1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *   intel_hdmi_audio.c - Intel HDMI audio driver
4 *
5 *  Copyright (C) 2016 Intel Corp
6 *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
7 *		Ramesh Babu K V	<ramesh.babu@intel.com>
8 *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
9 *		Jerome Anand <jerome.anand@intel.com>
10 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 * ALSA driver for Intel HDMI audio
14 */
15
16#include <linux/types.h>
17#include <linux/platform_device.h>
18#include <linux/io.h>
19#include <linux/slab.h>
20#include <linux/module.h>
21#include <linux/interrupt.h>
22#include <linux/pm_runtime.h>
23#include <linux/dma-mapping.h>
24#include <linux/delay.h>
25#include <sound/core.h>
26#include <sound/asoundef.h>
27#include <sound/pcm.h>
28#include <sound/pcm_params.h>
29#include <sound/initval.h>
30#include <sound/control.h>
31#include <sound/jack.h>
32#include <drm/drm_edid.h>
33#include <drm/intel_lpe_audio.h>
34#include "intel_hdmi_audio.h"
35
36#define INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS  5000
37
38#define for_each_pipe(card_ctx, pipe) \
39	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
40#define for_each_port(card_ctx, port) \
41	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
42
43/*standard module options for ALSA. This module supports only one card*/
44static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
45static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
46static bool single_port;
47
48module_param_named(index, hdmi_card_index, int, 0444);
49MODULE_PARM_DESC(index,
50		"Index value for INTEL Intel HDMI Audio controller.");
51module_param_named(id, hdmi_card_id, charp, 0444);
52MODULE_PARM_DESC(id,
53		"ID string for INTEL Intel HDMI Audio controller.");
54module_param(single_port, bool, 0444);
55MODULE_PARM_DESC(single_port,
56		"Single-port mode (for compatibility)");
57
58/*
59 * ELD SA bits in the CEA Speaker Allocation data block
60 */
61static const int eld_speaker_allocation_bits[] = {
62	[0] = FL | FR,
63	[1] = LFE,
64	[2] = FC,
65	[3] = RL | RR,
66	[4] = RC,
67	[5] = FLC | FRC,
68	[6] = RLC | RRC,
69	/* the following are not defined in ELD yet */
70	[7] = 0,
71};
72
73/*
74 * This is an ordered list!
75 *
76 * The preceding ones have better chances to be selected by
77 * hdmi_channel_allocation().
78 */
79static struct cea_channel_speaker_allocation channel_allocations[] = {
80/*                        channel:   7     6    5    4    3     2    1    0  */
81{ .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
82				/* 2.1 */
83{ .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
84				/* Dolby Surround */
85{ .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
86				/* surround40 */
87{ .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
88				/* surround41 */
89{ .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
90				/* surround50 */
91{ .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
92				/* surround51 */
93{ .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
94				/* 6.1 */
95{ .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
96				/* surround71 */
97{ .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
98
99{ .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
100{ .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
101{ .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
102{ .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
103{ .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
104{ .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
105{ .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
106{ .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
107{ .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
108{ .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
109{ .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
110{ .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
111{ .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
112{ .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
113{ .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
114{ .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
115{ .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
116{ .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
117{ .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
118{ .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
119{ .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
120{ .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
121{ .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
122};
123
124static const struct channel_map_table map_tables[] = {
125	{ SNDRV_CHMAP_FL,       0x00,   FL },
126	{ SNDRV_CHMAP_FR,       0x01,   FR },
127	{ SNDRV_CHMAP_RL,       0x04,   RL },
128	{ SNDRV_CHMAP_RR,       0x05,   RR },
129	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
130	{ SNDRV_CHMAP_FC,       0x03,   FC },
131	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
132	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
133	{} /* terminator */
134};
135
136/* hardware capability structure */
137static const struct snd_pcm_hardware had_pcm_hardware = {
138	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
139		SNDRV_PCM_INFO_MMAP |
140		SNDRV_PCM_INFO_MMAP_VALID |
141		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
142	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
143		    SNDRV_PCM_FMTBIT_S24_LE |
144		    SNDRV_PCM_FMTBIT_S32_LE),
145	.rates = SNDRV_PCM_RATE_32000 |
146		SNDRV_PCM_RATE_44100 |
147		SNDRV_PCM_RATE_48000 |
148		SNDRV_PCM_RATE_88200 |
149		SNDRV_PCM_RATE_96000 |
150		SNDRV_PCM_RATE_176400 |
151		SNDRV_PCM_RATE_192000,
152	.rate_min = HAD_MIN_RATE,
153	.rate_max = HAD_MAX_RATE,
154	.channels_min = HAD_MIN_CHANNEL,
155	.channels_max = HAD_MAX_CHANNEL,
156	.buffer_bytes_max = HAD_MAX_BUFFER,
157	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
158	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
159	.periods_min = HAD_MIN_PERIODS,
160	.periods_max = HAD_MAX_PERIODS,
161	.fifo_size = HAD_FIFO_SIZE,
162};
163
164/* Get the active PCM substream;
165 * Call had_substream_put() for unreferecing.
