xref: /kernel/linux/linux-6.6/tools/lib/bpf/btf.c (revision 62306a36)
1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2/* Copyright (c) 2018 Facebook */
3
4#include <byteswap.h>
5#include <endian.h>
6#include <stdio.h>
7#include <stdlib.h>
8#include <string.h>
9#include <fcntl.h>
10#include <unistd.h>
11#include <errno.h>
12#include <sys/utsname.h>
13#include <sys/param.h>
14#include <sys/stat.h>
15#include <linux/kernel.h>
16#include <linux/err.h>
17#include <linux/btf.h>
18#include <gelf.h>
19#include "btf.h"
20#include "bpf.h"
21#include "libbpf.h"
22#include "libbpf_internal.h"
23#include "hashmap.h"
24#include "strset.h"
25
26#define BTF_MAX_NR_TYPES 0x7fffffffU
27#define BTF_MAX_STR_OFFSET 0x7fffffffU
28
29static struct btf_type btf_void;
30
31struct btf {
32	/* raw BTF data in native endianness */
33	void *raw_data;
34	/* raw BTF data in non-native endianness */
35	void *raw_data_swapped;
36	__u32 raw_size;
37	/* whether target endianness differs from the native one */
38	bool swapped_endian;
39
40	/*
41	 * When BTF is loaded from an ELF or raw memory it is stored
42	 * in a contiguous memory block. The hdr, type_data, and, strs_data
43	 * point inside that memory region to their respective parts of BTF
44	 * representation:
45	 *
46	 * +--------------------------------+
47	 * |  Header  |  Types  |  Strings  |
48	 * +--------------------------------+
49	 * ^          ^         ^
50	 * |          |         |
51	 * hdr        |         |
52	 * types_data-+         |
53	 * strs_data------------+
54	 *
55	 * If BTF data is later modified, e.g., due to types added or
56	 * removed, BTF deduplication performed, etc, this contiguous
57	 * representation is broken up into three independently allocated
58	 * memory regions to be able to modify them independently.
59	 * raw_data is nulled out at that point, but can be later allocated
60	 * and cached again if user calls btf__raw_data(), at which point
61	 * raw_data will contain a contiguous copy of header, types, and
62	 * strings:
63	 *
64	 * +----------+  +---------+  +-----------+
65	 * |  Header  |  |  Types  |  |  Strings  |
66	 * +----------+  +---------+  +-----------+
67	 * ^             ^            ^
68	 * |             |            |
69	 * hdr           |            |
70	 * types_data----+            |
71	 * strset__data(strs_set)-----+
72	 *
73	 *               +----------+---------+-----------+
74	 *               |  Header  |  Types  |  Strings  |
75	 * raw_data----->+----------+---------+-----------+
76	 */
77	struct btf_header *hdr;
78
79	void *types_data;
80	size_t types_data_cap; /* used size stored in hdr->type_len */
81
82	/* type ID to `struct btf_type *` lookup index
83	 * type_offs[0] corresponds to the first non-VOID type:
84	 *   - for base BTF it's type [1];
85	 *   - for split BTF it's the first non-base BTF type.
86	 */
87	__u32 *type_offs;
88	size_t type_offs_cap;
89	/* number of types in this BTF instance:
90	 *   - doesn't include special [0] void type;
91	 *   - for split BTF counts number of types added on top of base BTF.
92	 */
93	__u32 nr_types;
94	/* if not NULL, points to the base BTF on top of which the current
95	 * split BTF is based
96	 */
97	struct btf *base_btf;
98	/* BTF type ID of the first type in this BTF instance:
99	 *   - for base BTF it's equal to 1;
100	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
101	 */
102	int start_id;
103	/* logical string offset of this BTF instance:
104	 *   - for base BTF it's equal to 0;
105	 *   - for split BTF it's equal to total size of base BTF's string section size.
106	 */
107	int start_str_off;
108
109	/* only one of strs_data or strs_set can be non-NULL, depending on
110	 * whether BTF is in a modifiable state (strs_set is used) or not
111	 * (strs_data points inside raw_data)
112	 */
113	void *strs_data;
114	/* a set of unique strings */
115	struct strset *strs_set;
116	/* whether strings are already deduplicated */
117	bool strs_deduped;
118
119	/* BTF object FD, if loaded into kernel */
120	int fd;
121
122	/* Pointer size (in bytes) for a target architecture of this BTF */
123	int ptr_sz;
124};
125
126static inline __u64 ptr_to_u64(const void *ptr)
127{
128	return (__u64) (unsigned long) ptr;
129}
130
131/* Ensure given dynamically allocated memory region pointed to by *data* with
132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
134 * are already used. At most *max_cnt* elements can be ever allocated.
135 * If necessary, memory is reallocated and all existing data is copied over,
136 * new pointer to the memory region is stored at *data, new memory region
137 * capacity (in number of elements) is stored in *cap.
138 * On success, memory pointer to the beginning of unused memory is returned.
139 * On error, NULL is returned.
140 */
141void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143{
144	size_t new_cnt;
145	void *new_data;
146
147	if (cur_cnt + add_cnt <= *cap_cnt)
148		return *data + cur_cnt * elem_sz;
149
150	/* requested more than the set limit */
151	if (cur_cnt + add_cnt > max_cnt)
152		return NULL;
153
154	new_cnt = *cap_cnt;
155	new_cnt += new_cnt / 4;		  /* expand by 25% */
156	if (new_cnt < 16)		  /* but at least 16 elements */
157		new_cnt = 16;
158	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
159		new_cnt = max_cnt;
160	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
161		new_cnt = cur_cnt + add_cnt;
162
163	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164	if (!new_data)
165		return NULL;
166
167	/* zero out newly allocated portion of memory */
168	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169
170	*data = new_data;
171	*cap_cnt = new_cnt;
172	return new_data + cur_cnt * elem_sz;
173}
174
175/* Ensure given dynamically allocated memory region has enough allocated space
176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177 */
178int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179{
180	void *p;
181
182	if (need_cnt <= *cap_cnt)
183		return 0;
184
185	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186	if (!p)
187		return -ENOMEM;
188
189	return 0;
190}
191
192static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
193{
194	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
195			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
196}
197
198static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
199{
200	__u32 *p;
201
202	p = btf_add_type_offs_mem(btf, 1);
203	if (!p)
204		return -ENOMEM;
205
206	*p = type_off;
207	return 0;
208}
209
210static void btf_bswap_hdr(struct btf_header *h)
211{
212	h->magic = bswap_16(h->magic);
213	h->hdr_len = bswap_32(h->hdr_len);
214	h->type_off = bswap_32(h->type_off);
215	h->type_len = bswap_32(h->type_len);
216	h->str_off = bswap_32(h->str_off);
217	h->str_len = bswap_32(h->str_len);
218}
219
220static int btf_parse_hdr(struct btf *btf)
221{
222	struct btf_header *hdr = btf->hdr;
223	__u32 meta_left;
224
225	if (btf->raw_size < sizeof(struct btf_header)) {
226		pr_debug("BTF header not found\n");
227		return -EINVAL;
228	}
229
230	if (hdr->magic == bswap_16(BTF_MAGIC)) {
231		btf->swapped_endian = true;
232		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
233			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
234				bswap_32(hdr->hdr_len));
235			return -ENOTSUP;
236		}
237		btf_bswap_hdr(hdr);
238	} else if (hdr->magic != BTF_MAGIC) {
239		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
240		return -EINVAL;
241	}
242
243	if (btf->raw_size < hdr->hdr_len) {
244		pr_debug("BTF header len %u larger than data size %u\n",
245			 hdr->hdr_len, btf->raw_size);
246		return -EINVAL;
247	}
248
249	meta_left = btf->raw_size - hdr->hdr_len;
250	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
251		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
252		return -EINVAL;
253	}
254
255	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
256		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
257			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
258		return -EINVAL;
259	}
260
261	if (hdr->type_off % 4) {
262		pr_debug("BTF type section is not aligned to 4 bytes\n");
263		return -EINVAL;
264	}
265
266	return 0;
267}
268
269static int btf_parse_str_sec(struct btf *btf)
270{
271	const struct btf_header *hdr = btf->hdr;
272	const char *start = btf->strs_data;
273	const char *end = start + btf->hdr->str_len;
274
275	if (btf->base_btf && hdr->str_len == 0)
276		return 0;
277	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
278		pr_debug("Invalid BTF string section\n");
279		return -EINVAL;
280	}
281	if (!btf->base_btf && start[0]) {
282		pr_debug("Invalid BTF string section\n");
283		return -EINVAL;
284	}
285	return 0;
286}
287
288static int btf_type_size(const struct btf_type *t)
289{
290	const int base_size = sizeof(struct btf_type);
291	__u16 vlen = btf_vlen(t);
292
293	switch (btf_kind(t)) {
294	case BTF_KIND_FWD:
295	case BTF_KIND_CONST:
296	case BTF_KIND_VOLATILE:
297	case BTF_KIND_RESTRICT:
298	case BTF_KIND_PTR:
299	case BTF_KIND_TYPEDEF:
300	case BTF_KIND_FUNC:
301	case BTF_KIND_FLOAT:
302	case BTF_KIND_TYPE_TAG:
303		return base_size;
304	case BTF_KIND_INT:
305		return base_size + sizeof(__u32);
306	case BTF_KIND_ENUM:
307		return base_size + vlen * sizeof(struct btf_enum);
308	case BTF_KIND_ENUM64:
309		return base_size + vlen * sizeof(struct btf_enum64);
310	case BTF_KIND_ARRAY:
311		return base_size + sizeof(struct btf_array);
312	case BTF_KIND_STRUCT:
313	case BTF_KIND_UNION:
314		return base_size + vlen * sizeof(struct btf_member);
315	case BTF_KIND_FUNC_PROTO:
316		return base_size + vlen * sizeof(struct btf_param);
317	case BTF_KIND_VAR:
318		return base_size + sizeof(struct btf_var);
319	case BTF_KIND_DATASEC:
320		return base_size + vlen * sizeof(struct btf_var_secinfo);
321	case BTF_KIND_DECL_TAG:
322		return base_size + sizeof(struct btf_decl_tag);
323	default:
324		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
325		return -EINVAL;
326	}
327}
328
329static void btf_bswap_type_base(struct btf_type *t)
330{
331	t->name_off = bswap_32(t->name_off);
332	t->info = bswap_32(t->info);
333	t->type = bswap_32(t->type);
334}
335
336static int btf_bswap_type_rest(struct btf_type *t)
337{
338	struct btf_var_secinfo *v;
339	struct btf_enum64 *e64;
340	struct btf_member *m;
341	struct btf_array *a;
342	struct btf_param *p;
343	struct btf_enum *e;
344	__u16 vlen = btf_vlen(t);
345	int i;
346
347	switch (btf_kind(t)) {
348	case BTF_KIND_FWD:
349	case BTF_KIND_CONST:
350	case BTF_KIND_VOLATILE:
351	case BTF_KIND_RESTRICT:
352	case BTF_KIND_PTR:
353	case BTF_KIND_TYPEDEF:
354	case BTF_KIND_FUNC:
355	case BTF_KIND_FLOAT:
356	case BTF_KIND_TYPE_TAG:
357		return 0;
358	case BTF_KIND_INT:
359		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
360		return 0;
361	case BTF_KIND_ENUM:
362		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
363			e->name_off = bswap_32(e->name_off);
364			e->val = bswap_32(e->val);
365		}
366		return 0;
367	case BTF_KIND_ENUM64:
368		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
369			e64->name_off = bswap_32(e64->name_off);
370			e64->val_lo32 = bswap_32(e64->val_lo32);
371			e64->val_hi32 = bswap_32(e64->val_hi32);
372		}
373		return 0;
374	case BTF_KIND_ARRAY:
375		a = btf_array(t);
376		a->type = bswap_32(a->type);
377		a->index_type = bswap_32(a->index_type);
378		a->nelems = bswap_32(a->nelems);
379		return 0;
380	case BTF_KIND_STRUCT:
381	case BTF_KIND_UNION:
382		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
383			m->name_off = bswap_32(m->name_off);
384			m->type = bswap_32(m->type);
385			m->offset = bswap_32(m->offset);
386		}
387		return 0;
388	case BTF_KIND_FUNC_PROTO:
389		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
390			p->name_off = bswap_32(p->name_off);
391			p->type = bswap_32(p->type);
392		}
393		return 0;
394	case BTF_KIND_VAR:
395		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
396		return 0;
397	case BTF_KIND_DATASEC:
398		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
399			v->type = bswap_32(v->type);
400			v->offset = bswap_32(v->offset);
401			v->size = bswap_32(v->size);
402		}
403		return 0;
404	case BTF_KIND_DECL_TAG:
405		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
406		return 0;
407	default:
408		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
409		return -EINVAL;
410	}
411}
412
413static int btf_parse_type_sec(struct btf *btf)
414{
415	struct btf_header *hdr = btf->hdr;
416	void *next_type = btf->types_data;
417	void *end_type = next_type + hdr->type_len;
418	int err, type_size;
419
420	while (next_type + sizeof(struct btf_type) <= end_type) {
421		if (btf->swapped_endian)
422			btf_bswap_type_base(next_type);
423
424		type_size = btf_type_size(next_type);
425		if (type_size < 0)
426			return type_size;
427		if (next_type + type_size > end_type) {
428			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
429			return -EINVAL;
430		}
431
432		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
433			return -EINVAL;
434
435		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
436		if (err)
437			return err;
438
439		next_type += type_size;
440		btf->nr_types++;
441	}
442
443	if (next_type != end_type) {
444		pr_warn("BTF types data is malformed\n");
445		return -EINVAL;
446	}
447
448	return 0;
449}
450
451__u32 btf__type_cnt(const struct btf *btf)
452{
453	return btf->start_id + btf->nr_types;
454}
455
456const struct btf *btf__base_btf(const struct btf *btf)
457{
458	return btf->base_btf;
459}
460
461/* internal helper returning non-const pointer to a type */
462struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
463{
464	if (type_id == 0)
465		return &btf_void;
466	if (type_id < btf->start_id)
467		return btf_type_by_id(btf->base_btf, type_id);
468	return btf->types_data + btf->type_offs[type_id - btf->start_id];
469}
470
471const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
472{
473	if (type_id >= btf->start_id + btf->nr_types)
474		return errno = EINVAL, NULL;
475	return btf_type_by_id((struct btf *)btf, type_id);
476}
477
478static int determine_ptr_size(const struct btf *btf)
479{
480	static const char * const long_aliases[] = {
481		"long",
482		"long int",
483		"int long",
484		"unsigned long",
485		"long unsigned",
486		"unsigned long int",
487		"unsigned int long",
488		"long unsigned int",
489		"long int unsigned",
490		"int unsigned long",
491		"int long unsigned",
492	};
493	const struct btf_type *t;
494	const char *name;
495	int i, j, n;
496
497	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
498		return btf->base_btf->ptr_sz;
499
500	n = btf__type_cnt(btf);
501	for (i = 1; i < n; i++) {
502		t = btf__type_by_id(btf, i);
503		if (!btf_is_int(t))
504			continue;
505
506		if (t->size != 4 && t->size != 8)
507			continue;
508
509		name = btf__name_by_offset(btf, t->name_off);
510		if (!name)
511			continue;
512
513		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
514			if (strcmp(name, long_aliases[j]) == 0)
515				return t->size;
516		}
517	}
518
519	return -1;
520}
521
522static size_t btf_ptr_sz(const struct btf *btf)
523{
524	if (!btf->ptr_sz)
525		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
526	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
527}
528
529/* Return pointer size this BTF instance assumes. The size is heuristically
530 * determined by looking for 'long' or 'unsigned long' integer type and
531 * recording its size in bytes. If BTF type information doesn't have any such
532 * type, this function returns 0. In the latter case, native architecture's
533 * pointer size is assumed, so will be either 4 or 8, depending on
534 * architecture that libbpf was compiled for. It's possible to override
535 * guessed value by using btf__set_pointer_size() API.
536 */
537size_t btf__pointer_size(const struct btf *btf)
538{
539	if (!btf->ptr_sz)
540		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
541
542	if (btf->ptr_sz < 0)
543		/* not enough BTF type info to guess */
544		return 0;
545
546	return btf->ptr_sz;
547}
548
549/* Override or set pointer size in bytes. Only values of 4 and 8 are
550 * supported.
