disable(struct evsel *evsel)
799{
800	if (bpf_counter_skip(evsel))
801		return 0;
802	return evsel->bpf_counter_ops->disable(evsel);
803}
804
805int bpf_counter__read(struct evsel *evsel)
806{
807	if (bpf_counter_skip(evsel))
808		return -EAGAIN;
809	return evsel->bpf_counter_ops->read(evsel);
810}
811
812void bpf_counter__destroy(struct evsel *evsel)
813{
814	if (bpf_counter_skip(evsel))
815		return;
816	evsel->bpf_counter_ops->destroy(evsel);
817	evsel->bpf_counter_ops = NULL;
818	evsel->bpf_skel = NULL;
819}
820