166 * Don't call this inside had_spinlock, as it takes by itself
167 */
168static struct snd_pcm_substream *
169had_substream_get(struct snd_intelhad *intelhaddata)
170{
171	struct snd_pcm_substream *substream;
172	unsigned long flags;
173
174	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
175	substream = intelhaddata->stream_info.substream;
176	if (substream)
177		intelhaddata->stream_info.substream_refcount++;
178	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
179	return substream;
180}
181
182/* Unref the active PCM substream;
183 * Don't call this inside had_spinlock, as it takes by itself
184 */
185static void had_substream_put(struct snd_intelhad *intelhaddata)
186{
187	unsigned long flags;
188
189	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
190	intelhaddata->stream_info.substream_refcount--;
191	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
192}
193
194static u32 had_config_offset(int pipe)
195{
196	switch (pipe) {
197	default:
198	case 0:
199		return AUDIO_HDMI_CONFIG_A;
200	case 1:
201		return AUDIO_HDMI_CONFIG_B;
202	case 2:
203		return AUDIO_HDMI_CONFIG_C;
204	}
205}
206
207/* Register access functions */
208static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
209				 int pipe, u32 reg)
210{
211	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
212}
213
214static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
215				   int pipe, u32 reg, u32 val)
216{
217	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
218}
219
220static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
221{
222	if (!ctx->connected)
223		*val = 0;
224	else
225		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
226}
227
228static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
229{
230	if (ctx->connected)
231		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
232}
233
234/*
235 * enable / disable audio configuration
236 *
237 * The normal read/modify should not directly be used on VLV2 for
238 * updating AUD_CONFIG register.
239 * This is because:
240 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
241 * HDMI IP. As a result a read-modify of AUD_CONFIG register will always
242 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
243 * register. This field should be 1xy binary for configuration with 6 or
244 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
245 * causes the "channels" field to be updated as 0xy binary resulting in
246 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
247 * appropriate value when doing read-modify of AUD_CONFIG register.
248 */
249static void had_enable_audio(struct snd_intelhad *intelhaddata,
250			     bool enable)
251{
252	/* update the cached value */
253	intelhaddata->aud_config.regx.aud_en = enable;
254	had_write_register(intelhaddata, AUD_CONFIG,
255			   intelhaddata->aud_config.regval);
256}
257
258/* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
259static void had_ack_irqs(struct snd_intelhad *ctx)
260{
261	u32 status_reg;
262
263	if (!ctx->connected)
264		return;
265	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
266	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
267	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
268	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
269}
270
271/* Reset buffer pointers */
272static void had_reset_audio(struct snd_intelhad *intelhaddata)
273{
274	had_write_register(intelhaddata, AUD_HDMI_STATUS,
275			   AUD_HDMI_STATUSG_MASK_FUNCRST);
276	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
277}
278
279/*
280 * initialize audio channel status registers
281 * This function is called in the prepare callback
282 */
283static int had_prog_status_reg(struct snd_pcm_substream *substream,
284			struct snd_intelhad *intelhaddata)
285{
286	union aud_ch_status_0 ch_stat0 = {.regval = 0};
287	union aud_ch_status_1 ch_stat1 = {.regval = 0};
288
289	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
290					  IEC958_AES0_NONAUDIO) >> 1;
291	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
292					  IEC958_AES3_CON_CLOCK) >> 4;
293
294	switch (substream->runtime->rate) {
295	case AUD_SAMPLE_RATE_32:
296		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
297		break;
298
299	case AUD_SAMPLE_RATE_44_1:
300		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
301		break;
302	case AUD_SAMPLE_RATE_48:
303		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
304		break;
305	case AUD_SAMPLE_RATE_88_2:
306		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
307		break;
308	case AUD_SAMPLE_RATE_96:
309		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
310		break;
311	case AUD_SAMPLE_RATE_176_4:
312		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
313		break;
314	case AUD_SAMPLE_RATE_192:
315		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
316		break;
317
318	default:
319		/* control should never come here */
320		return -EINVAL;
321	}
322
323	had_write_register(intelhaddata,
324			   AUD_CH_STATUS_0, ch_stat0.regval);
325
326	switch (substream->runtime->format) {
327	case SNDRV_PCM_FORMAT_S16_LE:
328		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
329		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
330		break;
331	case SNDRV_PCM_FORMAT_S24_LE:
332	case SNDRV_PCM_FORMAT_S32_LE:
333		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
334		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
335		break;
336	default:
337		return -EINVAL;
338	}
339
340	had_write_register(intelhaddata,
341			   AUD_CH_STATUS_1, ch_stat1.regval);
342	return 0;
343}
344
345/*
346 * function to initialize audio
347 * registers and buffer configuration registers
348 * This function is called in the prepare callback
349 */
350static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
351			       struct snd_intelhad *intelhaddata)
352{
353	union aud_cfg cfg_val = {.regval = 0};
354	union aud_buf_config buf_cfg = {.regval = 0};
355	u8 channels;
356
357	had_prog_status_reg(substream, intelhaddata);
358
359	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
360	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
361	buf_cfg.regx.aud_delay = 0;
362	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
363
364	channels = substream->runtime->channels;
365	cfg_val.regx.num_ch = channels - 2;
366	if (channels <= 2)
367		cfg_val.regx.layout = LAYOUT0;
368	else
369		cfg_val.regx.layout = LAYOUT1;
370
371	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
372		cfg_val.regx.packet_mode = 1;
373
374	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
375		cfg_val.regx.left_align = 1;
376
377	cfg_val.regx.val_bit = 1;
378
379	/* fix up the DP bits */
380	if (intelhaddata->dp_output) {
381		cfg_val.regx.dp_modei = 1;
382		cfg_val.regx.set = 1;
383	}
384
385	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
386	intelhaddata->aud_config = cfg_val;
387	return 0;
388}
389
390/*
391 * Compute derived values in channel_allocations[].