551 */
552int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
553{
554	if (ptr_sz != 4 && ptr_sz != 8)
555		return libbpf_err(-EINVAL);
556	btf->ptr_sz = ptr_sz;
557	return 0;
558}
559
560static bool is_host_big_endian(void)
561{
562#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
563	return false;
564#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
565	return true;
566#else
567# error "Unrecognized __BYTE_ORDER__"
568#endif
569}
570
571enum btf_endianness btf__endianness(const struct btf *btf)
572{
573	if (is_host_big_endian())
574		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
575	else
576		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
577}
578
579int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
580{
581	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
582		return libbpf_err(-EINVAL);
583
584	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
585	if (!btf->swapped_endian) {
586		free(btf->raw_data_swapped);
587		btf->raw_data_swapped = NULL;
588	}
589	return 0;
590}
591
592static bool btf_type_is_void(const struct btf_type *t)
593{
594	return t == &btf_void || btf_is_fwd(t);
595}
596
597static bool btf_type_is_void_or_null(const struct btf_type *t)
598{
599	return !t || btf_type_is_void(t);
600}
601
602#define MAX_RESOLVE_DEPTH 32
603
604__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
605{
606	const struct btf_array *array;
607	const struct btf_type *t;
608	__u32 nelems = 1;
609	__s64 size = -1;
610	int i;
611
612	t = btf__type_by_id(btf, type_id);
613	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
614		switch (btf_kind(t)) {
615		case BTF_KIND_INT:
616		case BTF_KIND_STRUCT:
617		case BTF_KIND_UNION:
618		case BTF_KIND_ENUM:
619		case BTF_KIND_ENUM64:
620		case BTF_KIND_DATASEC:
621		case BTF_KIND_FLOAT:
622			size = t->size;
623			goto done;
624		case BTF_KIND_PTR:
625			size = btf_ptr_sz(btf);
626			goto done;
627		case BTF_KIND_TYPEDEF:
628		case BTF_KIND_VOLATILE:
629		case BTF_KIND_CONST:
630		case BTF_KIND_RESTRICT:
631		case BTF_KIND_VAR:
632		case BTF_KIND_DECL_TAG:
633		case BTF_KIND_TYPE_TAG:
634			type_id = t->type;
635			break;
636		case BTF_KIND_ARRAY:
637			array = btf_array(t);
638			if (nelems && array->nelems > UINT32_MAX / nelems)
639				return libbpf_err(-E2BIG);
640			nelems *= array->nelems;
641			type_id = array->type;
642			break;
643		default:
644			return libbpf_err(-EINVAL);
645		}
646
647		t = btf__type_by_id(btf, type_id);
648	}
649
650done:
651	if (size < 0)
652		return libbpf_err(-EINVAL);
653	if (nelems && size > UINT32_MAX / nelems)
654		return libbpf_err(-E2BIG);
655
656	return nelems * size;
657}
658
659int btf__align_of(const struct btf *btf, __u32 id)
660{
661	const struct btf_type *t = btf__type_by_id(btf, id);
662	__u16 kind = btf_kind(t);
663
664	switch (kind) {
665	case BTF_KIND_INT:
666	case BTF_KIND_ENUM:
667	case BTF_KIND_ENUM64:
668	case BTF_KIND_FLOAT:
669		return min(btf_ptr_sz(btf), (size_t)t->size);
670	case BTF_KIND_PTR:
671		return btf_ptr_sz(btf);
672	case BTF_KIND_TYPEDEF:
673	case BTF_KIND_VOLATILE:
674	case BTF_KIND_CONST:
675	case BTF_KIND_RESTRICT:
676	case BTF_KIND_TYPE_TAG:
677		return btf__align_of(btf, t->type);
678	case BTF_KIND_ARRAY:
679		return btf__align_of(btf, btf_array(t)->type);
680	case BTF_KIND_STRUCT:
681	case BTF_KIND_UNION: {
682		const struct btf_member *m = btf_members(t);
683		__u16 vlen = btf_vlen(t);
684		int i, max_align = 1, align;
685
686		for (i = 0; i < vlen; i++, m++) {
687			align = btf__align_of(btf, m->type);
688			if (align <= 0)
689				return libbpf_err(align);
690			max_align = max(max_align, align);
691
692			/* if field offset isn't aligned according to field
693			 * type's alignment, then struct must be packed
694			 */
695			if (btf_member_bitfield_size(t, i) == 0 &&
696			    (m->offset % (8 * align)) != 0)
697				return 1;
698		}
699
700		/* if struct/union size isn't a multiple of its alignment,
701		 * then struct must be packed
702		 */
703		if ((t->size % max_align) != 0)
704			return 1;
705
706		return max_align;
707	}
708	default:
709		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
710		return errno = EINVAL, 0;
711	}
712}
713
714int btf__resolve_type(const struct btf *btf, __u32 type_id)
715{
716	const struct btf_type *t;
717	int depth = 0;
718
719	t = btf__type_by_id(btf, type_id);
720	while (depth < MAX_RESOLVE_DEPTH &&
721	       !btf_type_is_void_or_null(t) &&
722	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
723		type_id = t->type;
724		t = btf__type_by_id(btf, type_id);
725		depth++;
726	}
727
728	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
729		return libbpf_err(-EINVAL);
730
731	return type_id;
732}
733
734__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
735{
736	__u32 i, nr_types = btf__type_cnt(btf);
737
738	if (!strcmp(type_name, "void"))
739		return 0;
740
741	for (i = 1; i < nr_types; i++) {
742		const struct btf_type *t = btf__type_by_id(btf, i);
743		const char *name = btf__name_by_offset(btf, t->name_off);
744
745		if (name && !strcmp(type_name, name))
746			return i;
747	}
748
749	return libbpf_err(-ENOENT);
750}
751
752static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
753				   const char *type_name, __u32 kind)
754{
755	__u32 i, nr_types = btf__type_cnt(btf);
756
757	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
758		return 0;
759
760	for (i = start_id; i < nr_types; i++) {
761		const struct btf_type *t = btf__type_by_id(btf, i);
762		const char *name;
763
764		if (btf_kind(t) != kind)
765			continue;
766		name = btf__name_by_offset(btf, t->name_off);
767		if (name && !strcmp(type_name, name))
768			return i;
769	}
770
771	return libbpf_err(-ENOENT);
772}
773
774__s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
775				 __u32 kind)
776{
777	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
778}
779
780__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
781			     __u32 kind)
782{
783	return btf_find_by_name_kind(btf, 1, type_name, kind);
784}
785
786static bool btf_is_modifiable(const struct btf *btf)
787{
788	return (void *)btf->hdr != btf->raw_data;
789}
790
791void btf__free(struct btf *btf)
792{
793	if (IS_ERR_OR_NULL(btf))
794		return;
795
796	if (btf->fd >= 0)
797		close(btf->fd);
798
799	if (btf_is_modifiable(btf)) {
800		/* if BTF was modified after loading, it will have a split
801		 * in-memory representation for header, types, and strings
802		 * sections, so we need to free all of them individually. It
803		 * might still have a cached contiguous raw data present,
804		 * which will be unconditionally freed below.
805		 */
806		free(btf->hdr);
807		free(btf->types_data);
808		strset__free(btf->strs_set);
809	}
810	free(btf->raw_data);
811	free(btf->raw_data_swapped);
812	free(btf->type_offs);
813	free(btf);
814}
815
816static struct btf *btf_new_empty(struct btf *base_btf)
817{
818	struct btf *btf;
819
820	btf = calloc(1, sizeof(*btf));
821	if (!btf)
822		return ERR_PTR(-ENOMEM);
823
824	btf->nr_types = 0;
825	btf->start_id = 1;
826	btf->start_str_off = 0;
827	btf->fd = -1;
828	btf->ptr_sz = sizeof(void *);
829	btf->swapped_endian = false;
830
831	if (base_btf) {
832		btf->base_btf = base_btf;
833		btf->start_id = btf__type_cnt(base_btf);
834		btf->start_str_off = base_btf->hdr->str_len;
835	}
836
837	/* +1 for empty string at offset 0 */
838	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
839	btf->raw_data = calloc(1, btf->raw_size);
840	if (!btf->raw_data) {
841		free(btf);
842		return ERR_PTR(-ENOMEM);
843	}
844
845	btf->hdr = btf->raw_data;
846	btf->hdr->hdr_len = sizeof(struct btf_header);
847	btf->hdr->magic = BTF_MAGIC;
848	btf->hdr->version = BTF_VERSION;
849
850	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
851	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
852	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
853
854	return btf;
855}
856
857struct btf *btf__new_empty(void)
858{
859	return libbpf_ptr(btf_new_empty(NULL));
860}
861
862struct btf *btf__new_empty_split(struct btf *base_btf)
863{
864	return libbpf_ptr(btf_new_empty(base_btf));
865}
866
867static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
868{
869	struct btf *btf;
870	int err;
871
872	btf = calloc(1, sizeof(struct btf));
873	if (!btf)
874		return ERR_PTR(-ENOMEM);
875
876	btf->nr_types = 0;
877	btf->start_id = 1;
878	btf->start_str_off = 0;
879	btf->fd = -1;
880
881	if (base_btf) {
882		btf->base_btf = base_btf;
883		btf->start_id = btf__type_cnt(base_btf);
884		btf->start_str_off = base_btf->hdr->str_len;
885	}
886
887	btf->raw_data = malloc(size);
888	if (!btf->raw_data) {
889		err = -ENOMEM;
890		goto done;
891	}
892	memcpy(btf->raw_data, data, size);
893	btf->raw_size = size;
894
895	btf->hdr = btf->raw_data;
896	err = btf_parse_hdr(btf);
897	if (err)
898		goto done;
899
900	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
901	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
902
903	err = btf_parse_str_sec(btf);
904	err = err ?: btf_parse_type_sec(btf);
905	if (err)
906		goto done;
907
908done:
909	if (err) {
910		btf__free(btf);
911		return ERR_PTR(err);
912	}
913
914	return btf;
915}
916
917struct btf *btf__new(const void *data, __u32 size)
918{
919	return libbpf_ptr(btf_new(data, size, NULL));
920}
921
922static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
923				 struct btf_ext **btf_ext)
924{
925	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
926	int err = 0, fd = -1, idx = 0;
927	struct btf *btf = NULL;
928	Elf_Scn *scn = NULL;
929	Elf *elf = NULL;
930	GElf_Ehdr ehdr;
931	size_t shstrndx;
932
933	if (elf_version(EV_CURRENT) == EV_NONE) {
934		pr_warn("failed to init libelf for %s\n", path);
935		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
936	}
937
938	fd = open(path, O_RDONLY | O_CLOEXEC);
939	if (fd < 0) {
940		err = -errno;
941		pr_warn("failed to open %s: %s\n", path, strerror(errno));
942		return ERR_PTR(err);
943	}
944
945	err = -LIBBPF_ERRNO__FORMAT;
946
947	elf = elf_begin(fd, ELF_C_READ, NULL);
948	if (!elf) {
949		pr_warn("failed to open %s as ELF file\n", path);
950		goto done;
951	}
952	if (!gelf_getehdr(elf, &ehdr)) {
953		pr_warn("failed to get EHDR from %s\n", path);
954		goto done;
955	}
956
957	if (elf_getshdrstrndx(elf, &shstrndx)) {
958		pr_warn("failed to get section names section index for %s\n",
959			path);
960		goto done;
961	}
962
963	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
964		pr_warn("failed to get e_shstrndx from %s\n", path);
965		goto done;
966	}
967
968	while ((scn = elf_nextscn(elf, scn)) != NULL) {
969		GElf_Shdr sh;
970		char *name;
971
972		idx++;
973		if (gelf_getshdr(scn, &sh) != &sh) {
974			pr_warn("failed to get section(%d) header from %s\n",
975				idx, path);
976			goto done;
977		}
978		name = elf_strptr(elf, shstrndx, sh.sh_name);
979		if (!name) {
980			pr_warn("failed to get section(%d) name from %s\n",
981				idx, path);
982			goto done;
983		}
984		if (strcmp(name, BTF_ELF_SEC) == 0) {
985			btf_data = elf_getdata(scn, 0);
986			if (!btf_data) {
987				pr_warn("failed to get section(%d, %s) data from %s\n",
988					idx, name, path);
989				goto done;
990			}
991			continue;
992		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
993			btf_ext_data = elf_getdata(scn, 0);
994			if (!btf_ext_data) {
995				pr_warn("failed to get section(%d, %s) data from %s\n",
996					idx, name, path);
997				goto done;
998			}
999			continue;
1000		}
1001	}
1002
1003	if (!btf_data) {
1004		pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path);
1005		err = -ENODATA;
1006		goto done;
1007	}
1008	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
1009	err = libbpf_get_error(btf);
1010	if (err)
1011		goto done;
1012
1013	switch (gelf_getclass(elf)) {
1014	case ELFCLASS32:
1015		btf__set_pointer_size(btf, 4);
1016		break;
1017	case ELFCLASS64:
1018		btf__set_pointer_size(btf, 8);
1019		break;
1020	default:
1021		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1022		break;
1023	}
1024
1025	if (btf_ext && btf_ext_data) {
1026		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
1027		err = libbpf_get_error(*btf_ext);
1028		if (err)
1029			goto done;
1030	} else if (btf_ext) {
1031		*btf_ext = NULL;
1032	}
1033done:
1034	if (elf)
1035		elf_end(elf);
1036	close(fd);
1037
1038	if (!err)
1039		return btf;
1040
1041	if (btf_ext)
1042		btf_ext__free(*btf_ext);
1043	btf__free(btf);
1044
1045	return ERR_PTR(err);
1046}
1047
1048struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1049{
1050	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1051}
1052
1053struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1054{
1055	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1056}
1057
1058static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1059{
1060	struct btf *btf = NULL;
1061	void *data = NULL;
1062	FILE *f = NULL;
1063	__u16 magic;
1064	int err = 0;
1065	long sz;
1066
1067	f = fopen(path, "rbe");
1068	if (!f) {
1069		err = -errno;
1070		goto err_out;
1071	}
1072
1073	/* check BTF magic */
1074	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1075		err = -EIO;
1076		goto err_out;
1077	}
1078	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1079		/* definitely not a raw BTF */
1080		err = -EPROTO;
1081		goto err_out;
1082	}
1083
1084	/* get file size */
1085	if (fseek(f, 0, SEEK_END)) {
1086		err = -errno;
1087		goto err_out;
1088	}
1089	sz = ftell(f);
1090	if (sz < 0) {
1091		err = -errno;
1092		goto err_out;
1093	}
1094	/* rewind to the start */
1095	if (fseek(f, 0, SEEK_SET)) {
1096		err = -errno;
1097		goto err_out;
1098	}
1099
1100	/* pre-alloc memory and read all of BTF data */
1101	data = malloc(sz);
1102	if (!data) {
1103		err = -ENOMEM;
1104		goto err_out;
1105	}
1106	if (fread(data, 1, sz, f) < sz) {
1107		err = -EIO;
1108		goto err_out;
1109	}
1110
1111	/* finally parse BTF data */
1112	btf = btf_new(data, sz, base_btf);
1113
1114err_out:
1115	free(data);
1116	if (f)
1117		fclose(f);
1118	return err ? ERR_PTR(err) : btf;
1119}
1120
1121struct btf *btf__parse_raw(const char *path)
1122{
1123	return libbpf_ptr(btf_parse_raw(path, NULL));
1124}
1125
1126struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1127{
1128	return libbpf_ptr(btf_parse_raw(path, base_btf));
1129}
1130
1131static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1132{
1133	struct btf *btf;
1134	int err;
1135
1136	if (btf_ext)
1137		*btf_ext = NULL;
1138
1139	btf = btf_parse_raw(path, base_btf);
1140	err = libbpf_get_error(btf);
1141	if (!err)
1142		return btf;
1143	if (err != -EPROTO)
1144		return ERR_PTR(err);
1145	return btf_parse_elf(path, base_btf, btf_ext);
1146}
1147
1148struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1149{
1150	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1151}
1152
1153struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1154{
1155	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1156}
1157
1158static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1159
1160int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level)
1161{
1162	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1163	__u32 buf_sz = 0, raw_size;
1164	char *buf = NULL, *tmp;
1165	void *raw_data;
1166	int err = 0;
1167
1168	if (btf->fd >= 0)
1169		return libbpf_err(-EEXIST);
1170	if (log_sz && !log_buf)
1171		return libbpf_err(-EINVAL);
1172
1173	/* cache native raw data representation */
1174	raw_data = btf_get_raw_data(btf, &raw_size, false);
1175	if (!raw_data) {
1176		err = -ENOMEM;
1177		goto done;
1178	}
1179	btf->raw_size = raw_size;
1180	btf->raw_data = raw_data;
1181
1182retry_load:
1183	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1184	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1185	 * retry, using either auto-allocated or custom log_buf. This way
1186	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1187	 * for successful load and no need for log_buf.
1188	 */
1189	if (log_level) {
1190		/* if caller didn't provide custom log_buf, we'll keep
1191		 * allocating our own progressively bigger buffers for BTF
1192		 * verification log
1193		 */
1194		if (!log_buf) {
1195			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1196			tmp = realloc(buf, buf_sz);
1197			if (!tmp) {
1198				err = -ENOMEM;
1199				goto done;
1200			}
1201			buf = tmp;
1202			buf[0] = '\0';
1203		}
1204
1205		opts.log_buf = log_buf ? log_buf : buf;
1206		opts.log_size = log_buf ? log_sz : buf_sz;
1207		opts.log_level = log_level;
1208	}
1209
1210	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1211	if (btf->fd < 0) {
1212		/* time to turn on verbose mode and try again */
1213		if (log_level == 0) {
1214			log_level = 1;
1215			goto retry_load;
1216		}
1217		/* only retry if caller didn't provide custom log_buf, but
1218		 * make sure we can never overflow buf_sz
1219		 */
1220		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1221			goto retry_load;
1222
1223		err = -errno;
1224		pr_warn("BTF loading error: %d\n", err);
1225		/* don't print out contents of custom log_buf */
1226		if (!log_buf && buf[0])
1227			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1228	}
1229
1230done:
1231	free(buf);
1232	return libbpf_err(err);
1233}
1234
1235int btf__load_into_kernel(struct btf *btf)
1236{
1237	return btf_load_into_kernel(btf, NULL, 0, 0);
1238}
1239
1240int btf__fd(const struct btf *btf)
1241{
1242	return btf->fd;
1243}
1244
1245void btf__set_fd(struct btf *btf, int fd)
1246{
1247	btf->fd = fd;
1248}
1249
1250static const void *btf_strs_data(const struct btf *btf)
1251{
1252	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1253}
1254
1255static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1256{
1257	struct btf_header *hdr = btf->hdr;
1258	struct btf_type *t;
1259	void *data, *p;
1260	__u32 data_sz;
1261	int i;
1262
1263	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1264	if (data) {
1265		*size = btf->raw_size;
1266		return data;
1267	}
1268
1269	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1270	data = calloc(1, data_sz);
1271	if (!data)
1272		return NULL;
1273	p = data;
1274
1275	memcpy(p, hdr, hdr->hdr_len);
1276	if (swap_endian)
1277		btf_bswap_hdr(p);
1278	p += hdr->hdr_len;
1279
1280	memcpy(p, btf->types_data, hdr->type_len);
1281	if (swap_endian) {
1282		for (i = 0; i < btf->nr_types; i++) {
1283			t = p + btf->type_offs[i];
1284			/* btf_bswap_type_rest() relies on native t->info, so
1285			 * we swap base type info after we swapped all the
1286			 * additional information
1287			 */
1288			if (btf_bswap_type_rest(t))
1289				goto err_out;
1290			btf_bswap_type_base(t);
1291		}
1292	}
1293	p += hdr->type_len;
1294
1295	memcpy(p, btf_strs_data(btf), hdr->str_len);
1296	p += hdr->str_len;
1297
1298	*size = data_sz;
1299	return data;
1300err_out:
1301	free(data);
1302	return NULL;
1303}
1304
1305const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1306{
1307	struct btf *btf = (struct btf *)btf_ro;
1308	__u32 data_sz;
1309	void *data;
1310
1311	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1312	if (!data)
1313		return errno = ENOMEM, NULL;
1314
1315	btf->raw_size = data_sz;
1316	if (btf->swapped_endian)
1317		btf->raw_data_swapped = data;
1318	else
1319		btf->raw_data = data;
1320	*size = data_sz;
1321	return data;
1322}
1323
1324__attribute__((alias("btf__raw_data")))
1325const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1326
1327const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1328{
1329	if (offset < btf->start_str_off)
1330		return btf__str_by_offset(btf->base_btf, offset);
1331	else if (offset - btf->start_str_off < btf->hdr->str_len)
1332		return btf_strs_data(btf) + (offset - btf->start_str_off);
1333	else
1334		return errno = EINVAL, NULL;
1335}
1336
1337const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1338{
1339	return btf__str_by_offset(btf, offset);
1340}
1341
1342struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1343{
1344	struct bpf_btf_info btf_info;
1345	__u32 len = sizeof(btf_info);
1346	__u32 last_size;
1347	struct btf *btf;
1348	void *ptr;
1349	int err;
1350
1351	/* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so
1352	 * let's start with a sane default - 4KiB here - and resize it only if
1353	 * bpf_btf_get_info_by_fd() needs a bigger buffer.
1354	 */
1355	last_size = 4096;
1356	ptr = malloc(last_size);
1357	if (!ptr)
1358		return ERR_PTR(-ENOMEM);
1359
1360	memset(&btf_info, 0, sizeof(btf_info));
1361	btf_info.btf = ptr_to_u64(ptr);
1362	btf_info.btf_size = last_size;
1363	err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1364
1365	if (!err && btf_info.btf_size > last_size) {
1366		void *temp_ptr;
1367
1368		last_size = btf_info.btf_size;
1369		temp_ptr = realloc(ptr, last_size);
1370		if (!temp_ptr) {
1371			btf = ERR_PTR(-ENOMEM);
1372			goto exit_free;
1373		}
1374		ptr = temp_ptr;
1375
1376		len = sizeof(btf_info);
1377		memset(&btf_info, 0, sizeof(btf_info));
1378		btf_info.btf = ptr_to_u64(ptr);
1379		btf_info.btf_size = last_size;
1380
1381		err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1382	}
1383
1384	if (err || btf_info.btf_size > last_size) {
1385		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1386		goto exit_free;
1387	}
1388
1389	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1390
1391exit_free:
1392	free(ptr);
1393	return btf;
1394}
1395
1396struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1397{
1398	struct btf *btf;
1399	int btf_fd;
1400
1401	btf_fd = bpf_btf_get_fd_by_id(id);
1402	if (btf_fd < 0)
1403		return libbpf_err_ptr(-errno);
1404
1405	btf = btf_get_from_fd(btf_fd, base_btf);
1406	close(btf_fd);
1407
1408	return libbpf_ptr(btf);
1409}
1410
1411struct btf *btf__load_from_kernel_by_id(__u32 id)
1412{
1413	return btf__load_from_kernel_by_id_split(id, NULL);
1414}
1415
1416static void btf_invalidate_raw_data(struct btf *btf)
1417{
1418	if (btf->raw_data) {
1419		free(btf->raw_data);
1420		btf->raw_data = NULL;
1421	}
1422	if (btf->raw_data_swapped) {
1423		free(btf->raw_data_swapped);
1424		btf->raw_data_swapped = NULL;
1425	}
1426}
1427
1428/* Ensure BTF is ready to be modified (by splitting into a three memory
1429 * regions for header, types, and strings). Also invalidate cached
1430 * raw_data, if any.
1431 */
1432static int btf_ensure_modifiable(struct btf *btf)
1433{
1434	void *hdr, *types;
1435	struct strset *set = NULL;
1436	int err = -ENOMEM;
1437
1438	if (btf_is_modifiable(btf)) {
1439		/* any BTF modification invalidates raw_data */
1440		btf_invalidate_raw_data(btf);
1441		return 0;
1442	}
1443
1444	/* split raw data into three memory regions */
1445	hdr = malloc(btf->hdr->hdr_len);
1446	types = malloc(btf->hdr->type_len);
1447	if (!hdr || !types)
1448		goto err_out;
1449
1450	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1451	memcpy(types, btf->types_data, btf->hdr->type_len);
1452
1453	/* build lookup index for all strings */
1454	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1455	if (IS_ERR(set)) {
1456		err = PTR_ERR(set);
1457		goto err_out;
1458	}
1459
1460	/* only when everything was successful, update internal state */
1461	btf->hdr = hdr;
1462	btf->types_data = types;
1463	btf->types_data_cap = btf->hdr->type_len;
1464	btf->strs_data = NULL;
1465	btf->strs_set = set;
1466	/* if BTF was created from scratch, all strings are guaranteed to be
1467	 * unique and deduplicated
1468	 */
1469	if (btf->hdr->str_len == 0)
1470		btf->strs_deduped = true;
1471	if (!btf->base_btf && btf->hdr->str_len == 1)
1472		btf->strs_deduped = true;
1473
1474	/* invalidate raw_data representation */
1475	btf_invalidate_raw_data(btf);
1476
1477	return 0;
1478
1479err_out:
1480	strset__free(set);
1481	free(hdr);
1482	free(types);
1483	return err;
1484}
1485
1486/* Find an offset in BTF string section that corresponds to a given string *s*.
1487 * Returns:
1488 *   - >0 offset into string section, if string is found;
1489 *   - -ENOENT, if string is not in the string section;
1490 *   - <0, on any other error.
1491 */
1492int btf__find_str(struct btf *btf, const char *s)
1493{
1494	int off;
1495
1496	if (btf->base_btf) {
1497		off = btf__find_str(btf->base_btf, s);
1498		if (off != -ENOENT)
1499			return off;
1500	}
1501
1502	/* BTF needs to be in a modifiable state to build string lookup index */
1503	if (btf_ensure_modifiable(btf))
1504		return libbpf_err(-ENOMEM);
1505
1506	off = strset__find_str(btf->strs_set, s);
1507	if (off < 0)
1508		return libbpf_err(off);
1509
1510	return btf->start_str_off + off;
1511}
1512
1513/* Add a string s to the BTF string section.
1514 * Returns:
1515 *   - > 0 offset into string section, on success;
1516 *   - < 0, on error.
1517 */
1518int btf__add_str(struct btf *btf, const char *s)
1519{
1520	int off;
1521
1522	if (btf->base_btf) {
1523		off = btf__find_str(btf->base_btf, s);
1524		if (off != -ENOENT)
1525			return off;
1526	}
1527
1528	if (btf_ensure_modifiable(btf))
1529		return libbpf_err(-ENOMEM);
1530
1531	off = strset__add_str(btf->strs_set, s);
1532	if (off < 0)
1533		return libbpf_err(off);
1534
1535	btf->hdr->str_len = strset__data_size(btf->strs_set);
1536
1537	return btf->start_str_off + off;
1538}
1539
1540static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1541{
1542	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1543			      btf->hdr->type_len, UINT_MAX, add_sz);
1544}
1545
1546static void btf_type_inc_vlen(struct btf_type *t)
1547{
1548	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1549}
1550
1551static int btf_commit_type(struct btf *btf, int data_sz)
1552{
1553	int err;
1554
1555	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1556	if (err)
1557		return libbpf_err(err);
1558
1559	btf->hdr->type_len += data_sz;
1560	btf->hdr->str_off += data_sz;
1561	btf->nr_types++;
1562	return btf->start_id + btf->nr_types - 1;
1563}
1564
1565struct btf_pipe {
1566	const struct btf *src;
1567	struct btf *dst;
1568	struct hashmap *str_off_map; /* map string offsets from src to dst */
1569};
1570
1571static int btf_rewrite_str(__u32 *str_off, void *ctx)
1572{
1573	struct btf_pipe *p = ctx;
1574	long mapped_off;
1575	int off, err;
1576
1577	if (!*str_off) /* nothing to do for empty strings */
1578		return 0;
1579
1580	if (p->str_off_map &&
1581	    hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1582		*str_off = mapped_off;
1583		return 0;
1584	}
1585
1586	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1587	if (off < 0)
1588		return off;
1589
1590	/* Remember string mapping from src to dst.  It avoids
1591	 * performing expensive string comparisons.
1592	 */
1593	if (p->str_off_map) {
1594		err = hashmap__append(p->str_off_map, *str_off, off);
1595		if (err)
1596			return err;
1597	}
1598
1599	*str_off = off;
1600	return 0;
1601}
1602
1603int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1604{
1605	struct btf_pipe p = { .src = src_btf, .dst = btf };
1606	struct btf_type *t;
1607	int sz, err;
1608
1609	sz = btf_type_size(src_type);
1610	if (sz < 0)
1611		return libbpf_err(sz);
1612
1613	/* deconstruct BTF, if necessary, and invalidate raw_data */
1614	if (btf_ensure_modifiable(btf))
1615		return libbpf_err(-ENOMEM);
1616
1617	t = btf_add_type_mem(btf, sz);
1618	if (!t)
1619		return libbpf_err(-ENOMEM);
1620
1621	memcpy(t, src_type, sz);
1622
1623	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1624	if (err)
1625		return libbpf_err(err);
1626
1627	return btf_commit_type(btf, sz);
1628}
1629
1630static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1631{
1632	struct btf *btf = ctx;
1633
1634	if (!*type_id) /* nothing to do for VOID references */
1635		return 0;
1636
1637	/* we haven't updated btf's type count yet, so
1638	 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1639	 * add to all newly added BTF types
1640	 */
1641	*type_id += btf->start_id + btf->nr_types - 1;
1642	return 0;
1643}
1644
1645static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1646static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1647
1648int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1649{
1650	struct btf_pipe p = { .src = src_btf, .dst = btf };
1651	int data_sz, sz, cnt, i, err, old_strs_len;
1652	__u32 *off;
1653	void *t;
1654
1655	/* appending split BTF isn't supported yet */
1656	if (src_btf->base_btf)
1657		return libbpf_err(-ENOTSUP);
1658
1659	/* deconstruct BTF, if necessary, and invalidate raw_data */
1660	if (btf_ensure_modifiable(btf))
1661		return libbpf_err(-ENOMEM);
1662
1663	/* remember original strings section size if we have to roll back
1664	 * partial strings section changes
1665	 */
1666	old_strs_len = btf->hdr->str_len;
1667
1668	data_sz = src_btf->hdr->type_len;
1669	cnt = btf__type_cnt(src_btf) - 1;
1670
1671	/* pre-allocate enough memory for new types */
1672	t = btf_add_type_mem(btf, data_sz);
1673	if (!t)
1674		return libbpf_err(-ENOMEM);
1675
1676	/* pre-allocate enough memory for type offset index for new types */
1677	off = btf_add_type_offs_mem(btf, cnt);
1678	if (!off)
1679		return libbpf_err(-ENOMEM);
1680
1681	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1682	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1683	if (IS_ERR(p.str_off_map))
1684		return libbpf_err(-ENOMEM);
1685
1686	/* bulk copy types data for all types from src_btf */
1687	memcpy(t, src_btf->types_data, data_sz);
1688
1689	for (i = 0; i < cnt; i++) {
1690		sz = btf_type_size(t);
1691		if (sz < 0) {
1692			/* unlikely, has to be corrupted src_btf */
1693			err = sz;
1694			goto err_out;
1695		}
1696
1697		/* fill out type ID to type offset mapping for lookups by type ID */
1698		*off = t - btf->types_data;
1699
1700		/* add, dedup, and remap strings referenced by this BTF type */
1701		err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1702		if (err)
1703			goto err_out;
1704
1705		/* remap all type IDs referenced from this BTF type */
1706		err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1707		if (err)
1708			goto err_out;
1709
1710		/* go to next type data and type offset index entry */
1711		t += sz;
1712		off++;
1713	}
1714
1715	/* Up until now any of the copied type data was effectively invisible,
1716	 * so if we exited early before this point due to error, BTF would be
1717	 * effectively unmodified. There would be extra internal memory
1718	 * pre-allocated, but it would not be available for querying.  But now
1719	 * that we've copied and rewritten all the data successfully, we can
1720	 * update type count and various internal offsets and sizes to
1721	 * "commit" the changes and made them visible to the outside world.
1722	 */
1723	btf->hdr->type_len += data_sz;
1724	btf->hdr->str_off += data_sz;
1725	btf->nr_types += cnt;
1726
1727	hashmap__free(p.str_off_map);
1728
1729	/* return type ID of the first added BTF type */
1730	return btf->start_id + btf->nr_types - cnt;
1731err_out:
1732	/* zero out preallocated memory as if it was just allocated with
1733	 * libbpf_add_mem()
1734	 */
1735	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1736	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1737
1738	/* and now restore original strings section size; types data size
1739	 * wasn't modified, so doesn't need restoring, see big comment above
1740	 */
1741	btf->hdr->str_len = old_strs_len;
1742
1743	hashmap__free(p.str_off_map);
1744
1745	return libbpf_err(err);
1746}
1747
1748/*
1749 * Append new BTF_KIND_INT type with:
1750 *   - *name* - non-empty, non-NULL type name;
1751 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1752 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1753 * Returns:
1754 *   - >0, type ID of newly added BTF type;
1755 *   - <0, on error.
1756 */
1757int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1758{
1759	struct btf_type *t;
1760	int sz, name_off;
1761
1762	/* non-empty name */
1763	if (!name || !name[0])
1764		return libbpf_err(-EINVAL);
1765	/* byte_sz must be power of 2 */
1766	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1767		return libbpf_err(-EINVAL);
1768	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1769		return libbpf_err(-EINVAL);
1770
1771	/* deconstruct BTF, if necessary, and invalidate raw_data */
1772	if (btf_ensure_modifiable(btf))
1773		return libbpf_err(-ENOMEM);
1774
1775	sz = sizeof(struct btf_type) + sizeof(int);
1776	t = btf_add_type_mem(btf, sz);
1777	if (!t)
1778		return libbpf_err(-ENOMEM);
1779
1780	/* if something goes wrong later, we might end up with an extra string,
1781	 * but that shouldn't be a problem, because BTF can't be constructed
1782	 * completely anyway and will most probably be just discarded
1783	 */
1784	name_off = btf__add_str(btf, name);
1785	if (name_off < 0)
1786		return name_off;
1787
1788	t->name_off = name_off;
1789	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1790	t->size = byte_sz;
1791	/* set INT info, we don't allow setting legacy bit offset/size */
1792	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1793
1794	return btf_commit_type(btf, sz);
1795}
1796
1797/*
1798 * Append new BTF_KIND_FLOAT type with:
1799 *   - *name* - non-empty, non-NULL type name;
1800 *   - *sz* - size of the type, in bytes;
1801 * Returns:
1802 *   - >0, type ID of newly added BTF type;
1803 *   - <0, on error.
1804 */
1805int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1806{
1807	struct btf_type *t;
1808	int sz, name_off;
1809
1810	/* non-empty name */
1811	if (!name || !name[0])
1812		return libbpf_err(-EINVAL);
1813
1814	/* byte_sz must be one of the explicitly allowed values */
1815	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1816	    byte_sz != 16)
1817		return libbpf_err(-EINVAL);
1818
1819	if (btf_ensure_modifiable(btf))
1820		return libbpf_err(-ENOMEM);
1821
1822	sz = sizeof(struct btf_type);
1823	t = btf_add_type_mem(btf, sz);
1824	if (!t)
1825		return libbpf_err(-ENOMEM);
1826
1827	name_off = btf__add_str(btf, name);
1828	if (name_off < 0)
1829		return name_off;
1830
1831	t->name_off = name_off;
1832	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1833	t->size = byte_sz;
1834
1835	return btf_commit_type(btf, sz);
1836}
1837
1838/* it's completely legal to append BTF types with type IDs pointing forward to
1839 * types that haven't been appended yet, so we only make sure that id looks
1840 * sane, we can't guarantee that ID will always be valid
1841 */
1842static int validate_type_id(int id)
1843{
1844	if (id < 0 || id > BTF_MAX_NR_TYPES)
1845		return -EINVAL;
1846	return 0;
1847}
1848
1849/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1850static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1851{
1852	struct btf_type *t;
1853	int sz, name_off = 0;
1854
1855	if (validate_type_id(ref_type_id))
1856		return libbpf_err(-EINVAL);
1857
1858	if (btf_ensure_modifiable(btf))
1859		return libbpf_err(-ENOMEM);
1860
1861	sz = sizeof(struct btf_type);
1862	t = btf_add_type_mem(btf, sz);
1863	if (!t)
1864		return libbpf_err(-ENOMEM);
1865
1866	if (name && name[0]) {
1867		name_off = btf__add_str(btf, name);
1868		if (name_off < 0)
1869			return name_off;
1870	}
1871
1872	t->name_off = name_off;
1873	t->info = btf_type_info(kind, 0, 0);
1874	t->type = ref_type_id;
1875
1876	return btf_commit_type(btf, sz);
1877}
1878
1879/*
1880 * Append new BTF_KIND_PTR type with:
1881 *   - *ref_type_id* - referenced type ID, it might not exist yet;
1882 * Returns:
1883 *   - >0, type ID of newly added BTF type;
1884 *   - <0, on error.
1885 */
1886int btf__add_ptr(struct btf *btf, int ref_type_id)
1887{
1888	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1889}
1890
1891/*
1892 * Append new BTF_KIND_ARRAY type with:
1893 *   - *index_type_id* - type ID of the type describing array index;
1894 *   - *elem_type_id* - type ID of the type describing array element;
1895 *   - *nr_elems* - the size of the array;
1896 * Returns:
1897 *   - >0, type ID of newly added BTF type;
1898 *   - <0, on error.
1899 */
1900int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1901{
1902	struct btf_type *t;
1903	struct btf_array *a;
1904	int sz;
1905
1906	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1907		return libbpf_err(-EINVAL);
1908
1909	if (btf_ensure_modifiable(btf))
1910		return libbpf_err(-ENOMEM);
1911
1912	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1913	t = btf_add_type_mem(btf, sz);
1914	if (!t)
1915		return libbpf_err(-ENOMEM);
1916
1917	t->name_off = 0;
1918	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1919	t->size = 0;
1920
1921	a = btf_array(t);
1922	a->type = elem_type_id;
1923	a->index_type = index_type_id;
1924	a->nelems = nr_elems;
1925
1926	return btf_commit_type(btf, sz);
1927}
1928
1929/* generic STRUCT/UNION append function */
1930static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1931{
1932	struct btf_type *t;
1933	int sz, name_off = 0;
1934
1935	if (btf_ensure_modifiable(btf))
1936		return libbpf_err(-ENOMEM);
1937
1938	sz = sizeof(struct btf_type);
1939	t = btf_add_type_mem(btf, sz);
1940	if (!t)
1941		return libbpf_err(-ENOMEM);
1942
1943	if (name && name[0]) {
1944		name_off = btf__add_str(btf, name);
1945		if (name_off < 0)
1946			return name_off;
1947	}
1948
1949	/* start out with vlen=0 and no kflag; this will be adjusted when
1950	 * adding each member
1951	 */
1952	t->name_off = name_off;
1953	t->info = btf_type_info(kind, 0, 0);
1954	t->size = bytes_sz;
1955
1956	return btf_commit_type(btf, sz);
1957}
1958
1959/*
1960 * Append new BTF_KIND_STRUCT type with:
1961 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1962 *   - *byte_sz* - size of the struct, in bytes;
1963 *
1964 * Struct initially has no fields in it. Fields can be added by
1965 * btf__add_field() right after btf__add_struct() succeeds.
1966 *
1967 * Returns:
1968 *   - >0, type ID of newly added BTF type;
1969 *   - <0, on error.
1970 */
1971int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1972{
1973	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1974}
1975
1976/*
1977 * Append new BTF_KIND_UNION type with:
1978 *   - *name* - name of the union, can be NULL or empty for anonymous union;
1979 *   - *byte_sz* - size of the union, in bytes;
1980 *
1981 * Union initially has no fields in it. Fields can be added by
1982 * btf__add_field() right after btf__add_union() succeeds. All fields
1983 * should have *bit_offset* of 0.