392 */
393static void init_channel_allocations(void)
394{
395	int i, j;
396	struct cea_channel_speaker_allocation *p;
397
398	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
399		p = channel_allocations + i;
400		p->channels = 0;
401		p->spk_mask = 0;
402		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
403			if (p->speakers[j]) {
404				p->channels++;
405				p->spk_mask |= p->speakers[j];
406			}
407	}
408}
409
410/*
411 * The transformation takes two steps:
412 *
413 *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
414 *            spk_mask => (channel_allocations[])         => ai->CA
415 *
416 * TODO: it could select the wrong CA from multiple candidates.
417 */
418static int had_channel_allocation(struct snd_intelhad *intelhaddata,
419				  int channels)
420{
421	int i;
422	int ca = 0;
423	int spk_mask = 0;
424
425	/*
426	 * CA defaults to 0 for basic stereo audio
427	 */
428	if (channels <= 2)
429		return 0;
430
431	/*
432	 * expand ELD's speaker allocation mask
433	 *
434	 * ELD tells the speaker mask in a compact(paired) form,
435	 * expand ELD's notions to match the ones used by Audio InfoFrame.
436	 */
437
438	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
439		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
440			spk_mask |= eld_speaker_allocation_bits[i];
441	}
442
443	/* search for the first working match in the CA table */
444	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
445		if (channels == channel_allocations[i].channels &&
446		(spk_mask & channel_allocations[i].spk_mask) ==
447				channel_allocations[i].spk_mask) {
448			ca = channel_allocations[i].ca_index;
449			break;
450		}
451	}
452
453	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
454
455	return ca;
456}
457
458/* from speaker bit mask to ALSA API channel position */
459static int spk_to_chmap(int spk)
460{
461	const struct channel_map_table *t = map_tables;
462
463	for (; t->map; t++) {
464		if (t->spk_mask == spk)
465			return t->map;
466	}
467	return 0;
468}
469
470static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
471{
472	int i, c;
473	int spk_mask = 0;
474	struct snd_pcm_chmap_elem *chmap;
475	u8 eld_high, eld_high_mask = 0xF0;
476	u8 high_msb;
477
478	kfree(intelhaddata->chmap->chmap);
479	intelhaddata->chmap->chmap = NULL;
480
481	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
482	if (!chmap)
483		return;
484
485	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
486		intelhaddata->eld[DRM_ELD_SPEAKER]);
487
488	/* WA: Fix the max channel supported to 8 */
489
490	/*
491	 * Sink may support more than 8 channels, if eld_high has more than
492	 * one bit set. SOC supports max 8 channels.
493	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
494	 */
495
496	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
497	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
498	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
499		/* eld_high & (eld_high-1): if more than 1 bit set */
500		/* 0x1F: 7 channels */
501		for (i = 1; i < 4; i++) {
502			high_msb = eld_high & (0x80 >> i);
503			if (high_msb) {
504				intelhaddata->eld[DRM_ELD_SPEAKER] &=
505					high_msb | 0xF;
506				break;
507			}
508		}
509	}
510
511	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
512		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
513			spk_mask |= eld_speaker_allocation_bits[i];
514	}
515
516	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
517		if (spk_mask == channel_allocations[i].spk_mask) {
518			for (c = 0; c < channel_allocations[i].channels; c++) {
519				chmap->map[c] = spk_to_chmap(
520					channel_allocations[i].speakers[
521						(MAX_SPEAKERS - 1) - c]);
522			}
523			chmap->channels = channel_allocations[i].channels;
524			intelhaddata->chmap->chmap = chmap;
525			break;
526		}
527	}
528	if (i >= ARRAY_SIZE(channel_allocations))
529		kfree(chmap);
530}
531
532/*
533 * ALSA API channel-map control callbacks
534 */
535static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
536				struct snd_ctl_elem_info *uinfo)
537{
538	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
539	uinfo->count = HAD_MAX_CHANNEL;
540	uinfo->value.integer.min = 0;
541	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
542	return 0;
543}
544
545static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
546				struct snd_ctl_elem_value *ucontrol)
547{
548	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
549	struct snd_intelhad *intelhaddata = info->private_data;
550	int i;
551	const struct snd_pcm_chmap_elem *chmap;
552
553	memset(ucontrol->value.integer.value, 0,
554	       sizeof(long) * HAD_MAX_CHANNEL);
555	mutex_lock(&intelhaddata->mutex);
556	if (!intelhaddata->chmap->chmap) {
557		mutex_unlock(&intelhaddata->mutex);
558		return 0;
559	}
560
561	chmap = intelhaddata->chmap->chmap;
562	for (i = 0; i < chmap->channels; i++)
563		ucontrol->value.integer.value[i] = chmap->map[i];
564	mutex_unlock(&intelhaddata->mutex);
565
566	return 0;
567}
568
569static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
570						struct snd_pcm *pcm)
571{
572	int err;
573
574	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
575			NULL, 0, (unsigned long)intelhaddata,
576			&intelhaddata->chmap);
577	if (err < 0)
578		return err;
579
580	intelhaddata->chmap->private_data = intelhaddata;
581	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
582	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
583	intelhaddata->chmap->chmap = NULL;
584	return 0;
585}
586
587/*
588 * Initialize Data Island Packets registers
589 * This function is called in the prepare callback
590 */
591static void had_prog_dip(struct snd_pcm_substream *substream,
592			 struct snd_intelhad *intelhaddata)
593{
594	int i;
595	union aud_ctrl_st ctrl_state = {.regval = 0};
596	union aud_info_frame2 frame2 = {.regval = 0};
597	union aud_info_frame3 frame3 = {.regval = 0};