1984 *
1985 * Returns:
1986 *   - >0, type ID of newly added BTF type;
1987 *   - <0, on error.
1988 */
1989int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1990{
1991	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1992}
1993
1994static struct btf_type *btf_last_type(struct btf *btf)
1995{
1996	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
1997}
1998
1999/*
2000 * Append new field for the current STRUCT/UNION type with:
2001 *   - *name* - name of the field, can be NULL or empty for anonymous field;
2002 *   - *type_id* - type ID for the type describing field type;
2003 *   - *bit_offset* - bit offset of the start of the field within struct/union;
2004 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2005 * Returns:
2006 *   -  0, on success;
2007 *   - <0, on error.
2008 */
2009int btf__add_field(struct btf *btf, const char *name, int type_id,
2010		   __u32 bit_offset, __u32 bit_size)
2011{
2012	struct btf_type *t;
2013	struct btf_member *m;
2014	bool is_bitfield;
2015	int sz, name_off = 0;
2016
2017	/* last type should be union/struct */
2018	if (btf->nr_types == 0)
2019		return libbpf_err(-EINVAL);
2020	t = btf_last_type(btf);
2021	if (!btf_is_composite(t))
2022		return libbpf_err(-EINVAL);
2023
2024	if (validate_type_id(type_id))
2025		return libbpf_err(-EINVAL);
2026	/* best-effort bit field offset/size enforcement */
2027	is_bitfield = bit_size || (bit_offset % 8 != 0);
2028	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2029		return libbpf_err(-EINVAL);
2030
2031	/* only offset 0 is allowed for unions */
2032	if (btf_is_union(t) && bit_offset)
2033		return libbpf_err(-EINVAL);
2034
2035	/* decompose and invalidate raw data */
2036	if (btf_ensure_modifiable(btf))
2037		return libbpf_err(-ENOMEM);
2038
2039	sz = sizeof(struct btf_member);
2040	m = btf_add_type_mem(btf, sz);
2041	if (!m)
2042		return libbpf_err(-ENOMEM);
2043
2044	if (name && name[0]) {
2045		name_off = btf__add_str(btf, name);
2046		if (name_off < 0)
2047			return name_off;
2048	}
2049
2050	m->name_off = name_off;
2051	m->type = type_id;
2052	m->offset = bit_offset | (bit_size << 24);
2053
2054	/* btf_add_type_mem can invalidate t pointer */
2055	t = btf_last_type(btf);
2056	/* update parent type's vlen and kflag */
2057	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2058
2059	btf->hdr->type_len += sz;
2060	btf->hdr->str_off += sz;
2061	return 0;
2062}
2063
2064static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2065			       bool is_signed, __u8 kind)
2066{
2067	struct btf_type *t;
2068	int sz, name_off = 0;
2069
2070	/* byte_sz must be power of 2 */
2071	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2072		return libbpf_err(-EINVAL);
2073
2074	if (btf_ensure_modifiable(btf))
2075		return libbpf_err(-ENOMEM);
2076
2077	sz = sizeof(struct btf_type);
2078	t = btf_add_type_mem(btf, sz);
2079	if (!t)
2080		return libbpf_err(-ENOMEM);
2081
2082	if (name && name[0]) {
2083		name_off = btf__add_str(btf, name);
2084		if (name_off < 0)
2085			return name_off;
2086	}
2087
2088	/* start out with vlen=0; it will be adjusted when adding enum values */
2089	t->name_off = name_off;
2090	t->info = btf_type_info(kind, 0, is_signed);
2091	t->size = byte_sz;
2092
2093	return btf_commit_type(btf, sz);
2094}
2095
2096/*
2097 * Append new BTF_KIND_ENUM type with:
2098 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2099 *   - *byte_sz* - size of the enum, in bytes.
2100 *
2101 * Enum initially has no enum values in it (and corresponds to enum forward
2102 * declaration). Enumerator values can be added by btf__add_enum_value()
2103 * immediately after btf__add_enum() succeeds.
2104 *
2105 * Returns:
2106 *   - >0, type ID of newly added BTF type;
2107 *   - <0, on error.
2108 */
2109int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2110{
2111	/*
2112	 * set the signedness to be unsigned, it will change to signed
2113	 * if any later enumerator is negative.
2114	 */
2115	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2116}
2117
2118/*
2119 * Append new enum value for the current ENUM type with:
2120 *   - *name* - name of the enumerator value, can't be NULL or empty;
2121 *   - *value* - integer value corresponding to enum value *name*;
2122 * Returns:
2123 *   -  0, on success;
2124 *   - <0, on error.
2125 */
2126int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2127{
2128	struct btf_type *t;
2129	struct btf_enum *v;
2130	int sz, name_off;
2131
2132	/* last type should be BTF_KIND_ENUM */
2133	if (btf->nr_types == 0)
2134		return libbpf_err(-EINVAL);
2135	t = btf_last_type(btf);
2136	if (!btf_is_enum(t))
2137		return libbpf_err(-EINVAL);
2138
2139	/* non-empty name */
2140	if (!name || !name[0])
2141		return libbpf_err(-EINVAL);
2142	if (value < INT_MIN || value > UINT_MAX)
2143		return libbpf_err(-E2BIG);
2144
2145	/* decompose and invalidate raw data */
2146	if (btf_ensure_modifiable(btf))
2147		return libbpf_err(-ENOMEM);
2148
2149	sz = sizeof(struct btf_enum);
2150	v = btf_add_type_mem(btf, sz);
2151	if (!v)
2152		return libbpf_err(-ENOMEM);
2153
2154	name_off = btf__add_str(btf, name);
2155	if (name_off < 0)
2156		return name_off;
2157
2158	v->name_off = name_off;
2159	v->val = value;
2160
2161	/* update parent type's vlen */
2162	t = btf_last_type(btf);
2163	btf_type_inc_vlen(t);
2164
2165	/* if negative value, set signedness to signed */
2166	if (value < 0)
2167		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2168
2169	btf->hdr->type_len += sz;
2170	btf->hdr->str_off += sz;
2171	return 0;
2172}
2173
2174/*
2175 * Append new BTF_KIND_ENUM64 type with:
2176 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2177 *   - *byte_sz* - size of the enum, in bytes.
2178 *   - *is_signed* - whether the enum values are signed or not;
2179 *
2180 * Enum initially has no enum values in it (and corresponds to enum forward
2181 * declaration). Enumerator values can be added by btf__add_enum64_value()
2182 * immediately after btf__add_enum64() succeeds.
2183 *
2184 * Returns:
2185 *   - >0, type ID of newly added BTF type;
2186 *   - <0, on error.
2187 */
2188int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2189		    bool is_signed)
2190{
2191	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2192				   BTF_KIND_ENUM64);
2193}
2194
2195/*
2196 * Append new enum value for the current ENUM64 type with:
2197 *   - *name* - name of the enumerator value, can't be NULL or empty;
2198 *   - *value* - integer value corresponding to enum value *name*;
2199 * Returns:
2200 *   -  0, on success;
2201 *   - <0, on error.
2202 */
2203int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2204{
2205	struct btf_enum64 *v;
2206	struct btf_type *t;
2207	int sz, name_off;
2208
2209	/* last type should be BTF_KIND_ENUM64 */
2210	if (btf->nr_types == 0)
2211		return libbpf_err(-EINVAL);
2212	t = btf_last_type(btf);
2213	if (!btf_is_enum64(t))
2214		return libbpf_err(-EINVAL);
2215
2216	/* non-empty name */
2217	if (!name || !name[0])
2218		return libbpf_err(-EINVAL);
2219
2220	/* decompose and invalidate raw data */
2221	if (btf_ensure_modifiable(btf))
2222		return libbpf_err(-ENOMEM);
2223
2224	sz = sizeof(struct btf_enum64);
2225	v = btf_add_type_mem(btf, sz);
2226	if (!v)
2227		return libbpf_err(-ENOMEM);
2228
2229	name_off = btf__add_str(btf, name);
2230	if (name_off < 0)
2231		return name_off;
2232
2233	v->name_off = name_off;
2234	v->val_lo32 = (__u32)value;
2235	v->val_hi32 = value >> 32;
2236
2237	/* update parent type's vlen */
2238	t = btf_last_type(btf);
2239	btf_type_inc_vlen(t);
2240
2241	btf->hdr->type_len += sz;
2242	btf->hdr->str_off += sz;
2243	return 0;
2244}
2245
2246/*
2247 * Append new BTF_KIND_FWD type with:
2248 *   - *name*, non-empty/non-NULL name;
2249 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2250 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2251 * Returns:
2252 *   - >0, type ID of newly added BTF type;
2253 *   - <0, on error.
2254 */
2255int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2256{
2257	if (!name || !name[0])
2258		return libbpf_err(-EINVAL);
2259
2260	switch (fwd_kind) {
2261	case BTF_FWD_STRUCT:
2262	case BTF_FWD_UNION: {
2263		struct btf_type *t;
2264		int id;
2265
2266		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2267		if (id <= 0)
2268			return id;
2269		t = btf_type_by_id(btf, id);
2270		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2271		return id;
2272	}
2273	case BTF_FWD_ENUM:
2274		/* enum forward in BTF currently is just an enum with no enum
2275		 * values; we also assume a standard 4-byte size for it
2276		 */
2277		return btf__add_enum(btf, name, sizeof(int));
2278	default:
2279		return libbpf_err(-EINVAL);
2280	}
2281}
2282
2283/*
2284 * Append new BTF_KING_TYPEDEF type with:
2285 *   - *name*, non-empty/non-NULL name;
2286 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2287 * Returns:
2288 *   - >0, type ID of newly added BTF type;
2289 *   - <0, on error.
2290 */
2291int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2292{
2293	if (!name || !name[0])
2294		return libbpf_err(-EINVAL);
2295
2296	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2297}
2298
2299/*
2300 * Append new BTF_KIND_VOLATILE type with:
2301 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2302 * Returns:
2303 *   - >0, type ID of newly added BTF type;
2304 *   - <0, on error.
2305 */
2306int btf__add_volatile(struct btf *btf, int ref_type_id)
2307{
2308	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2309}
2310
2311/*
2312 * Append new BTF_KIND_CONST type with:
2313 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2314 * Returns:
2315 *   - >0, type ID of newly added BTF type;
2316 *   - <0, on error.
2317 */
2318int btf__add_const(struct btf *btf, int ref_type_id)
2319{
2320	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2321}
2322
2323/*
2324 * Append new BTF_KIND_RESTRICT type with:
2325 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2326 * Returns:
2327 *   - >0, type ID of newly added BTF type;
2328 *   - <0, on error.
2329 */
2330int btf__add_restrict(struct btf *btf, int ref_type_id)
2331{
2332	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2333}
2334
2335/*
2336 * Append new BTF_KIND_TYPE_TAG type with:
2337 *   - *value*, non-empty/non-NULL tag value;
2338 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2339 * Returns:
2340 *   - >0, type ID of newly added BTF type;
2341 *   - <0, on error.
2342 */
2343int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2344{
2345	if (!value || !value[0])
2346		return libbpf_err(-EINVAL);
2347
2348	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2349}
2350
2351/*
2352 * Append new BTF_KIND_FUNC type with:
2353 *   - *name*, non-empty/non-NULL name;
2354 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2355 * Returns:
2356 *   - >0, type ID of newly added BTF type;
2357 *   - <0, on error.
2358 */
2359int btf__add_func(struct btf *btf, const char *name,
2360		  enum btf_func_linkage linkage, int proto_type_id)
2361{
2362	int id;
2363
2364	if (!name || !name[0])
2365		return libbpf_err(-EINVAL);
2366	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2367	    linkage != BTF_FUNC_EXTERN)
2368		return libbpf_err(-EINVAL);
2369
2370	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2371	if (id > 0) {
2372		struct btf_type *t = btf_type_by_id(btf, id);
2373
2374		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2375	}
2376	return libbpf_err(id);
2377}
2378
2379/*
2380 * Append new BTF_KIND_FUNC_PROTO with:
2381 *   - *ret_type_id* - type ID for return result of a function.
2382 *
2383 * Function prototype initially has no arguments, but they can be added by
2384 * btf__add_func_param() one by one, immediately after
2385 * btf__add_func_proto() succeeded.
2386 *
2387 * Returns:
2388 *   - >0, type ID of newly added BTF type;
2389 *   - <0, on error.
2390 */
2391int btf__add_func_proto(struct btf *btf, int ret_type_id)
2392{
2393	struct btf_type *t;
2394	int sz;
2395
2396	if (validate_type_id(ret_type_id))
2397		return libbpf_err(-EINVAL);
2398
2399	if (btf_ensure_modifiable(btf))
2400		return libbpf_err(-ENOMEM);
2401
2402	sz = sizeof(struct btf_type);
2403	t = btf_add_type_mem(btf, sz);
2404	if (!t)
2405		return libbpf_err(-ENOMEM);
2406
2407	/* start out with vlen=0; this will be adjusted when adding enum
2408	 * values, if necessary
2409	 */
2410	t->name_off = 0;
2411	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2412	t->type = ret_type_id;
2413
2414	return btf_commit_type(btf, sz);
2415}
2416
2417/*
2418 * Append new function parameter for current FUNC_PROTO type with:
2419 *   - *name* - parameter name, can be NULL or empty;
2420 *   - *type_id* - type ID describing the type of the parameter.
2421 * Returns:
2422 *   -  0, on success;
2423 *   - <0, on error.
2424 */
2425int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2426{
2427	struct btf_type *t;
2428	struct btf_param *p;
2429	int sz, name_off = 0;
2430
2431	if (validate_type_id(type_id))
2432		return libbpf_err(-EINVAL);
2433
2434	/* last type should be BTF_KIND_FUNC_PROTO */
2435	if (btf->nr_types == 0)
2436		return libbpf_err(-EINVAL);
2437	t = btf_last_type(btf);
2438	if (!btf_is_func_proto(t))
2439		return libbpf_err(-EINVAL);
2440
2441	/* decompose and invalidate raw data */
2442	if (btf_ensure_modifiable(btf))
2443		return libbpf_err(-ENOMEM);
2444
2445	sz = sizeof(struct btf_param);
2446	p = btf_add_type_mem(btf, sz);
2447	if (!p)
2448		return libbpf_err(-ENOMEM);
2449
2450	if (name && name[0]) {
2451		name_off = btf__add_str(btf, name);
2452		if (name_off < 0)
2453			return name_off;
2454	}
2455
2456	p->name_off = name_off;
2457	p->type = type_id;
2458
2459	/* update parent type's vlen */
2460	t = btf_last_type(btf);
2461	btf_type_inc_vlen(t);
2462
2463	btf->hdr->type_len += sz;
2464	btf->hdr->str_off += sz;
2465	return 0;
2466}
2467
2468/*
2469 * Append new BTF_KIND_VAR type with:
2470 *   - *name* - non-empty/non-NULL name;
2471 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2472 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2473 *   - *type_id* - type ID of the type describing the type of the variable.
2474 * Returns:
2475 *   - >0, type ID of newly added BTF type;
2476 *   - <0, on error.
2477 */
2478int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2479{
2480	struct btf_type *t;
2481	struct btf_var *v;
2482	int sz, name_off;
2483
2484	/* non-empty name */
2485	if (!name || !name[0])
2486		return libbpf_err(-EINVAL);
2487	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2488	    linkage != BTF_VAR_GLOBAL_EXTERN)
2489		return libbpf_err(-EINVAL);
2490	if (validate_type_id(type_id))
2491		return libbpf_err(-EINVAL);
2492
2493	/* deconstruct BTF, if necessary, and invalidate raw_data */
2494	if (btf_ensure_modifiable(btf))
2495		return libbpf_err(-ENOMEM);
2496
2497	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2498	t = btf_add_type_mem(btf, sz);
2499	if (!t)
2500		return libbpf_err(-ENOMEM);
2501
2502	name_off = btf__add_str(btf, name);
2503	if (name_off < 0)
2504		return name_off;
2505
2506	t->name_off = name_off;
2507	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2508	t->type = type_id;
2509
2510	v = btf_var(t);
2511	v->linkage = linkage;
2512
2513	return btf_commit_type(btf, sz);
2514}
2515
2516/*
2517 * Append new BTF_KIND_DATASEC type with:
2518 *   - *name* - non-empty/non-NULL name;
2519 *   - *byte_sz* - data section size, in bytes.
2520 *
2521 * Data section is initially empty. Variables info can be added with
2522 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2523 *
2524 * Returns:
2525 *   - >0, type ID of newly added BTF type;
2526 *   - <0, on error.
2527 */
2528int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2529{
2530	struct btf_type *t;
2531	int sz, name_off;
2532
2533	/* non-empty name */
2534	if (!name || !name[0])
2535		return libbpf_err(-EINVAL);
2536
2537	if (btf_ensure_modifiable(btf))
2538		return libbpf_err(-ENOMEM);
2539
2540	sz = sizeof(struct btf_type);
2541	t = btf_add_type_mem(btf, sz);
2542	if (!t)
2543		return libbpf_err(-ENOMEM);
2544
2545	name_off = btf__add_str(btf, name);
2546	if (name_off < 0)
2547		return name_off;
2548
2549	/* start with vlen=0, which will be update as var_secinfos are added */
2550	t->name_off = name_off;
2551	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2552	t->size = byte_sz;
2553
2554	return btf_commit_type(btf, sz);
2555}
2556
2557/*
2558 * Append new data section variable information entry for current DATASEC type:
2559 *   - *var_type_id* - type ID, describing type of the variable;
2560 *   - *offset* - variable offset within data section, in bytes;
2561 *   - *byte_sz* - variable size, in bytes.
2562 *
2563 * Returns:
2564 *   -  0, on success;
2565 *   - <0, on error.
2566 */
2567int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2568{
2569	struct btf_type *t;
2570	struct btf_var_secinfo *v;
2571	int sz;
2572
2573	/* last type should be BTF_KIND_DATASEC */
2574	if (btf->nr_types == 0)
2575		return libbpf_err(-EINVAL);
2576	t = btf_last_type(btf);
2577	if (!btf_is_datasec(t))
2578		return libbpf_err(-EINVAL);
2579
2580	if (validate_type_id(var_type_id))
2581		return libbpf_err(-EINVAL);
2582
2583	/* decompose and invalidate raw data */
2584	if (btf_ensure_modifiable(btf))
2585		return libbpf_err(-ENOMEM);
2586
2587	sz = sizeof(struct btf_var_secinfo);
2588	v = btf_add_type_mem(btf, sz);
2589	if (!v)
2590		return libbpf_err(-ENOMEM);
2591
2592	v->type = var_type_id;
2593	v->offset = offset;
2594	v->size = byte_sz;
2595
2596	/* update parent type's vlen */
2597	t = btf_last_type(btf);
2598	btf_type_inc_vlen(t);
2599
2600	btf->hdr->type_len += sz;
2601	btf->hdr->str_off += sz;
2602	return 0;
2603}
2604
2605/*
2606 * Append new BTF_KIND_DECL_TAG type with:
2607 *   - *value* - non-empty/non-NULL string;
2608 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2609 *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2610 *     member or function argument index;
2611 * Returns:
2612 *   - >0, type ID of newly added BTF type;
2613 *   - <0, on error.
2614 */
2615int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2616		 int component_idx)
2617{
2618	struct btf_type *t;
2619	int sz, value_off;
2620
2621	if (!value || !value[0] || component_idx < -1)
2622		return libbpf_err(-EINVAL);
2623
2624	if (validate_type_id(ref_type_id))
2625		return libbpf_err(-EINVAL);
2626
2627	if (btf_ensure_modifiable(btf))
2628		return libbpf_err(-ENOMEM);
2629
2630	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2631	t = btf_add_type_mem(btf, sz);
2632	if (!t)
2633		return libbpf_err(-ENOMEM);
2634
2635	value_off = btf__add_str(btf, value);
2636	if (value_off < 0)
2637		return value_off;
2638
2639	t->name_off = value_off;
2640	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2641	t->type = ref_type_id;
2642	btf_decl_tag(t)->component_idx = component_idx;
2643
2644	return btf_commit_type(btf, sz);
2645}
2646
2647struct btf_ext_sec_setup_param {
2648	__u32 off;
2649	__u32 len;
2650	__u32 min_rec_size;
2651	struct btf_ext_info *ext_info;
2652	const char *desc;
2653};
2654
2655static int btf_ext_setup_info(struct btf_ext *btf_ext,
2656			      struct btf_ext_sec_setup_param *ext_sec)
2657{
2658	const struct btf_ext_info_sec *sinfo;
2659	struct btf_ext_info *ext_info;
2660	__u32 info_left, record_size;
2661	size_t sec_cnt = 0;
2662	/* The start of the info sec (including the __u32 record_size). */
2663	void *info;
2664
2665	if (ext_sec->len == 0)
2666		return 0;
2667
2668	if (ext_sec->off & 0x03) {
2669		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2670		     ext_sec->desc);
2671		return -EINVAL;
2672	}
2673
2674	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2675	info_left = ext_sec->len;
2676
2677	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2678		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2679			 ext_sec->desc, ext_sec->off, ext_sec->len);
2680		return -EINVAL;
2681	}
2682
2683	/* At least a record size */
2684	if (info_left < sizeof(__u32)) {
2685		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2686		return -EINVAL;
2687	}
2688
2689	/* The record size needs to meet the minimum standard */
2690	record_size = *(__u32 *)info;
2691	if (record_size < ext_sec->min_rec_size ||
2692	    record_size & 0x03) {
2693		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2694			 ext_sec->desc, record_size);
2695		return -EINVAL;
2696	}
2697
2698	sinfo = info + sizeof(__u32);
2699	info_left -= sizeof(__u32);
2700
2701	/* If no records, return failure now so .BTF.ext won't be used. */
2702	if (!info_left) {
2703		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2704		return -EINVAL;
2705	}
2706
2707	while (info_left) {
2708		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2709		__u64 total_record_size;
2710		__u32 num_records;
2711
2712		if (info_left < sec_hdrlen) {
2713			pr_debug("%s section header is not found in .BTF.ext\n",
2714			     ext_sec->desc);
2715			return -EINVAL;
2716		}
2717
2718		num_records = sinfo->num_info;
2719		if (num_records == 0) {
2720			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2721			     ext_sec->desc);
2722			return -EINVAL;
2723		}
2724
2725		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
2726		if (info_left < total_record_size) {
2727			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2728			     ext_sec->desc);
2729			return -EINVAL;
2730		}
2731
2732		info_left -= total_record_size;
2733		sinfo = (void *)sinfo + total_record_size;
2734		sec_cnt++;
2735	}
2736
2737	ext_info = ext_sec->ext_info;
2738	ext_info->len = ext_sec->len - sizeof(__u32);
2739	ext_info->rec_size = record_size;
2740	ext_info->info = info + sizeof(__u32);
2741	ext_info->sec_cnt = sec_cnt;
2742
2743	return 0;
2744}
2745
2746static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2747{
2748	struct btf_ext_sec_setup_param param = {
2749		.off = btf_ext->hdr->func_info_off,
2750		.len = btf_ext->hdr->func_info_len,
2751		.min_rec_size = sizeof(struct bpf_func_info_min),
2752		.ext_info = &btf_ext->func_info,
2753		.desc = "func_info"
2754	};
2755
2756	return btf_ext_setup_info(btf_ext, &param);
2757}
2758
2759static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2760{
2761	struct btf_ext_sec_setup_param param = {
2762		.off = btf_ext->hdr->line_info_off,
2763		.len = btf_ext->hdr->line_info_len,
2764		.min_rec_size = sizeof(struct bpf_line_info_min),
2765		.ext_info = &btf_ext->line_info,
2766		.desc = "line_info",
2767	};
2768
2769	return btf_ext_setup_info(btf_ext, &param);
2770}
2771
2772static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2773{
2774	struct btf_ext_sec_setup_param param = {
2775		.off = btf_ext->hdr->core_relo_off,
2776		.len = btf_ext->hdr->core_relo_len,
2777		.min_rec_size = sizeof(struct bpf_core_relo),
2778		.ext_info = &btf_ext->core_relo_info,
2779		.desc = "core_relo",
2780	};
2781
2782	return btf_ext_setup_info(btf_ext, &param);
2783}
2784
2785static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2786{
2787	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2788
2789	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2790	    data_size < hdr->hdr_len) {
2791		pr_debug("BTF.ext header not found");
2792		return -EINVAL;
2793	}
2794
2795	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2796		pr_warn("BTF.ext in non-native endianness is not supported\n");
2797		return -ENOTSUP;
2798	} else if (hdr->magic != BTF_MAGIC) {
2799		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2800		return -EINVAL;
2801	}
2802
2803	if (hdr->version != BTF_VERSION) {
2804		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2805		return -ENOTSUP;
2806	}
2807
2808	if (hdr->flags) {
2809		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2810		return -ENOTSUP;
2811	}
2812
2813	if (data_size == hdr->hdr_len) {
2814		pr_debug("BTF.ext has no data\n");
2815		return -EINVAL;
2816	}
2817
2818	return 0;
2819}
2820
2821void btf_ext__free(struct btf_ext *btf_ext)
2822{
2823	if (IS_ERR_OR_NULL(btf_ext))
2824		return;
2825	free(btf_ext->func_info.sec_idxs);
2826	free(btf_ext->line_info.sec_idxs);
2827	free(btf_ext->core_relo_info.sec_idxs);
2828	free(btf_ext->data);
2829	free(btf_ext);
2830}
2831
2832struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
2833{
2834	struct btf_ext *btf_ext;
2835	int err;
2836
2837	btf_ext = calloc(1, sizeof(struct btf_ext));
2838	if (!btf_ext)
2839		return libbpf_err_ptr(-ENOMEM);
2840
2841	btf_ext->data_size = size;
2842	btf_ext->data = malloc(size);
2843	if (!btf_ext->data) {
2844		err = -ENOMEM;
2845		goto done;
2846	}
2847	memcpy(btf_ext->data, data, size);
2848
2849	err = btf_ext_parse_hdr(btf_ext->data, size);
2850	if (err)
2851		goto done;
2852
2853	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2854		err = -EINVAL;
2855		goto done;
2856	}
2857
2858	err = btf_ext_setup_func_info(btf_ext);
2859	if (err)
2860		goto done;
2861
2862	err = btf_ext_setup_line_info(btf_ext);
2863	if (err)
2864		goto done;
2865
2866	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2867		goto done; /* skip core relos parsing */
2868
2869	err = btf_ext_setup_core_relos(btf_ext);
2870	if (err)
2871		goto done;
2872
2873done:
2874	if (err) {
2875		btf_ext__free(btf_ext);
2876		return libbpf_err_ptr(err);
2877	}
2878
2879	return btf_ext;
2880}
2881
2882const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2883{
2884	*size = btf_ext->data_size;
2885	return btf_ext->data;
2886}
2887
2888struct btf_dedup;
2889
2890static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
2891static void btf_dedup_free(struct btf_dedup *d);
2892static int btf_dedup_prep(struct btf_dedup *d);
2893static int btf_dedup_strings(struct btf_dedup *d);
2894static int btf_dedup_prim_types(struct btf_dedup *d);
2895static int btf_dedup_struct_types(struct btf_dedup *d);
2896static int btf_dedup_ref_types(struct btf_dedup *d);
2897static int btf_dedup_resolve_fwds(struct btf_dedup *d);
2898static int btf_dedup_compact_types(struct btf_dedup *d);
2899static int btf_dedup_remap_types(struct btf_dedup *d);
2900
2901/*
2902 * Deduplicate BTF types and strings.
2903 *
2904 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2905 * section with all BTF type descriptors and string data. It overwrites that
2906 * memory in-place with deduplicated types and strings without any loss of
2907 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2908 * is provided, all the strings referenced from .BTF.ext section are honored
2909 * and updated to point to the right offsets after deduplication.
2910 *
2911 * If function returns with error, type/string data might be garbled and should
2912 * be discarded.
2913 *
2914 * More verbose and detailed description of both problem btf_dedup is solving,
2915 * as well as solution could be found at:
2916 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2917 *
2918 * Problem description and justification
2919 * =====================================
2920 *
2921 * BTF type information is typically emitted either as a result of conversion
2922 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2923 * unit contains information about a subset of all the types that are used
2924 * in an application. These subsets are frequently overlapping and contain a lot
2925 * of duplicated information when later concatenated together into a single
2926 * binary. This algorithm ensures that each unique type is represented by single
2927 * BTF type descriptor, greatly reducing resulting size of BTF data.
2928 *
2929 * Compilation unit isolation and subsequent duplication of data is not the only
2930 * problem. The same type hierarchy (e.g., struct and all the type that struct
2931 * references) in different compilation units can be represented in BTF to
2932 * various degrees of completeness (or, rather, incompleteness) due to
2933 * struct/union forward declarations.
2934 *
2935 * Let's take a look at an example, that we'll use to better understand the
2936 * problem (and solution). Suppose we have two compilation units, each using
2937 * same `struct S`, but each of them having incomplete type information about
2938 * struct's fields:
2939 *
2940 * // CU #1:
2941 * struct S;
2942 * struct A {
2943 *	int a;
2944 *	struct A* self;
2945 *	struct S* parent;
2946 * };
2947 * struct B;
2948 * struct S {
2949 *	struct A* a_ptr;
2950 *	struct B* b_ptr;
2951 * };
2952 *
2953 * // CU #2:
2954 * struct S;
2955 * struct A;
2956 * struct B {
2957 *	int b;
2958 *	struct B* self;
2959 *	struct S* parent;
2960 * };
2961 * struct S {
2962 *	struct A* a_ptr;
2963 *	struct B* b_ptr;
2964 * };
2965 *
2966 * In case of CU #1, BTF data will know only that `struct B` exist (but no
2967 * more), but will know the complete type information about `struct A`. While
2968 * for CU #2, it will know full type information about `struct B`, but will
2969 * only know about forward declaration of `struct A` (in BTF terms, it will
2970 * have `BTF_KIND_FWD` type descriptor with name `B`).
2971 *
2972 * This compilation unit isolation means that it's possible that there is no
2973 * single CU with complete type information describing structs `S`, `A`, and
2974 * `B`. Also, we might get tons of duplicated and redundant type information.
2975 *
2976 * Additional complication we need to keep in mind comes from the fact that
2977 * types, in general, can form graphs containing cycles, not just DAGs.
2978 *
2979 * While algorithm does deduplication, it also merges and resolves type
2980 * information (unless disabled throught `struct btf_opts`), whenever possible.
2981 * E.g., in the example above with two compilation units having partial type
2982 * information for structs `A` and `B`, the output of algorithm will emit
2983 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2984 * (as well as type information for `int` and pointers), as if they were defined
2985 * in a single compilation unit as:
2986 *
2987 * struct A {
2988 *	int a;
2989 *	struct A* self;
2990 *	struct S* parent;
2991 * };
2992 * struct B {
2993 *	int b;
2994 *	struct B* self;
2995 *	struct S* parent;
2996 * };
2997 * struct S {
2998 *	struct A* a_ptr;
2999 *	struct B* b_ptr;
3000 * };
3001 *
3002 * Algorithm summary
3003 * =================
3004 *
3005 * Algorithm completes its work in 7 separate passes:
3006 *
3007 * 1. Strings deduplication.
3008 * 2. Primitive types deduplication (int, enum, fwd).
3009 * 3. Struct/union types deduplication.
3010 * 4. Resolve unambiguous forward declarations.
3011 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3012 *    protos, and const/volatile/restrict modifiers).
3013 * 6. Types compaction.
3014 * 7. Types remapping.
3015 *
3016 * Algorithm determines canonical type descriptor, which is a single
3017 * representative type for each truly unique type. This canonical type is the
3018 * one that will go into final deduplicated BTF type information. For
3019 * struct/unions, it is also the type that algorithm will merge additional type
3020 * information into (while resolving FWDs), as it discovers it from data in
3021 * other CUs. Each input BTF type eventually gets either mapped to itself, if
3022 * that type is canonical, or to some other type, if that type is equivalent
3023 * and was chosen as canonical representative. This mapping is stored in
3024 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3025 * FWD type got resolved to.
3026 *
3027 * To facilitate fast discovery of canonical types, we also maintain canonical
3028 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3029 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3030 * that match that signature. With sufficiently good choice of type signature
3031 * hashing function, we can limit number of canonical types for each unique type
3032 * signature to a very small number, allowing to find canonical type for any
3033 * duplicated type very quickly.
3034 *
3035 * Struct/union deduplication is the most critical part and algorithm for
3036 * deduplicating structs/unions is described in greater details in comments for
3037 * `btf_dedup_is_equiv` function.
3038 */
3039int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
3040{
3041	struct btf_dedup *d;
3042	int err;
3043
3044	if (!OPTS_VALID(opts, btf_dedup_opts))
3045		return libbpf_err(-EINVAL);
3046
3047	d = btf_dedup_new(btf, opts);
3048	if (IS_ERR(d)) {
3049		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3050		return libbpf_err(-EINVAL);
3051	}
3052
3053	if (btf_ensure_modifiable(btf)) {
3054		err = -ENOMEM;
3055		goto done;
3056	}
3057
3058	err = btf_dedup_prep(d);
3059	if (err) {
3060		pr_debug("btf_dedup_prep failed:%d\n", err);
3061		goto done;
3062	}
3063	err = btf_dedup_strings(d);
3064	if (err < 0) {
3065		pr_debug("btf_dedup_strings failed:%d\n", err);
3066		goto done;
3067	}
3068	err = btf_dedup_prim_types(d);
3069	if (err < 0) {
3070		pr_debug("btf_dedup_prim_types failed:%d\n", err);
3071		goto done;
3072	}
3073	err = btf_dedup_struct_types(d);
3074	if (err < 0) {
3075		pr_debug("btf_dedup_struct_types failed:%d\n", err);
3076		goto done;
3077	}
3078	err = btf_dedup_resolve_fwds(d);
3079	if (err < 0) {
3080		pr_debug("btf_dedup_resolve_fwds failed:%d\n", err);
3081		goto done;
3082	}
3083	err = btf_dedup_ref_types(d);
3084	if (err < 0) {
3085		pr_debug("btf_dedup_ref_types failed:%d\n", err);
3086		goto done;
3087	}
3088	err = btf_dedup_compact_types(d);
3089	if (err < 0) {
3090		pr_debug("btf_dedup_compact_types failed:%d\n", err);
3091		goto done;
3092	}
3093	err = btf_dedup_remap_types(d);
3094	if (err < 0) {
3095		pr_debug("btf_dedup_remap_types failed:%d\n", err);
3096		goto done;
3097	}
3098
3099done:
3100	btf_dedup_free(d);
3101	return libbpf_err(err);
3102}
3103
3104#define BTF_UNPROCESSED_ID ((__u32)-1)
3105#define BTF_IN_PROGRESS_ID ((__u32)-2)
3106
3107struct btf_dedup {
3108	/* .BTF section to be deduped in-place */
3109	struct btf *btf;
3110	/*
3111	 * Optional .BTF.ext section. When provided, any strings referenced
3112	 * from it will be taken into account when deduping strings
3113	 */
3114	struct btf_ext *btf_ext;
3115	/*
3116	 * This is a map from any type's signature hash to a list of possible
3117	 * canonical representative type candidates. Hash collisions are
3118	 * ignored, so even types of various kinds can share same list of
3119	 * candidates, which is fine because we rely on subsequent
3120	 * btf_xxx_equal() checks to authoritatively verify type equality.
3121	 */
3122	struct hashmap *dedup_table;
3123	/* Canonical types map */
3124	__u32 *map;
3125	/* Hypothetical mapping, used during type graph equivalence checks */
3126	__u32 *hypot_map;
3127	__u32 *hypot_list;
3128	size_t hypot_cnt;
3129	size_t hypot_cap;
3130	/* Whether hypothetical mapping, if successful, would need to adjust
3131	 * already canonicalized types (due to a new forward declaration to
3132	 * concrete type resolution). In such case, during split BTF dedup
3133	 * candidate type would still be considered as different, because base
3134	 * BTF is considered to be immutable.