598	u8 checksum = 0;
599	u32 info_frame;
600	int channels;
601	int ca;
602
603	channels = substream->runtime->channels;
604
605	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
606
607	ca = had_channel_allocation(intelhaddata, channels);
608	if (intelhaddata->dp_output) {
609		info_frame = DP_INFO_FRAME_WORD1;
610		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
611	} else {
612		info_frame = HDMI_INFO_FRAME_WORD1;
613		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
614		frame3.regx.chnl_alloc = ca;
615
616		/* Calculte the byte wide checksum for all valid DIP words */
617		for (i = 0; i < BYTES_PER_WORD; i++)
618			checksum += (info_frame >> (i * 8)) & 0xff;
619		for (i = 0; i < BYTES_PER_WORD; i++)
620			checksum += (frame2.regval >> (i * 8)) & 0xff;
621		for (i = 0; i < BYTES_PER_WORD; i++)
622			checksum += (frame3.regval >> (i * 8)) & 0xff;
623
624		frame2.regx.chksum = -(checksum);
625	}
626
627	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
628	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
629	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
630
631	/* program remaining DIP words with zero */
632	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
633		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
634
635	ctrl_state.regx.dip_freq = 1;
636	ctrl_state.regx.dip_en_sta = 1;
637	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
638}
639
640static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
641{
642	u32 maud_val;
643
644	/* Select maud according to DP 1.2 spec */
645	if (link_rate == DP_2_7_GHZ) {
646		switch (aud_samp_freq) {
647		case AUD_SAMPLE_RATE_32:
648			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
649			break;
650
651		case AUD_SAMPLE_RATE_44_1:
652			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
653			break;
654
655		case AUD_SAMPLE_RATE_48:
656			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
657			break;
658
659		case AUD_SAMPLE_RATE_88_2:
660			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
661			break;
662
663		case AUD_SAMPLE_RATE_96:
664			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
665			break;
666
667		case AUD_SAMPLE_RATE_176_4:
668			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
669			break;
670
671		case HAD_MAX_RATE:
672			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
673			break;
674
675		default:
676			maud_val = -EINVAL;
677			break;
678		}
679	} else if (link_rate == DP_1_62_GHZ) {
680		switch (aud_samp_freq) {
681		case AUD_SAMPLE_RATE_32:
682			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
683			break;
684
685		case AUD_SAMPLE_RATE_44_1:
686			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
687			break;
688
689		case AUD_SAMPLE_RATE_48:
690			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
691			break;
692
693		case AUD_SAMPLE_RATE_88_2:
694			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
695			break;
696
697		case AUD_SAMPLE_RATE_96:
698			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
699			break;
700
701		case AUD_SAMPLE_RATE_176_4:
702			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
703			break;
704
705		case HAD_MAX_RATE:
706			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
707			break;
708
709		default:
710			maud_val = -EINVAL;
711			break;
712		}
713	} else
714		maud_val = -EINVAL;
715
716	return maud_val;
717}
718
719/*
720 * Program HDMI audio CTS value
721 *
722 * @aud_samp_freq: sampling frequency of audio data
723 * @tmds: sampling frequency of the display data
724 * @link_rate: DP link rate
725 * @n_param: N value, depends on aud_samp_freq
726 * @intelhaddata: substream private data
727 *
728 * Program CTS register based on the audio and display sampling frequency
729 */
730static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
731			 u32 n_param, struct snd_intelhad *intelhaddata)
732{
733	u32 cts_val;
734	u64 dividend, divisor;
735
736	if (intelhaddata->dp_output) {
737		/* Substitute cts_val with Maud according to DP 1.2 spec*/
738		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
739	} else {
740		/* Calculate CTS according to HDMI 1.3a spec*/
741		dividend = (u64)tmds * n_param*1000;
742		divisor = 128 * aud_samp_freq;
743		cts_val = div64_u64(dividend, divisor);
744	}
745	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
746		 tmds, n_param, cts_val);
747	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
748}
749
750static int had_calculate_n_value(u32 aud_samp_freq)
751{
752	int n_val;
753
754	/* Select N according to HDMI 1.3a spec*/
755	switch (aud_samp_freq) {
756	case AUD_SAMPLE_RATE_32:
757		n_val = 4096;
758		break;
759
760	case AUD_SAMPLE_RATE_44_1:
761		n_val = 6272;
762		break;
763
764	case AUD_SAMPLE_RATE_48:
765		n_val = 6144;
766		break;
767
768	case AUD_SAMPLE_RATE_88_2:
769		n_val = 12544;
770		break;
771
772	case AUD_SAMPLE_RATE_96:
773		n_val = 12288;
774		break;
775
776	case AUD_SAMPLE_RATE_176_4:
777		n_val = 25088;
778		break;
779
780	case HAD_MAX_RATE:
781		n_val = 24576;
782		break;
783
784	default:
785		n_val = -EINVAL;
786		break;
787	}
788	return n_val;
789}
790
791/*
792 * Program HDMI audio N value
793 *
794 * @aud_samp_freq: sampling frequency of audio data
795 * @n_param: N value, depends on aud_samp_freq
796 * @intelhaddata: substream private data
797 *
798 * This function is called in the prepare callback.
799 * It programs based on the audio and display sampling frequency
800 */
801static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
802		      struct snd_intelhad *intelhaddata)
803{
804	int n_val;
805
806	if (intelhaddata->dp_output) {
807		/*
808		 * According to DP specs, Maud and Naud values hold
809		 * a relationship, which is stated as:
810		 * Maud/Naud = 512 * fs / f_LS_Clk
811		 * where, fs is the sampling frequency of the audio stream
812		 * and Naud is 32768 for Async clock.
813		 */
814
815		n_val = DP_NAUD_VAL;
816	} else
817		n_val =	had_calculate_n_value(aud_samp_freq);
818
819	if (n_val < 0)
820		return n_val;
821
822	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
823	*n_param = n_val;
824	return 0;
825}
826
827/*
828 * PCM ring buffer handling
829 *
830 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
831 * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
832 * moves at each period elapsed.  The below illustrates how it works:
833 *
834 * At time=0
835 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
836 *  BD  | 0 | 1 | 2 | 3 |
837 *
838 * At time=1 (period elapsed)
839 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
840 *  BD      | 1 | 2 | 3 | 0 |
841 *
842 * At time=2 (second period elapsed)
843 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
844 *  BD          | 2 | 3 | 0 | 1 |
845 *
846 * The bd_head field points to the index of the BD to be read.  It's also the
847 * position to be filled at next.  The pcm_head and the pcm_filled fields
848 * point to the indices of the current position and of the next position to
849 * be filled, respectively.  For PCM buffer there are both _head and _filled
850 * because they may be difference when nperiods > 4.  For example, in the
851 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
852 *
853 * pcm_head (=1) --v               v-- pcm_filled (=5)
854 *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
855 *       BD      | 1 | 2 | 3 | 0 |
856 *  bd_head (=1) --^               ^-- next to fill (= bd_head)
857 *
858 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
859 * the hardware skips those BDs in the loop.
860 *
861 * An exceptional setup is the case with nperiods=1.  Since we have to update
862 * BDs after finishing one BD processing, we'd need at least two BDs, where
863 * both BDs point to the same content, the same address, the same size of the
864 * whole PCM buffer.
865 */
866
867#define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
868#define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
869
870/* Set up a buffer descriptor at the "filled" position */
871static void had_prog_bd(struct snd_pcm_substream *substream,
872			struct snd_intelhad *intelhaddata)
873{
874	int idx = intelhaddata->bd_head;
875	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
876	u32 addr = substream->runtime->dma_addr + ofs;
877
878	addr |= AUD_BUF_VALID;
879	if (!substream->runtime->no_period_wakeup)
880		addr |= AUD_BUF_INTR_EN;
881	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
882	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
883			   intelhaddata->period_bytes);
884
885	/* advance the indices to the next */
886	intelhaddata->bd_head++;
887	intelhaddata->bd_head %= intelhaddata->num_bds;
888	intelhaddata->pcmbuf_filled++;
889	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
890}
891
892/* invalidate a buffer descriptor with the given index */
893static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
894			      int idx)
895{
896	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
897	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
898}
899
900/* Initial programming of ring buffer */
901static void had_init_ringbuf(struct snd_pcm_substream *substream,
902			     struct snd_intelhad *intelhaddata)
903{
904	struct snd_pcm_runtime *runtime = substream->runtime;
905	int i, num_periods;
906
907	num_periods = runtime->periods;
908	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
909	/* set the minimum 2 BDs for num_periods=1 */
910	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
911	intelhaddata->period_bytes =
912		frames_to_bytes(runtime, runtime->period_size);
913	WARN_ON(intelhaddata->period_bytes & 0x3f);
914
915	intelhaddata->bd_head = 0;
916	intelhaddata->pcmbuf_head = 0;
917	intelhaddata->pcmbuf_filled = 0;
918
919	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
920		if (i < intelhaddata->num_bds)
921			had_prog_bd(substream, intelhaddata);
922		else /* invalidate the rest */
923			had_invalidate_bd(intelhaddata, i);
924	}
925
926	intelhaddata->bd_head = 0; /* reset at head again before starting */
927}
928
929/* process a bd, advance to the next */
930static void had_advance_ringbuf(struct snd_pcm_substream *substream,
931				struct snd_intelhad *intelhaddata)
932{
933	int num_periods = substream->runtime->periods;
934
935	/* reprogram the next buffer */
936	had_prog_bd(substream, intelhaddata);
937
938	/* proceed to next */
939	intelhaddata->pcmbuf_head++;
940	intelhaddata->pcmbuf_head %= num_periods;
941}
942
943/* process the current BD(s);
944 * returns the current PCM buffer byte position, or -EPIPE for underrun.
945 */
946static int had_process_ringbuf(struct snd_pcm_substream *substream,
947			       struct snd_intelhad *intelhaddata)
948{
949	int len, processed;
950	unsigned long flags;
951
952	processed = 0;
953	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
954	for (;;) {
955		/* get the remaining bytes on the buffer */
956		had_read_register(intelhaddata,
957				  AUD_BUF_LEN(intelhaddata->bd_head),
958				  &len);
959		if (len < 0 || len > intelhaddata->period_bytes) {
960			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
961				len);
962			len = -EPIPE;
963			goto out;
964		}
965
966		if (len > 0) /* OK, this is the current buffer */
967			break;
968
969		/* len=0 => already empty, check the next buffer */
970		if (++processed >= intelhaddata->num_bds) {
971			len = -EPIPE; /* all empty? - report underrun */
972			goto out;
973		}
974		had_advance_ringbuf(substream, intelhaddata);
975	}
976
977	len = intelhaddata->period_bytes - len;
978	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
979 out:
980	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
981	return len;
982}
983
984/* called from irq handler */
985static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
986{
987	struct snd_pcm_substream *substream;
988
989	substream = had_substream_get(intelhaddata);
990	if (!substream)
991		return; /* no stream? - bail out */
992
993	if (!intelhaddata->connected) {
994		snd_pcm_stop_xrun(substream);
995		goto out; /* disconnected? - bail out */
996	}
997
998	/* process or stop the stream */
999	if (had_process_ringbuf(substream, intelhaddata) < 0)
1000		snd_pcm_stop_xrun(substream);
1001	else
1002		snd_pcm_period_elapsed(substream);
1003
1004 out:
1005	had_substream_put(intelhaddata);
1006}
1007
1008/*
1009 * The interrupt status 'sticky' bits might not be cleared by
1010 * setting '1' to that bit once...