3135	 */
3136	bool hypot_adjust_canon;
3137	/* Various option modifying behavior of algorithm */
3138	struct btf_dedup_opts opts;
3139	/* temporary strings deduplication state */
3140	struct strset *strs_set;
3141};
3142
3143static long hash_combine(long h, long value)
3144{
3145	return h * 31 + value;
3146}
3147
3148#define for_each_dedup_cand(d, node, hash) \
3149	hashmap__for_each_key_entry(d->dedup_table, node, hash)
3150
3151static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3152{
3153	return hashmap__append(d->dedup_table, hash, type_id);
3154}
3155
3156static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3157				   __u32 from_id, __u32 to_id)
3158{
3159	if (d->hypot_cnt == d->hypot_cap) {
3160		__u32 *new_list;
3161
3162		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3163		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3164		if (!new_list)
3165			return -ENOMEM;
3166		d->hypot_list = new_list;
3167	}
3168	d->hypot_list[d->hypot_cnt++] = from_id;
3169	d->hypot_map[from_id] = to_id;
3170	return 0;
3171}
3172
3173static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3174{
3175	int i;
3176
3177	for (i = 0; i < d->hypot_cnt; i++)
3178		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3179	d->hypot_cnt = 0;
3180	d->hypot_adjust_canon = false;
3181}
3182
3183static void btf_dedup_free(struct btf_dedup *d)
3184{
3185	hashmap__free(d->dedup_table);
3186	d->dedup_table = NULL;
3187
3188	free(d->map);
3189	d->map = NULL;
3190
3191	free(d->hypot_map);
3192	d->hypot_map = NULL;
3193
3194	free(d->hypot_list);
3195	d->hypot_list = NULL;
3196
3197	free(d);
3198}
3199
3200static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3201{
3202	return key;
3203}
3204
3205static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3206{
3207	return 0;
3208}
3209
3210static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3211{
3212	return k1 == k2;
3213}
3214
3215static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3216{
3217	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3218	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3219	int i, err = 0, type_cnt;
3220
3221	if (!d)
3222		return ERR_PTR(-ENOMEM);
3223
3224	if (OPTS_GET(opts, force_collisions, false))
3225		hash_fn = btf_dedup_collision_hash_fn;
3226
3227	d->btf = btf;
3228	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3229
3230	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3231	if (IS_ERR(d->dedup_table)) {
3232		err = PTR_ERR(d->dedup_table);
3233		d->dedup_table = NULL;
3234		goto done;
3235	}
3236
3237	type_cnt = btf__type_cnt(btf);
3238	d->map = malloc(sizeof(__u32) * type_cnt);
3239	if (!d->map) {
3240		err = -ENOMEM;
3241		goto done;
3242	}
3243	/* special BTF "void" type is made canonical immediately */
3244	d->map[0] = 0;
3245	for (i = 1; i < type_cnt; i++) {
3246		struct btf_type *t = btf_type_by_id(d->btf, i);
3247
3248		/* VAR and DATASEC are never deduped and are self-canonical */
3249		if (btf_is_var(t) || btf_is_datasec(t))
3250			d->map[i] = i;
3251		else
3252			d->map[i] = BTF_UNPROCESSED_ID;
3253	}
3254
3255	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3256	if (!d->hypot_map) {
3257		err = -ENOMEM;
3258		goto done;
3259	}
3260	for (i = 0; i < type_cnt; i++)
3261		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3262
3263done:
3264	if (err) {
3265		btf_dedup_free(d);
3266		return ERR_PTR(err);
3267	}
3268
3269	return d;
3270}
3271
3272/*
3273 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3274 * string and pass pointer to it to a provided callback `fn`.
3275 */
3276static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3277{
3278	int i, r;
3279
3280	for (i = 0; i < d->btf->nr_types; i++) {
3281		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3282
3283		r = btf_type_visit_str_offs(t, fn, ctx);
3284		if (r)
3285			return r;
3286	}
3287
3288	if (!d->btf_ext)
3289		return 0;
3290
3291	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3292	if (r)
3293		return r;
3294
3295	return 0;
3296}
3297
3298static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3299{
3300	struct btf_dedup *d = ctx;
3301	__u32 str_off = *str_off_ptr;
3302	const char *s;
3303	int off, err;
3304
3305	/* don't touch empty string or string in main BTF */
3306	if (str_off == 0 || str_off < d->btf->start_str_off)
3307		return 0;
3308
3309	s = btf__str_by_offset(d->btf, str_off);
3310	if (d->btf->base_btf) {
3311		err = btf__find_str(d->btf->base_btf, s);
3312		if (err >= 0) {
3313			*str_off_ptr = err;
3314			return 0;
3315		}
3316		if (err != -ENOENT)
3317			return err;
3318	}
3319
3320	off = strset__add_str(d->strs_set, s);
3321	if (off < 0)
3322		return off;
3323
3324	*str_off_ptr = d->btf->start_str_off + off;
3325	return 0;
3326}
3327
3328/*
3329 * Dedup string and filter out those that are not referenced from either .BTF
3330 * or .BTF.ext (if provided) sections.
3331 *
3332 * This is done by building index of all strings in BTF's string section,
3333 * then iterating over all entities that can reference strings (e.g., type
3334 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3335 * strings as used. After that all used strings are deduped and compacted into
3336 * sequential blob of memory and new offsets are calculated. Then all the string
3337 * references are iterated again and rewritten using new offsets.
3338 */
3339static int btf_dedup_strings(struct btf_dedup *d)
3340{
3341	int err;
3342
3343	if (d->btf->strs_deduped)
3344		return 0;
3345
3346	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3347	if (IS_ERR(d->strs_set)) {
3348		err = PTR_ERR(d->strs_set);
3349		goto err_out;
3350	}
3351
3352	if (!d->btf->base_btf) {
3353		/* insert empty string; we won't be looking it up during strings
3354		 * dedup, but it's good to have it for generic BTF string lookups
3355		 */
3356		err = strset__add_str(d->strs_set, "");
3357		if (err < 0)
3358			goto err_out;
3359	}
3360
3361	/* remap string offsets */
3362	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3363	if (err)
3364		goto err_out;
3365
3366	/* replace BTF string data and hash with deduped ones */
3367	strset__free(d->btf->strs_set);
3368	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3369	d->btf->strs_set = d->strs_set;
3370	d->strs_set = NULL;
3371	d->btf->strs_deduped = true;
3372	return 0;
3373
3374err_out:
3375	strset__free(d->strs_set);
3376	d->strs_set = NULL;
3377
3378	return err;
3379}
3380
3381static long btf_hash_common(struct btf_type *t)
3382{
3383	long h;
3384
3385	h = hash_combine(0, t->name_off);
3386	h = hash_combine(h, t->info);
3387	h = hash_combine(h, t->size);
3388	return h;
3389}
3390
3391static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3392{
3393	return t1->name_off == t2->name_off &&
3394	       t1->info == t2->info &&
3395	       t1->size == t2->size;
3396}
3397
3398/* Calculate type signature hash of INT or TAG. */
3399static long btf_hash_int_decl_tag(struct btf_type *t)
3400{
3401	__u32 info = *(__u32 *)(t + 1);
3402	long h;
3403
3404	h = btf_hash_common(t);
3405	h = hash_combine(h, info);
3406	return h;
3407}
3408
3409/* Check structural equality of two INTs or TAGs. */
3410static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3411{
3412	__u32 info1, info2;
3413
3414	if (!btf_equal_common(t1, t2))
3415		return false;
3416	info1 = *(__u32 *)(t1 + 1);
3417	info2 = *(__u32 *)(t2 + 1);
3418	return info1 == info2;
3419}
3420
3421/* Calculate type signature hash of ENUM/ENUM64. */
3422static long btf_hash_enum(struct btf_type *t)
3423{
3424	long h;
3425
3426	/* don't hash vlen, enum members and size to support enum fwd resolving */
3427	h = hash_combine(0, t->name_off);
3428	return h;
3429}
3430
3431static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
3432{
3433	const struct btf_enum *m1, *m2;
3434	__u16 vlen;
3435	int i;
3436
3437	vlen = btf_vlen(t1);
3438	m1 = btf_enum(t1);
3439	m2 = btf_enum(t2);
3440	for (i = 0; i < vlen; i++) {
3441		if (m1->name_off != m2->name_off || m1->val != m2->val)
3442			return false;
3443		m1++;
3444		m2++;
3445	}
3446	return true;
3447}
3448
3449static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3450{
3451	const struct btf_enum64 *m1, *m2;
3452	__u16 vlen;
3453	int i;
3454
3455	vlen = btf_vlen(t1);
3456	m1 = btf_enum64(t1);
3457	m2 = btf_enum64(t2);
3458	for (i = 0; i < vlen; i++) {
3459		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3460		    m1->val_hi32 != m2->val_hi32)
3461			return false;
3462		m1++;
3463		m2++;
3464	}
3465	return true;
3466}
3467
3468/* Check structural equality of two ENUMs or ENUM64s. */
3469static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3470{
3471	if (!btf_equal_common(t1, t2))
3472		return false;
3473
3474	/* t1 & t2 kinds are identical because of btf_equal_common */
3475	if (btf_kind(t1) == BTF_KIND_ENUM)
3476		return btf_equal_enum_members(t1, t2);
3477	else
3478		return btf_equal_enum64_members(t1, t2);
3479}
3480
3481static inline bool btf_is_enum_fwd(struct btf_type *t)
3482{
3483	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3484}
3485
3486static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3487{
3488	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3489		return btf_equal_enum(t1, t2);
3490	/* At this point either t1 or t2 or both are forward declarations, thus:
3491	 * - skip comparing vlen because it is zero for forward declarations;
3492	 * - skip comparing size to allow enum forward declarations
3493	 *   to be compatible with enum64 full declarations;
3494	 * - skip comparing kind for the same reason.
3495	 */
3496	return t1->name_off == t2->name_off &&
3497	       btf_is_any_enum(t1) && btf_is_any_enum(t2);
3498}
3499
3500/*
3501 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3502 * as referenced type IDs equivalence is established separately during type
3503 * graph equivalence check algorithm.
3504 */
3505static long btf_hash_struct(struct btf_type *t)
3506{
3507	const struct btf_member *member = btf_members(t);
3508	__u32 vlen = btf_vlen(t);
3509	long h = btf_hash_common(t);
3510	int i;
3511
3512	for (i = 0; i < vlen; i++) {
3513		h = hash_combine(h, member->name_off);
3514		h = hash_combine(h, member->offset);
3515		/* no hashing of referenced type ID, it can be unresolved yet */
3516		member++;
3517	}
3518	return h;
3519}
3520
3521/*
3522 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3523 * type IDs. This check is performed during type graph equivalence check and
3524 * referenced types equivalence is checked separately.
3525 */
3526static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3527{
3528	const struct btf_member *m1, *m2;
3529	__u16 vlen;
3530	int i;
3531
3532	if (!btf_equal_common(t1, t2))
3533		return false;
3534
3535	vlen = btf_vlen(t1);
3536	m1 = btf_members(t1);
3537	m2 = btf_members(t2);
3538	for (i = 0; i < vlen; i++) {
3539		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3540			return false;
3541		m1++;
3542		m2++;
3543	}
3544	return true;
3545}
3546
3547/*
3548 * Calculate type signature hash of ARRAY, including referenced type IDs,
3549 * under assumption that they were already resolved to canonical type IDs and
3550 * are not going to change.
3551 */
3552static long btf_hash_array(struct btf_type *t)
3553{
3554	const struct btf_array *info = btf_array(t);
3555	long h = btf_hash_common(t);
3556
3557	h = hash_combine(h, info->type);
3558	h = hash_combine(h, info->index_type);
3559	h = hash_combine(h, info->nelems);
3560	return h;
3561}
3562
3563/*
3564 * Check exact equality of two ARRAYs, taking into account referenced
3565 * type IDs, under assumption that they were already resolved to canonical
3566 * type IDs and are not going to change.
3567 * This function is called during reference types deduplication to compare
3568 * ARRAY to potential canonical representative.
3569 */
3570static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3571{
3572	const struct btf_array *info1, *info2;
3573
3574	if (!btf_equal_common(t1, t2))
3575		return false;
3576
3577	info1 = btf_array(t1);
3578	info2 = btf_array(t2);
3579	return info1->type == info2->type &&
3580	       info1->index_type == info2->index_type &&
3581	       info1->nelems == info2->nelems;
3582}
3583
3584/*
3585 * Check structural compatibility of two ARRAYs, ignoring referenced type
3586 * IDs. This check is performed during type graph equivalence check and
3587 * referenced types equivalence is checked separately.
3588 */
3589static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3590{
3591	if (!btf_equal_common(t1, t2))
3592		return false;
3593
3594	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3595}
3596
3597/*
3598 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3599 * under assumption that they were already resolved to canonical type IDs and
3600 * are not going to change.
3601 */
3602static long btf_hash_fnproto(struct btf_type *t)
3603{
3604	const struct btf_param *member = btf_params(t);
3605	__u16 vlen = btf_vlen(t);
3606	long h = btf_hash_common(t);
3607	int i;
3608
3609	for (i = 0; i < vlen; i++) {
3610		h = hash_combine(h, member->name_off);
3611		h = hash_combine(h, member->type);
3612		member++;
3613	}
3614	return h;
3615}
3616
3617/*
3618 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3619 * type IDs, under assumption that they were already resolved to canonical
3620 * type IDs and are not going to change.
3621 * This function is called during reference types deduplication to compare
3622 * FUNC_PROTO to potential canonical representative.
3623 */
3624static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3625{
3626	const struct btf_param *m1, *m2;
3627	__u16 vlen;
3628	int i;
3629
3630	if (!btf_equal_common(t1, t2))
3631		return false;
3632
3633	vlen = btf_vlen(t1);
3634	m1 = btf_params(t1);
3635	m2 = btf_params(t2);
3636	for (i = 0; i < vlen; i++) {
3637		if (m1->name_off != m2->name_off || m1->type != m2->type)
3638			return false;
3639		m1++;
3640		m2++;
3641	}
3642	return true;
3643}
3644
3645/*
3646 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3647 * IDs. This check is performed during type graph equivalence check and
3648 * referenced types equivalence is checked separately.
3649 */
3650static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3651{
3652	const struct btf_param *m1, *m2;
3653	__u16 vlen;
3654	int i;
3655
3656	/* skip return type ID */
3657	if (t1->name_off != t2->name_off || t1->info != t2->info)
3658		return false;
3659
3660	vlen = btf_vlen(t1);
3661	m1 = btf_params(t1);
3662	m2 = btf_params(t2);
3663	for (i = 0; i < vlen; i++) {
3664		if (m1->name_off != m2->name_off)
3665			return false;
3666		m1++;
3667		m2++;
3668	}
3669	return true;
3670}
3671
3672/* Prepare split BTF for deduplication by calculating hashes of base BTF's
3673 * types and initializing the rest of the state (canonical type mapping) for
3674 * the fixed base BTF part.
3675 */
3676static int btf_dedup_prep(struct btf_dedup *d)
3677{
3678	struct btf_type *t;
3679	int type_id;
3680	long h;
3681
3682	if (!d->btf->base_btf)
3683		return 0;
3684
3685	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3686		t = btf_type_by_id(d->btf, type_id);
3687
3688		/* all base BTF types are self-canonical by definition */
3689		d->map[type_id] = type_id;
3690
3691		switch (btf_kind(t)) {
3692		case BTF_KIND_VAR:
3693		case BTF_KIND_DATASEC:
3694			/* VAR and DATASEC are never hash/deduplicated */
3695			continue;
3696		case BTF_KIND_CONST:
3697		case BTF_KIND_VOLATILE:
3698		case BTF_KIND_RESTRICT:
3699		case BTF_KIND_PTR:
3700		case BTF_KIND_FWD:
3701		case BTF_KIND_TYPEDEF:
3702		case BTF_KIND_FUNC:
3703		case BTF_KIND_FLOAT:
3704		case BTF_KIND_TYPE_TAG:
3705			h = btf_hash_common(t);
3706			break;
3707		case BTF_KIND_INT:
3708		case BTF_KIND_DECL_TAG:
3709			h = btf_hash_int_decl_tag(t);
3710			break;
3711		case BTF_KIND_ENUM:
3712		case BTF_KIND_ENUM64:
3713			h = btf_hash_enum(t);
3714			break;
3715		case BTF_KIND_STRUCT:
3716		case BTF_KIND_UNION:
3717			h = btf_hash_struct(t);
3718			break;
3719		case BTF_KIND_ARRAY:
3720			h = btf_hash_array(t);
3721			break;
3722		case BTF_KIND_FUNC_PROTO:
3723			h = btf_hash_fnproto(t);
3724			break;
3725		default:
3726			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3727			return -EINVAL;
3728		}
3729		if (btf_dedup_table_add(d, h, type_id))
3730			return -ENOMEM;
3731	}
3732
3733	return 0;
3734}
3735
3736/*
3737 * Deduplicate primitive types, that can't reference other types, by calculating
3738 * their type signature hash and comparing them with any possible canonical
3739 * candidate. If no canonical candidate matches, type itself is marked as
3740 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3741 */
3742static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3743{
3744	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3745	struct hashmap_entry *hash_entry;
3746	struct btf_type *cand;
3747	/* if we don't find equivalent type, then we are canonical */
3748	__u32 new_id = type_id;
3749	__u32 cand_id;
3750	long h;
3751
3752	switch (btf_kind(t)) {
3753	case BTF_KIND_CONST:
3754	case BTF_KIND_VOLATILE:
3755	case BTF_KIND_RESTRICT:
3756	case BTF_KIND_PTR:
3757	case BTF_KIND_TYPEDEF:
3758	case BTF_KIND_ARRAY:
3759	case BTF_KIND_STRUCT:
3760	case BTF_KIND_UNION:
3761	case BTF_KIND_FUNC:
3762	case BTF_KIND_FUNC_PROTO:
3763	case BTF_KIND_VAR:
3764	case BTF_KIND_DATASEC:
3765	case BTF_KIND_DECL_TAG:
3766	case BTF_KIND_TYPE_TAG:
3767		return 0;
3768
3769	case BTF_KIND_INT:
3770		h = btf_hash_int_decl_tag(t);
3771		for_each_dedup_cand(d, hash_entry, h) {
3772			cand_id = hash_entry->value;
3773			cand = btf_type_by_id(d->btf, cand_id);
3774			if (btf_equal_int_tag(t, cand)) {
3775				new_id = cand_id;
3776				break;
3777			}
3778		}
3779		break;
3780
3781	case BTF_KIND_ENUM:
3782	case BTF_KIND_ENUM64:
3783		h = btf_hash_enum(t);
3784		for_each_dedup_cand(d, hash_entry, h) {
3785			cand_id = hash_entry->value;
3786			cand = btf_type_by_id(d->btf, cand_id);
3787			if (btf_equal_enum(t, cand)) {
3788				new_id = cand_id;
3789				break;
3790			}
3791			if (btf_compat_enum(t, cand)) {
3792				if (btf_is_enum_fwd(t)) {
3793					/* resolve fwd to full enum */
3794					new_id = cand_id;
3795					break;
3796				}
3797				/* resolve canonical enum fwd to full enum */
3798				d->map[cand_id] = type_id;
3799			}
3800		}
3801		break;
3802
3803	case BTF_KIND_FWD:
3804	case BTF_KIND_FLOAT:
3805		h = btf_hash_common(t);
3806		for_each_dedup_cand(d, hash_entry, h) {
3807			cand_id = hash_entry->value;
3808			cand = btf_type_by_id(d->btf, cand_id);
3809			if (btf_equal_common(t, cand)) {
3810				new_id = cand_id;
3811				break;
3812			}
3813		}
3814		break;
3815
3816	default:
3817		return -EINVAL;
3818	}
3819
3820	d->map[type_id] = new_id;
3821	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3822		return -ENOMEM;
3823
3824	return 0;
3825}
3826
3827static int btf_dedup_prim_types(struct btf_dedup *d)
3828{
3829	int i, err;
3830
3831	for (i = 0; i < d->btf->nr_types; i++) {
3832		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3833		if (err)
3834			return err;
3835	}
3836	return 0;
3837}
3838
3839/*
3840 * Check whether type is already mapped into canonical one (could be to itself).
3841 */
3842static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3843{
3844	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3845}
3846
3847/*
3848 * Resolve type ID into its canonical type ID, if any; otherwise return original
3849 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3850 * STRUCT/UNION link and resolve it into canonical type ID as well.
3851 */
3852static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3853{
3854	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3855		type_id = d->map[type_id];
3856	return type_id;
3857}
3858
3859/*
3860 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3861 * type ID.
3862 */
3863static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3864{
3865	__u32 orig_type_id = type_id;
3866
3867	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3868		return type_id;
3869
3870	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3871		type_id = d->map[type_id];
3872
3873	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3874		return type_id;
3875
3876	return orig_type_id;
3877}
3878
3879
3880static inline __u16 btf_fwd_kind(struct btf_type *t)
3881{
3882	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3883}
3884
3885/* Check if given two types are identical ARRAY definitions */
3886static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3887{
3888	struct btf_type *t1, *t2;
3889
3890	t1 = btf_type_by_id(d->btf, id1);
3891	t2 = btf_type_by_id(d->btf, id2);
3892	if (!btf_is_array(t1) || !btf_is_array(t2))
3893		return false;
3894
3895	return btf_equal_array(t1, t2);
3896}
3897
3898/* Check if given two types are identical STRUCT/UNION definitions */
3899static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
3900{
3901	const struct btf_member *m1, *m2;
3902	struct btf_type *t1, *t2;
3903	int n, i;
3904
3905	t1 = btf_type_by_id(d->btf, id1);
3906	t2 = btf_type_by_id(d->btf, id2);
3907
3908	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
3909		return false;
3910
3911	if (!btf_shallow_equal_struct(t1, t2))
3912		return false;
3913
3914	m1 = btf_members(t1);
3915	m2 = btf_members(t2);
3916	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
3917		if (m1->type != m2->type &&
3918		    !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
3919		    !btf_dedup_identical_structs(d, m1->type, m2->type))
3920			return false;
3921	}
3922	return true;
3923}
3924
3925/*
3926 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3927 * call it "candidate graph" in this description for brevity) to a type graph
3928 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3929 * here, though keep in mind that not all types in canonical graph are
3930 * necessarily canonical representatives themselves, some of them might be
3931 * duplicates or its uniqueness might not have been established yet).
3932 * Returns:
3933 *  - >0, if type graphs are equivalent;
3934 *  -  0, if not equivalent;
3935 *  - <0, on error.
3936 *
3937 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3938 * equivalence of BTF types at each step. If at any point BTF types in candidate
3939 * and canonical graphs are not compatible structurally, whole graphs are
3940 * incompatible. If types are structurally equivalent (i.e., all information
3941 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3942 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3943 * If a type references other types, then those referenced types are checked
3944 * for equivalence recursively.
3945 *
3946 * During DFS traversal, if we find that for current `canon_id` type we
3947 * already have some mapping in hypothetical map, we check for two possible
3948 * situations:
3949 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3950 *     happen when type graphs have cycles. In this case we assume those two
3951 *     types are equivalent.
3952 *   - `canon_id` is mapped to different type. This is contradiction in our
3953 *     hypothetical mapping, because same graph in canonical graph corresponds
3954 *     to two different types in candidate graph, which for equivalent type
3955 *     graphs shouldn't happen. This condition terminates equivalence check
3956 *     with negative result.
3957 *
3958 * If type graphs traversal exhausts types to check and find no contradiction,
3959 * then type graphs are equivalent.
3960 *
3961 * When checking types for equivalence, there is one special case: FWD types.
3962 * If FWD type resolution is allowed and one of the types (either from canonical
3963 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3964 * flag) and their names match, hypothetical mapping is updated to point from
3965 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3966 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3967 *
3968 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3969 * if there are two exactly named (or anonymous) structs/unions that are
3970 * compatible structurally, one of which has FWD field, while other is concrete
3971 * STRUCT/UNION, but according to C sources they are different structs/unions
3972 * that are referencing different types with the same name. This is extremely
3973 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3974 * this logic is causing problems.
3975 *
3976 * Doing FWD resolution means that both candidate and/or canonical graphs can
3977 * consists of portions of the graph that come from multiple compilation units.
3978 * This is due to the fact that types within single compilation unit are always
3979 * deduplicated and FWDs are already resolved, if referenced struct/union
3980 * definiton is available. So, if we had unresolved FWD and found corresponding
3981 * STRUCT/UNION, they will be from different compilation units. This
3982 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3983 * type graph will likely have at least two different BTF types that describe
3984 * same type (e.g., most probably there will be two different BTF types for the
3985 * same 'int' primitive type) and could even have "overlapping" parts of type
3986 * graph that describe same subset of types.
3987 *
3988 * This in turn means that our assumption that each type in canonical graph
3989 * must correspond to exactly one type in candidate graph might not hold
3990 * anymore and will make it harder to detect contradictions using hypothetical
3991 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3992 * resolution only in canonical graph. FWDs in candidate graphs are never
3993 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3994 * that can occur:
3995 *   - Both types in canonical and candidate graphs are FWDs. If they are
3996 *     structurally equivalent, then they can either be both resolved to the
3997 *     same STRUCT/UNION or not resolved at all. In both cases they are
3998 *     equivalent and there is no need to resolve FWD on candidate side.
3999 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4000 *     so nothing to resolve as well, algorithm will check equivalence anyway.
4001 *   - Type in canonical graph is FWD, while type in candidate is concrete
4002 *     STRUCT/UNION. In this case candidate graph comes from single compilation
4003 *     unit, so there is exactly one BTF type for each unique C type. After
4004 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4005 *     in canonical graph mapping to single BTF type in candidate graph, but
4006 *     because hypothetical mapping maps from canonical to candidate types, it's
4007 *     alright, and we still maintain the property of having single `canon_id`
4008 *     mapping to single `cand_id` (there could be two different `canon_id`
4009 *     mapped to the same `cand_id`, but it's not contradictory).
4010 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4011 *     graph is FWD. In this case we are just going to check compatibility of
4012 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4013 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4014 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4015 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4016 *     canonical graph.
4017 */
4018static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4019			      __u32 canon_id)
4020{
4021	struct btf_type *cand_type;
4022	struct btf_type *canon_type;
4023	__u32 hypot_type_id;
4024	__u16 cand_kind;
4025	__u16 canon_kind;
4026	int i, eq;
4027
4028	/* if both resolve to the same canonical, they must be equivalent */
4029	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4030		return 1;
4031
4032	canon_id = resolve_fwd_id(d, canon_id);
4033
4034	hypot_type_id = d->hypot_map[canon_id];
4035	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4036		if (hypot_type_id == cand_id)
4037			return 1;
4038		/* In some cases compiler will generate different DWARF types
4039		 * for *identical* array type definitions and use them for
4040		 * different fields within the *same* struct. This breaks type
4041		 * equivalence check, which makes an assumption that candidate
4042		 * types sub-graph has a consistent and deduped-by-compiler
4043		 * types within a single CU. So work around that by explicitly
4044		 * allowing identical array types here.
4045		 */
4046		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4047			return 1;
4048		/* It turns out that similar situation can happen with
4049		 * struct/union sometimes, sigh... Handle the case where
4050		 * structs/unions are exactly the same, down to the referenced
4051		 * type IDs. Anything more complicated (e.g., if referenced
4052		 * types are different, but equivalent) is *way more*
4053		 * complicated and requires a many-to-many equivalence mapping.
4054		 */
4055		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4056			return 1;
4057		return 0;
4058	}
4059
4060	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4061		return -ENOMEM;
4062
4063	cand_type = btf_type_by_id(d->btf, cand_id);
4064	canon_type = btf_type_by_id(d->btf, canon_id);
4065	cand_kind = btf_kind(cand_type);
4066	canon_kind = btf_kind(canon_type);
4067
4068	if (cand_type->name_off != canon_type->name_off)
4069		return 0;
4070
4071	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4072	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4073	    && cand_kind != canon_kind) {
4074		__u16 real_kind;
4075		__u16 fwd_kind;
4076
4077		if (cand_kind == BTF_KIND_FWD) {
4078			real_kind = canon_kind;
4079			fwd_kind = btf_fwd_kind(cand_type);
4080		} else {
4081			real_kind = cand_kind;
4082			fwd_kind = btf_fwd_kind(canon_type);
4083			/* we'd need to resolve base FWD to STRUCT/UNION */
4084			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4085				d->hypot_adjust_canon = true;
4086		}
4087		return fwd_kind == real_kind;
4088	}
4089
4090	if (cand_kind != canon_kind)
4091		return 0;
4092
4093	switch (cand_kind) {
4094	case BTF_KIND_INT:
4095		return btf_equal_int_tag(cand_type, canon_type);
4096
4097	case BTF_KIND_ENUM:
4098	case BTF_KIND_ENUM64:
4099		return btf_compat_enum(cand_type, canon_type);
4100
4101	case BTF_KIND_FWD:
4102	case BTF_KIND_FLOAT:
4103		return btf_equal_common(cand_type, canon_type);
4104
4105	case BTF_KIND_CONST:
4106	case BTF_KIND_VOLATILE:
4107	case BTF_KIND_RESTRICT:
4108	case BTF_KIND_PTR:
4109	case BTF_KIND_TYPEDEF:
4110	case BTF_KIND_FUNC:
4111	case BTF_KIND_TYPE_TAG:
4112		if (cand_type->info != canon_type->info)
4113			return 0;
4114		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4115
4116	case BTF_KIND_ARRAY: {
4117		const struct btf_array *cand_arr, *canon_arr;
4118
4119		if (!btf_compat_array(cand_type, canon_type))
4120			return 0;
4121		cand_arr = btf_array(cand_type);
4122		canon_arr = btf_array(canon_type);
4123		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4124		if (eq <= 0)
4125			return eq;
4126		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4127	}
4128
4129	case BTF_KIND_STRUCT:
4130	case BTF_KIND_UNION: {
4131		const struct btf_member *cand_m, *canon_m;
4132		__u16 vlen;
4133
4134		if (!btf_shallow_equal_struct(cand_type, canon_type))
4135			return 0;
4136		vlen = btf_vlen(cand_type);
4137		cand_m = btf_members(cand_type);
4138		canon_m = btf_members(canon_type);
4139		for (i = 0; i < vlen; i++) {
4140			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4141			if (eq <= 0)
4142				return eq;
4143			cand_m++;
4144			canon_m++;
4145		}
4146
4147		return 1;
4148	}
4149
4150	case BTF_KIND_FUNC_PROTO: {
4151		const struct btf_param *cand_p, *canon_p;
4152		__u16 vlen;
4153
4154		if (!btf_compat_fnproto(cand_type, canon_type))
4155			return 0;
4156		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4157		if (eq <= 0)
4158			return eq;
4159		vlen = btf_vlen(cand_type);
4160		cand_p = btf_params(cand_type);
4161		canon_p = btf_params(canon_type);
4162		for (i = 0; i < vlen; i++) {
4163			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4164			if (eq <= 0)
4165				return eq;
4166			cand_p++;
4167			canon_p++;
4168		}
4169		return 1;
4170	}
4171
4172	default:
4173		return -EINVAL;
4174	}
4175	return 0;
4176}
4177
4178/*
4179 * Use hypothetical mapping, produced by successful type graph equivalence
4180 * check, to augment existing struct/union canonical mapping, where possible.
4181 *
4182 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4183 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4184 * it doesn't matter if FWD type was part of canonical graph or candidate one,
4185 * we are recording the mapping anyway. As opposed to carefulness required
4186 * for struct/union correspondence mapping (described below), for FWD resolution
4187 * it's not important, as by the time that FWD type (reference type) will be
4188 * deduplicated all structs/unions will be deduped already anyway.
4189 *
4190 * Recording STRUCT/UNION mapping is purely a performance optimization and is
4191 * not required for correctness. It needs to be done carefully to ensure that
4192 * struct/union from candidate's type graph is not mapped into corresponding
4193 * struct/union from canonical type graph that itself hasn't been resolved into
4194 * canonical representative. The only guarantee we have is that canonical
4195 * struct/union was determined as canonical and that won't change. But any
4196 * types referenced through that struct/union fields could have been not yet
4197 * resolved, so in case like that it's too early to establish any kind of
4198 * correspondence between structs/unions.
4199 *
4200 * No canonical correspondence is derived for primitive types (they are already
4201 * deduplicated completely already anyway) or reference types (they rely on
4202 * stability of struct/union canonical relationship for equivalence checks).
4203 */
4204static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4205{
4206	__u32 canon_type_id, targ_type_id;
4207	__u16 t_kind, c_kind;
4208	__u32 t_id, c_id;
4209	int i;
4210
4211	for (i = 0; i < d->hypot_cnt; i++) {
4212		canon_type_id = d->hypot_list[i];
4213		targ_type_id = d->hypot_map[canon_type_id];
4214		t_id = resolve_type_id(d, targ_type_id);
4215		c_id = resolve_type_id(d, canon_type_id);
4216		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4217		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4218		/*
4219		 * Resolve FWD into STRUCT/UNION.
4220		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4221		 * mapped to canonical representative (as opposed to
4222		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4223		 * eventually that struct is going to be mapped and all resolved
4224		 * FWDs will automatically resolve to correct canonical
4225		 * representative. This will happen before ref type deduping,
4226		 * which critically depends on stability of these mapping. This
4227		 * stability is not a requirement for STRUCT/UNION equivalence
4228		 * checks, though.
4229		 */
4230
4231		/* if it's the split BTF case, we still need to point base FWD
4232		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4233		 * will be resolved against base FWD. If we don't point base
4234		 * canonical FWD to the resolved STRUCT/UNION, then all the
4235		 * FWDs in split BTF won't be correctly resolved to a proper
4236		 * STRUCT/UNION.
4237		 */
4238		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4239			d->map[c_id] = t_id;
4240
4241		/* if graph equivalence determined that we'd need to adjust
4242		 * base canonical types, then we need to only point base FWDs
4243		 * to STRUCTs/UNIONs and do no more modifications. For all
4244		 * other purposes the type graphs were not equivalent.
4245		 */
4246		if (d->hypot_adjust_canon)
4247			continue;
4248
4249		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4250			d->map[t_id] = c_id;
4251
4252		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4253		    c_kind != BTF_KIND_FWD &&
4254		    is_type_mapped(d, c_id) &&
4255		    !is_type_mapped(d, t_id)) {
4256			/*
4257			 * as a perf optimization, we can map struct/union
4258			 * that's part of type graph we just verified for
4259			 * equivalence. We can do that for struct/union that has
4260			 * canonical representative only, though.
4261			 */
4262			d->map[t_id] = c_id;
4263		}
4264	}
4265}
4266
4267/*
4268 * Deduplicate struct/union types.
4269 *
4270 * For each struct/union type its type signature hash is calculated, taking
4271 * into account type's name, size, number, order and names of fields, but
4272 * ignoring type ID's referenced from fields, because they might not be deduped
4273 * completely until after reference types deduplication phase. This type hash
4274 * is used to iterate over all potential canonical types, sharing same hash.
4275 * For each canonical candidate we check whether type graphs that they form
4276 * (through referenced types in fields and so on) are equivalent using algorithm
4277 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4278 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4279 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4280 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4281 * potentially map other structs/unions to their canonical representatives,
4282 * if such relationship hasn't yet been established. This speeds up algorithm
4283 * by eliminating some of the duplicate work.
4284 *
4285 * If no matching canonical representative was found, struct/union is marked
4286 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4287 * for further look ups.
4288 */
4289static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4290{
4291	struct btf_type *cand_type, *t;
4292	struct hashmap_entry *hash_entry;
4293	/* if we don't find equivalent type, then we are canonical */
4294	__u32 new_id = type_id;
4295	__u16 kind;
4296	long h;
4297
4298	/* already deduped or is in process of deduping (loop detected) */
4299	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4300		return 0;
4301
4302	t = btf_type_by_id(d->btf, type_id);
4303	kind = btf_kind(t);
4304
4305	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4306		return 0;
4307
4308	h = btf_hash_struct(t);
4309	for_each_dedup_cand(d, hash_entry, h) {
4310		__u32 cand_id = hash_entry->value;
4311		int eq;
4312
4313		/*
4314		 * Even though btf_dedup_is_equiv() checks for
4315		 * btf_shallow_equal_struct() internally when checking two
4316		 * structs (unions) for equivalence, we need to guard here
4317		 * from picking matching FWD type as a dedup candidate.
4318		 * This can happen due to hash collision. In such case just
4319		 * relying on btf_dedup_is_equiv() would lead to potentially
4320		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4321		 * FWD and compatible STRUCT/UNION are considered equivalent.
4322		 */
4323		cand_type = btf_type_by_id(d->btf, cand_id);
4324		if (!btf_shallow_equal_struct(t, cand_type))
4325			continue;
4326
4327		btf_dedup_clear_hypot_map(d);
4328		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4329		if (eq < 0)
4330			return eq;
4331		if (!eq)
4332			continue;
4333		btf_dedup_merge_hypot_map(d);
4334		if (d->hypot_adjust_canon) /* not really equivalent */
4335			continue;
4336		new_id = cand_id;
4337		break;
4338	}
4339
4340	d->map[type_id] = new_id;
4341	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4342		return -ENOMEM;
4343
4344	return 0;
4345}
4346
4347static int btf_dedup_struct_types(struct btf_dedup *d)
4348{
4349	int i, err;
4350
4351	for (i = 0; i < d->btf->nr_types; i++) {
4352		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4353		if (err)
4354			return err;
4355	}
4356	return 0;
4357}
4358
4359/*
4360 * Deduplicate reference type.
4361 *
4362 * Once all primitive and struct/union types got deduplicated, we can easily
4363 * deduplicate all other (reference) BTF types. This is done in two steps:
4364 *
4365 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4366 * resolution can be done either immediately for primitive or struct/union types
4367 * (because they were deduped in previous two phases) or recursively for
4368 * reference types. Recursion will always terminate at either primitive or
4369 * struct/union type, at which point we can "unwind" chain of reference types
4370 * one by one. There is no danger of encountering cycles because in C type
4371 * system the only way to form type cycle is through struct/union, so any chain
4372 * of reference types, even those taking part in a type cycle, will inevitably
4373 * reach struct/union at some point.
4374 *
4375 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4376 * becomes "stable", in the sense that no further deduplication will cause
4377 * any changes to it. With that, it's now possible to calculate type's signature
4378 * hash (this time taking into account referenced type IDs) and loop over all
4379 * potential canonical representatives. If no match was found, current type
4380 * will become canonical representative of itself and will be added into
4381 * btf_dedup->dedup_table as another possible canonical representative.