1011 */
1012static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1013{
1014	int i;
1015	u32 val;
1016
1017	for (i = 0; i < 100; i++) {
1018		/* clear bit30, 31 AUD_HDMI_STATUS */
1019		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1020		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1021			return;
1022		udelay(100);
1023		cond_resched();
1024		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1025	}
1026	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1027}
1028
1029/* Perform some reset procedure after stopping the stream;
1030 * this is called from prepare or hw_free callbacks once after trigger STOP
1031 * or underrun has been processed in order to settle down the h/w state.
1032 */
1033static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1034{
1035	struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1036
1037	if (!intelhaddata->connected)
1038		return 0;
1039
1040	/* Reset buffer pointers */
1041	had_reset_audio(intelhaddata);
1042	wait_clear_underrun_bit(intelhaddata);
1043	return 0;
1044}
1045
1046/* called from irq handler */
1047static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1048{
1049	struct snd_pcm_substream *substream;
1050
1051	/* Report UNDERRUN error to above layers */
1052	substream = had_substream_get(intelhaddata);
1053	if (substream) {
1054		snd_pcm_stop_xrun(substream);
1055		had_substream_put(intelhaddata);
1056	}
1057}
1058
1059/*
1060 * ALSA PCM open callback
1061 */
1062static int had_pcm_open(struct snd_pcm_substream *substream)
1063{
1064	struct snd_intelhad *intelhaddata;
1065	struct snd_pcm_runtime *runtime;
1066	int retval;
1067
1068	intelhaddata = snd_pcm_substream_chip(substream);
1069	runtime = substream->runtime;
1070
1071	retval = pm_runtime_resume_and_get(intelhaddata->dev);
1072	if (retval < 0)
1073		return retval;
1074
1075	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1076	runtime->hw = had_pcm_hardware;
1077
1078	retval = snd_pcm_hw_constraint_integer(runtime,
1079			 SNDRV_PCM_HW_PARAM_PERIODS);
1080	if (retval < 0)
1081		goto error;
1082
1083	/* Make sure, that the period size is always aligned
1084	 * 64byte boundary
1085	 */
1086	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1087			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1088	if (retval < 0)
1089		goto error;
1090
1091	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1092	if (retval < 0)
1093		goto error;
1094
1095	/* expose PCM substream */
1096	spin_lock_irq(&intelhaddata->had_spinlock);
1097	intelhaddata->stream_info.substream = substream;
1098	intelhaddata->stream_info.substream_refcount++;
1099	spin_unlock_irq(&intelhaddata->had_spinlock);
1100
1101	return retval;
1102 error:
1103	pm_runtime_mark_last_busy(intelhaddata->dev);
1104	pm_runtime_put_autosuspend(intelhaddata->dev);
1105	return retval;
1106}
1107
1108/*
1109 * ALSA PCM close callback
1110 */
1111static int had_pcm_close(struct snd_pcm_substream *substream)
1112{
1113	struct snd_intelhad *intelhaddata;
1114
1115	intelhaddata = snd_pcm_substream_chip(substream);
1116
1117	/* unreference and sync with the pending PCM accesses */
1118	spin_lock_irq(&intelhaddata->had_spinlock);
1119	intelhaddata->stream_info.substream = NULL;
1120	intelhaddata->stream_info.substream_refcount--;
1121	while (intelhaddata->stream_info.substream_refcount > 0) {
1122		spin_unlock_irq(&intelhaddata->had_spinlock);
1123		cpu_relax();
1124		spin_lock_irq(&intelhaddata->had_spinlock);
1125	}
1126	spin_unlock_irq(&intelhaddata->had_spinlock);
1127
1128	pm_runtime_mark_last_busy(intelhaddata->dev);
1129	pm_runtime_put_autosuspend(intelhaddata->dev);
1130	return 0;
1131}
1132
1133/*
1134 * ALSA PCM hw_params callback
1135 */
1136static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1137			     struct snd_pcm_hw_params *hw_params)
1138{
1139	struct snd_intelhad *intelhaddata;
1140	int buf_size;
1141
1142	intelhaddata = snd_pcm_substream_chip(substream);
1143	buf_size = params_buffer_bytes(hw_params);
1144	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1145		__func__, buf_size);
1146	return 0;
1147}
1148
1149/*
1150 * ALSA PCM trigger callback
1151 */
1152static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1153{
1154	int retval = 0;
1155	struct snd_intelhad *intelhaddata;
1156
1157	intelhaddata = snd_pcm_substream_chip(substream);
1158
1159	spin_lock(&intelhaddata->had_spinlock);
1160	switch (cmd) {
1161	case SNDRV_PCM_TRIGGER_START:
1162	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1163	case SNDRV_PCM_TRIGGER_RESUME:
1164		/* Enable Audio */
1165		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1166		had_enable_audio(intelhaddata, true);
1167		break;
1168
1169	case SNDRV_PCM_TRIGGER_STOP:
1170	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1171		/* Disable Audio */
1172		had_enable_audio(intelhaddata, false);
1173		break;
1174
1175	default:
1176		retval = -EINVAL;
1177	}
1178	spin_unlock(&intelhaddata->had_spinlock);
1179	return retval;
1180}
1181
1182/*
1183 * ALSA PCM prepare callback
1184 */
1185static int had_pcm_prepare(struct snd_pcm_substream *substream)
1186{
1187	int retval;
1188	u32 disp_samp_freq, n_param;
1189	u32 link_rate = 0;
1190	struct snd_intelhad *intelhaddata;
1191	struct snd_pcm_runtime *runtime;
1192
1193	intelhaddata = snd_pcm_substream_chip(substream);
1194	runtime = substream->runtime;
1195
1196	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1197		(int)frames_to_bytes(runtime, runtime->period_size));
1198	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1199	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1200		(int)snd_pcm_lib_buffer_bytes(substream));
1201	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1202	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1203
1204	/* Get N value in KHz */
1205	disp_samp_freq = intelhaddata->tmds_clock_speed;
1206
1207	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1208	if (retval) {
1209		dev_err(intelhaddata->dev,
1210			"programming N value failed %#x\n", retval);
1211		goto prep_end;
1212	}
1213
1214	if (intelhaddata->dp_output)
1215		link_rate = intelhaddata->link_rate;
1216
1217	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1218		     n_param, intelhaddata);
1219
1220	had_prog_dip(substream, intelhaddata);
1221
1222	retval = had_init_audio_ctrl(substream, intelhaddata);
1223
1224	/* Prog buffer address */
1225	had_init_ringbuf(substream, intelhaddata);
1226
1227	/*
1228	 * Program channel mapping in following order:
1229	 * FL, FR, C, LFE, RL, RR
1230	 */
1231
1232	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1233
1234prep_end:
1235	return retval;
1236}
1237
1238/*
1239 * ALSA PCM pointer callback
1240 */
1241static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1242{
1243	struct snd_intelhad *intelhaddata;
1244	int len;
1245
1246	intelhaddata = snd_pcm_substream_chip(substream);
1247
1248	if (!intelhaddata->connected)
1249		return SNDRV_PCM_POS_XRUN;
1250
1251	len = had_process_ringbuf(substream, intelhaddata);
1252	if (len < 0)
1253		return SNDRV_PCM_POS_XRUN;
1254	len = bytes_to_frames(substream->runtime, len);
1255	/* wrapping may happen when periods=1 */
1256	len %= substream->runtime->buffer_size;
1257	return len;
1258}
1259
1260/*
1261 * ALSA PCM ops
1262 */
1263static const struct snd_pcm_ops had_pcm_ops = {
1264	.open =		had_pcm_open,
1265	.close =	had_pcm_close,
1266	.hw_params =	had_pcm_hw_params,
1267	.prepare =	had_pcm_prepare,
1268	.trigger =	had_pcm_trigger,
1269	.sync_stop =	had_pcm_sync_stop,
1270	.pointer =	had_pcm_pointer,
1271};
1272
1273/* process mode change of the running stream; called in mutex */
1274static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1275{
1276	struct snd_pcm_substream *substream;
1277	int retval = 0;
1278	u32 disp_samp_freq, n_param;
1279	u32 link_rate = 0;
1280
1281	substream = had_substream_get(intelhaddata);
1282	if (!substream)
1283		return 0;
1284
1285	/* Disable Audio */
1286	had_enable_audio(intelhaddata, false);
1287
1288	/* Update CTS value */
1289	disp_samp_freq = intelhaddata->tmds_clock_speed;
1290
1291	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1292	if (retval) {
1293		dev_err(intelhaddata->dev,
1294			"programming N value failed %#x\n", retval);
1295		goto out;
1296	}
1297
1298	if (intelhaddata->dp_output)
1299		link_rate = intelhaddata->link_rate;
1300
1301	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1302		     n_param, intelhaddata);
1303
1304	/* Enable Audio */
1305	had_enable_audio(intelhaddata, true);
1306
1307out:
1308	had_substream_put(intelhaddata);
1309	return retval;
1310}
1311
1312/* process hot plug, called from wq with mutex locked */
1313static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1314{
1315	struct snd_pcm_substream *substream;
1316
1317	spin_lock_irq(&intelhaddata->had_spinlock);
1318	if (intelhaddata->connected) {
1319		dev_dbg(intelhaddata->dev, "Device already connected\n");
1320		spin_unlock_irq(&intelhaddata->had_spinlock);
1321		return;
1322	}
1323
1324	/* Disable Audio */
1325	had_enable_audio(intelhaddata, false);
1326
1327	intelhaddata->connected = true;
1328	dev_dbg(intelhaddata->dev,
1329		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1330			__func__, __LINE__);
1331	spin_unlock_irq(&intelhaddata->had_spinlock);
1332
1333	had_build_channel_allocation_map(intelhaddata);
1334
1335	/* Report to above ALSA layer */
1336	substream = had_substream_get(intelhaddata);
1337	if (substream) {
1338		snd_pcm_stop_xrun(substream);
1339		had_substream_put(intelhaddata);
1340	}
1341
1342	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1343}
1344
1345/* process hot unplug, called from wq with mutex locked */
1346static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1347{
1348	struct snd_pcm_substream *substream;
1349
1350	spin_lock_irq(&intelhaddata->had_spinlock);
1351	if (!intelhaddata->connected) {
1352		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1353		spin_unlock_irq(&intelhaddata->had_spinlock);
1354		return;
1355
1356	}
1357
1358	/* Disable Audio */
1359	had_enable_audio(intelhaddata, false);
1360
1361	intelhaddata->connected = false;
1362	dev_dbg(intelhaddata->dev,
1363		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1364			__func__, __LINE__);
1365	spin_unlock_irq(&intelhaddata->had_spinlock);
1366
1367	kfree(intelhaddata->chmap->chmap);
1368	intelhaddata->chmap->chmap = NULL;
1369
1370	/* Report to above ALSA layer */
1371	substream = had_substream_get(intelhaddata);
1372	if (substream) {
1373		snd_pcm_stop_xrun(substream);
1374		had_substream_put(intelhaddata);
1375	}
1376
1377	snd_jack_report(intelhaddata->jack, 0);
1378}
1379
1380/*
1381 * ALSA iec958 and ELD controls
1382 */