4382 */
4383static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4384{
4385	struct hashmap_entry *hash_entry;
4386	__u32 new_id = type_id, cand_id;
4387	struct btf_type *t, *cand;
4388	/* if we don't find equivalent type, then we are representative type */
4389	int ref_type_id;
4390	long h;
4391
4392	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4393		return -ELOOP;
4394	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4395		return resolve_type_id(d, type_id);
4396
4397	t = btf_type_by_id(d->btf, type_id);
4398	d->map[type_id] = BTF_IN_PROGRESS_ID;
4399
4400	switch (btf_kind(t)) {
4401	case BTF_KIND_CONST:
4402	case BTF_KIND_VOLATILE:
4403	case BTF_KIND_RESTRICT:
4404	case BTF_KIND_PTR:
4405	case BTF_KIND_TYPEDEF:
4406	case BTF_KIND_FUNC:
4407	case BTF_KIND_TYPE_TAG:
4408		ref_type_id = btf_dedup_ref_type(d, t->type);
4409		if (ref_type_id < 0)
4410			return ref_type_id;
4411		t->type = ref_type_id;
4412
4413		h = btf_hash_common(t);
4414		for_each_dedup_cand(d, hash_entry, h) {
4415			cand_id = hash_entry->value;
4416			cand = btf_type_by_id(d->btf, cand_id);
4417			if (btf_equal_common(t, cand)) {
4418				new_id = cand_id;
4419				break;
4420			}
4421		}
4422		break;
4423
4424	case BTF_KIND_DECL_TAG:
4425		ref_type_id = btf_dedup_ref_type(d, t->type);
4426		if (ref_type_id < 0)
4427			return ref_type_id;
4428		t->type = ref_type_id;
4429
4430		h = btf_hash_int_decl_tag(t);
4431		for_each_dedup_cand(d, hash_entry, h) {
4432			cand_id = hash_entry->value;
4433			cand = btf_type_by_id(d->btf, cand_id);
4434			if (btf_equal_int_tag(t, cand)) {
4435				new_id = cand_id;
4436				break;
4437			}
4438		}
4439		break;
4440
4441	case BTF_KIND_ARRAY: {
4442		struct btf_array *info = btf_array(t);
4443
4444		ref_type_id = btf_dedup_ref_type(d, info->type);
4445		if (ref_type_id < 0)
4446			return ref_type_id;
4447		info->type = ref_type_id;
4448
4449		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4450		if (ref_type_id < 0)
4451			return ref_type_id;
4452		info->index_type = ref_type_id;
4453
4454		h = btf_hash_array(t);
4455		for_each_dedup_cand(d, hash_entry, h) {
4456			cand_id = hash_entry->value;
4457			cand = btf_type_by_id(d->btf, cand_id);
4458			if (btf_equal_array(t, cand)) {
4459				new_id = cand_id;
4460				break;
4461			}
4462		}
4463		break;
4464	}
4465
4466	case BTF_KIND_FUNC_PROTO: {
4467		struct btf_param *param;
4468		__u16 vlen;
4469		int i;
4470
4471		ref_type_id = btf_dedup_ref_type(d, t->type);
4472		if (ref_type_id < 0)
4473			return ref_type_id;
4474		t->type = ref_type_id;
4475
4476		vlen = btf_vlen(t);
4477		param = btf_params(t);
4478		for (i = 0; i < vlen; i++) {
4479			ref_type_id = btf_dedup_ref_type(d, param->type);
4480			if (ref_type_id < 0)
4481				return ref_type_id;
4482			param->type = ref_type_id;
4483			param++;
4484		}
4485
4486		h = btf_hash_fnproto(t);
4487		for_each_dedup_cand(d, hash_entry, h) {
4488			cand_id = hash_entry->value;
4489			cand = btf_type_by_id(d->btf, cand_id);
4490			if (btf_equal_fnproto(t, cand)) {
4491				new_id = cand_id;
4492				break;
4493			}
4494		}
4495		break;
4496	}
4497
4498	default:
4499		return -EINVAL;
4500	}
4501
4502	d->map[type_id] = new_id;
4503	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4504		return -ENOMEM;
4505
4506	return new_id;
4507}
4508
4509static int btf_dedup_ref_types(struct btf_dedup *d)
4510{
4511	int i, err;
4512
4513	for (i = 0; i < d->btf->nr_types; i++) {
4514		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4515		if (err < 0)
4516			return err;
4517	}
4518	/* we won't need d->dedup_table anymore */
4519	hashmap__free(d->dedup_table);
4520	d->dedup_table = NULL;
4521	return 0;
4522}
4523
4524/*
4525 * Collect a map from type names to type ids for all canonical structs
4526 * and unions. If the same name is shared by several canonical types
4527 * use a special value 0 to indicate this fact.
4528 */
4529static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4530{
4531	__u32 nr_types = btf__type_cnt(d->btf);
4532	struct btf_type *t;
4533	__u32 type_id;
4534	__u16 kind;
4535	int err;
4536
4537	/*
4538	 * Iterate over base and split module ids in order to get all
4539	 * available structs in the map.
4540	 */
4541	for (type_id = 1; type_id < nr_types; ++type_id) {
4542		t = btf_type_by_id(d->btf, type_id);
4543		kind = btf_kind(t);
4544
4545		if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4546			continue;
4547
4548		/* Skip non-canonical types */
4549		if (type_id != d->map[type_id])
4550			continue;
4551
4552		err = hashmap__add(names_map, t->name_off, type_id);
4553		if (err == -EEXIST)
4554			err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4555
4556		if (err)
4557			return err;
4558	}
4559
4560	return 0;
4561}
4562
4563static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4564{
4565	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4566	enum btf_fwd_kind fwd_kind = btf_kflag(t);
4567	__u16 cand_kind, kind = btf_kind(t);
4568	struct btf_type *cand_t;
4569	uintptr_t cand_id;
4570
4571	if (kind != BTF_KIND_FWD)
4572		return 0;
4573
4574	/* Skip if this FWD already has a mapping */
4575	if (type_id != d->map[type_id])
4576		return 0;
4577
4578	if (!hashmap__find(names_map, t->name_off, &cand_id))
4579		return 0;
4580
4581	/* Zero is a special value indicating that name is not unique */
4582	if (!cand_id)
4583		return 0;
4584
4585	cand_t = btf_type_by_id(d->btf, cand_id);
4586	cand_kind = btf_kind(cand_t);
4587	if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
4588	    (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
4589		return 0;
4590
4591	d->map[type_id] = cand_id;
4592
4593	return 0;
4594}
4595
4596/*
4597 * Resolve unambiguous forward declarations.
4598 *
4599 * The lion's share of all FWD declarations is resolved during
4600 * `btf_dedup_struct_types` phase when different type graphs are
4601 * compared against each other. However, if in some compilation unit a
4602 * FWD declaration is not a part of a type graph compared against
4603 * another type graph that declaration's canonical type would not be
4604 * changed. Example:
4605 *
4606 * CU #1:
4607 *
4608 * struct foo;
4609 * struct foo *some_global;
4610 *
4611 * CU #2:
4612 *
4613 * struct foo { int u; };
4614 * struct foo *another_global;
4615 *
4616 * After `btf_dedup_struct_types` the BTF looks as follows:
4617 *
4618 * [1] STRUCT 'foo' size=4 vlen=1 ...
4619 * [2] INT 'int' size=4 ...
4620 * [3] PTR '(anon)' type_id=1
4621 * [4] FWD 'foo' fwd_kind=struct
4622 * [5] PTR '(anon)' type_id=4
4623 *
4624 * This pass assumes that such FWD declarations should be mapped to
4625 * structs or unions with identical name in case if the name is not
4626 * ambiguous.
4627 */
4628static int btf_dedup_resolve_fwds(struct btf_dedup *d)
4629{
4630	int i, err;
4631	struct hashmap *names_map;
4632
4633	names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
4634	if (IS_ERR(names_map))
4635		return PTR_ERR(names_map);
4636
4637	err = btf_dedup_fill_unique_names_map(d, names_map);
4638	if (err < 0)
4639		goto exit;
4640
4641	for (i = 0; i < d->btf->nr_types; i++) {
4642		err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
4643		if (err < 0)
4644			break;
4645	}
4646
4647exit:
4648	hashmap__free(names_map);
4649	return err;
4650}
4651
4652/*
4653 * Compact types.
4654 *
4655 * After we established for each type its corresponding canonical representative
4656 * type, we now can eliminate types that are not canonical and leave only
4657 * canonical ones layed out sequentially in memory by copying them over
4658 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4659 * a map from original type ID to a new compacted type ID, which will be used
4660 * during next phase to "fix up" type IDs, referenced from struct/union and
4661 * reference types.
4662 */
4663static int btf_dedup_compact_types(struct btf_dedup *d)
4664{
4665	__u32 *new_offs;
4666	__u32 next_type_id = d->btf->start_id;
4667	const struct btf_type *t;
4668	void *p;
4669	int i, id, len;
4670
4671	/* we are going to reuse hypot_map to store compaction remapping */
4672	d->hypot_map[0] = 0;
4673	/* base BTF types are not renumbered */
4674	for (id = 1; id < d->btf->start_id; id++)
4675		d->hypot_map[id] = id;
4676	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4677		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4678
4679	p = d->btf->types_data;
4680
4681	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4682		if (d->map[id] != id)
4683			continue;
4684
4685		t = btf__type_by_id(d->btf, id);
4686		len = btf_type_size(t);
4687		if (len < 0)
4688			return len;
4689
4690		memmove(p, t, len);
4691		d->hypot_map[id] = next_type_id;
4692		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4693		p += len;
4694		next_type_id++;
4695	}
4696
4697	/* shrink struct btf's internal types index and update btf_header */
4698	d->btf->nr_types = next_type_id - d->btf->start_id;
4699	d->btf->type_offs_cap = d->btf->nr_types;
4700	d->btf->hdr->type_len = p - d->btf->types_data;
4701	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4702				       sizeof(*new_offs));
4703	if (d->btf->type_offs_cap && !new_offs)
4704		return -ENOMEM;
4705	d->btf->type_offs = new_offs;
4706	d->btf->hdr->str_off = d->btf->hdr->type_len;
4707	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4708	return 0;
4709}
4710
4711/*
4712 * Figure out final (deduplicated and compacted) type ID for provided original
4713 * `type_id` by first resolving it into corresponding canonical type ID and
4714 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4715 * which is populated during compaction phase.
4716 */
4717static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4718{
4719	struct btf_dedup *d = ctx;
4720	__u32 resolved_type_id, new_type_id;
4721
4722	resolved_type_id = resolve_type_id(d, *type_id);
4723	new_type_id = d->hypot_map[resolved_type_id];
4724	if (new_type_id > BTF_MAX_NR_TYPES)
4725		return -EINVAL;
4726
4727	*type_id = new_type_id;
4728	return 0;
4729}
4730
4731/*
4732 * Remap referenced type IDs into deduped type IDs.
4733 *
4734 * After BTF types are deduplicated and compacted, their final type IDs may
4735 * differ from original ones. The map from original to a corresponding
4736 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4737 * compaction phase. During remapping phase we are rewriting all type IDs
4738 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4739 * their final deduped type IDs.
4740 */
4741static int btf_dedup_remap_types(struct btf_dedup *d)
4742{
4743	int i, r;
4744
4745	for (i = 0; i < d->btf->nr_types; i++) {
4746		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4747
4748		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4749		if (r)
4750			return r;
4751	}
4752
4753	if (!d->btf_ext)
4754		return 0;
4755
4756	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4757	if (r)
4758		return r;
4759
4760	return 0;
4761}
4762
4763/*
4764 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4765 * data out of it to use for target BTF.
4766 */
4767struct btf *btf__load_vmlinux_btf(void)
4768{
4769	const char *locations[] = {
4770		/* try canonical vmlinux BTF through sysfs first */
4771		"/sys/kernel/btf/vmlinux",
4772		/* fall back to trying to find vmlinux on disk otherwise */
4773		"/boot/vmlinux-%1$s",
4774		"/lib/modules/%1$s/vmlinux-%1$s",
4775		"/lib/modules/%1$s/build/vmlinux",
4776		"/usr/lib/modules/%1$s/kernel/vmlinux",
4777		"/usr/lib/debug/boot/vmlinux-%1$s",
4778		"/usr/lib/debug/boot/vmlinux-%1$s.debug",
4779		"/usr/lib/debug/lib/modules/%1$s/vmlinux",
4780	};
4781	char path[PATH_MAX + 1];
4782	struct utsname buf;
4783	struct btf *btf;
4784	int i, err;
4785
4786	uname(&buf);
4787
4788	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4789		snprintf(path, PATH_MAX, locations[i], buf.release);
4790
4791		if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
4792			continue;
4793
4794		btf = btf__parse(path, NULL);
4795		err = libbpf_get_error(btf);
4796		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4797		if (err)
4798			continue;
4799
4800		return btf;
4801	}
4802
4803	pr_warn("failed to find valid kernel BTF\n");
4804	return libbpf_err_ptr(-ESRCH);
4805}
4806
4807struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4808
4809struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4810{
4811	char path[80];
4812
4813	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4814	return btf__parse_split(path, vmlinux_btf);
4815}
4816
4817int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4818{
4819	int i, n, err;
4820
4821	switch (btf_kind(t)) {
4822	case BTF_KIND_INT:
4823	case BTF_KIND_FLOAT:
4824	case BTF_KIND_ENUM:
4825	case BTF_KIND_ENUM64:
4826		return 0;
4827
4828	case BTF_KIND_FWD:
4829	case BTF_KIND_CONST:
4830	case BTF_KIND_VOLATILE:
4831	case BTF_KIND_RESTRICT:
4832	case BTF_KIND_PTR:
4833	case BTF_KIND_TYPEDEF:
4834	case BTF_KIND_FUNC:
4835	case BTF_KIND_VAR:
4836	case BTF_KIND_DECL_TAG:
4837	case BTF_KIND_TYPE_TAG:
4838		return visit(&t->type, ctx);
4839
4840	case BTF_KIND_ARRAY: {
4841		struct btf_array *a = btf_array(t);
4842
4843		err = visit(&a->type, ctx);
4844		err = err ?: visit(&a->index_type, ctx);
4845		return err;
4846	}
4847
4848	case BTF_KIND_STRUCT:
4849	case BTF_KIND_UNION: {
4850		struct btf_member *m = btf_members(t);
4851
4852		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4853			err = visit(&m->type, ctx);
4854			if (err)
4855				return err;
4856		}
4857		return 0;
4858	}
4859
4860	case BTF_KIND_FUNC_PROTO: {
4861		struct btf_param *m = btf_params(t);
4862
4863		err = visit(&t->type, ctx);
4864		if (err)
4865			return err;
4866		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4867			err = visit(&m->type, ctx);
4868			if (err)
4869				return err;
4870		}
4871		return 0;
4872	}
4873
4874	case BTF_KIND_DATASEC: {
4875		struct btf_var_secinfo *m = btf_var_secinfos(t);
4876
4877		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4878			err = visit(&m->type, ctx);
4879			if (err)
4880				return err;
4881		}
4882		return 0;
4883	}
4884
4885	default:
4886		return -EINVAL;
4887	}
4888}
4889
4890int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4891{
4892	int i, n, err;
4893
4894	err = visit(&t->name_off, ctx);
4895	if (err)
4896		return err;
4897
4898	switch (btf_kind(t)) {
4899	case BTF_KIND_STRUCT:
4900	case BTF_KIND_UNION: {
4901		struct btf_member *m = btf_members(t);
4902
4903		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4904			err = visit(&m->name_off, ctx);
4905			if (err)
4906				return err;
4907		}
4908		break;
4909	}
4910	case BTF_KIND_ENUM: {
4911		struct btf_enum *m = btf_enum(t);
4912
4913		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4914			err = visit(&m->name_off, ctx);
4915			if (err)
4916				return err;
4917		}
4918		break;
4919	}
4920	case BTF_KIND_ENUM64: {
4921		struct btf_enum64 *m = btf_enum64(t);
4922
4923		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4924			err = visit(&m->name_off, ctx);
4925			if (err)
4926				return err;
4927		}
4928		break;
4929	}
4930	case BTF_KIND_FUNC_PROTO: {
4931		struct btf_param *m = btf_params(t);
4932
4933		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4934			err = visit(&m->name_off, ctx);
4935			if (err)
4936				return err;
4937		}
4938		break;
4939	}
4940	default:
4941		break;
4942	}
4943
4944	return 0;
4945}
4946
4947int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4948{
4949	const struct btf_ext_info *seg;
4950	struct btf_ext_info_sec *sec;
4951	int i, err;
4952
4953	seg = &btf_ext->func_info;
4954	for_each_btf_ext_sec(seg, sec) {
4955		struct bpf_func_info_min *rec;
4956
4957		for_each_btf_ext_rec(seg, sec, i, rec) {
4958			err = visit(&rec->type_id, ctx);
4959			if (err < 0)
4960				return err;
4961		}
4962	}
4963
4964	seg = &btf_ext->core_relo_info;
4965	for_each_btf_ext_sec(seg, sec) {
4966		struct bpf_core_relo *rec;
4967
4968		for_each_btf_ext_rec(seg, sec, i, rec) {
4969			err = visit(&rec->type_id, ctx);
4970			if (err < 0)
4971				return err;
4972		}
4973	}
4974
4975	return 0;
4976}
4977
4978int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4979{
4980	const struct btf_ext_info *seg;
4981	struct btf_ext_info_sec *sec;
4982	int i, err;
4983
4984	seg = &btf_ext->func_info;
4985	for_each_btf_ext_sec(seg, sec) {
4986		err = visit(&sec->sec_name_off, ctx);
4987		if (err)
4988			return err;
4989	}
4990
4991	seg = &btf_ext->line_info;
4992	for_each_btf_ext_sec(seg, sec) {
4993		struct bpf_line_info_min *rec;
4994
4995		err = visit(&sec->sec_name_off, ctx);
4996		if (err)
4997			return err;
4998
4999		for_each_btf_ext_rec(seg, sec, i, rec) {
5000			err = visit(&rec->file_name_off, ctx);
5001			if (err)
5002				return err;
5003			err = visit(&rec->line_off, ctx);
5004			if (err)
5005				return err;
5006		}
5007	}
5008
5009	seg = &btf_ext->core_relo_info;
5010	for_each_btf_ext_sec(seg, sec) {
5011		struct bpf_core_relo *rec;
5012
5013		err = visit(&sec->sec_name_off, ctx);
5014		if (err)
5015			return err;
5016
5017		for_each_btf_ext_rec(seg, sec, i, rec) {
5018			err = visit(&rec->access_str_off, ctx);
5019			if (err)
5020				return err;
5021		}
5022	}
5023
5024	return 0;
5025}
5026