1383
1384static int had_iec958_info(struct snd_kcontrol *kcontrol,
1385				struct snd_ctl_elem_info *uinfo)
1386{
1387	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1388	uinfo->count = 1;
1389	return 0;
1390}
1391
1392static int had_iec958_get(struct snd_kcontrol *kcontrol,
1393				struct snd_ctl_elem_value *ucontrol)
1394{
1395	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1396
1397	mutex_lock(&intelhaddata->mutex);
1398	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1399	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1400	ucontrol->value.iec958.status[2] =
1401					(intelhaddata->aes_bits >> 16) & 0xff;
1402	ucontrol->value.iec958.status[3] =
1403					(intelhaddata->aes_bits >> 24) & 0xff;
1404	mutex_unlock(&intelhaddata->mutex);
1405	return 0;
1406}
1407
1408static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1409				struct snd_ctl_elem_value *ucontrol)
1410{
1411	ucontrol->value.iec958.status[0] = 0xff;
1412	ucontrol->value.iec958.status[1] = 0xff;
1413	ucontrol->value.iec958.status[2] = 0xff;
1414	ucontrol->value.iec958.status[3] = 0xff;
1415	return 0;
1416}
1417
1418static int had_iec958_put(struct snd_kcontrol *kcontrol,
1419				struct snd_ctl_elem_value *ucontrol)
1420{
1421	unsigned int val;
1422	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1423	int changed = 0;
1424
1425	val = (ucontrol->value.iec958.status[0] << 0) |
1426		(ucontrol->value.iec958.status[1] << 8) |
1427		(ucontrol->value.iec958.status[2] << 16) |
1428		(ucontrol->value.iec958.status[3] << 24);
1429	mutex_lock(&intelhaddata->mutex);
1430	if (intelhaddata->aes_bits != val) {
1431		intelhaddata->aes_bits = val;
1432		changed = 1;
1433	}
1434	mutex_unlock(&intelhaddata->mutex);
1435	return changed;
1436}
1437
1438static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1439			    struct snd_ctl_elem_info *uinfo)
1440{
1441	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1442	uinfo->count = HDMI_MAX_ELD_BYTES;
1443	return 0;
1444}
1445
1446static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1447			   struct snd_ctl_elem_value *ucontrol)
1448{
1449	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1450
1451	mutex_lock(&intelhaddata->mutex);
1452	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1453	       HDMI_MAX_ELD_BYTES);
1454	mutex_unlock(&intelhaddata->mutex);
1455	return 0;
1456}
1457
1458static const struct snd_kcontrol_new had_controls[] = {
1459	{
1460		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1461		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1462		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1463		.info = had_iec958_info, /* shared */
1464		.get = had_iec958_mask_get,
1465	},
1466	{
1467		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1468		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1469		.info = had_iec958_info,
1470		.get = had_iec958_get,
1471		.put = had_iec958_put,
1472	},
1473	{
1474		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1475			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1476		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1477		.name = "ELD",
1478		.info = had_ctl_eld_info,
1479		.get = had_ctl_eld_get,
1480	},
1481};
1482
1483/*
1484 * audio interrupt handler
1485 */
1486static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1487{
1488	struct snd_intelhad_card *card_ctx = dev_id;
1489	u32 audio_stat[3] = {};
1490	int pipe, port;
1491
1492	for_each_pipe(card_ctx, pipe) {
1493		/* use raw register access to ack IRQs even while disconnected */
1494		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1495							 AUD_HDMI_STATUS) &
1496			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1497
1498		if (audio_stat[pipe])
1499			had_write_register_raw(card_ctx, pipe,
1500					       AUD_HDMI_STATUS, audio_stat[pipe]);
1501	}
1502
1503	for_each_port(card_ctx, port) {
1504		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1505		int pipe = ctx->pipe;
1506
1507		if (pipe < 0)
1508			continue;
1509
1510		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1511			had_process_buffer_done(ctx);
1512		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1513			had_process_buffer_underrun(ctx);
1514	}
1515
1516	return IRQ_HANDLED;
1517}
1518
1519/*
1520 * monitor plug/unplug notification from i915; just kick off the work
1521 */
1522static void notify_audio_lpe(struct platform_device *pdev, int port)
1523{
1524	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1525	struct snd_intelhad *ctx;
1526
1527	ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1528	if (single_port)
1529		ctx->port = port;
1530
1531	schedule_work(&ctx->hdmi_audio_wq);
1532}
1533
1534/* the work to handle monitor hot plug/unplug */
1535static void had_audio_wq(struct work_struct *work)
1536{
1537	struct snd_intelhad *ctx =
1538		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1539	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1540	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1541	int ret;
1542
1543	ret = pm_runtime_resume_and_get(ctx->dev);
1544	if (ret < 0)
1545		return;
1546
1547	mutex_lock(&ctx->mutex);
1548	if (ppdata->pipe < 0) {
1549		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1550			__func__, ctx->port);
1551
1552		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1553
1554		ctx->dp_output = false;
1555		ctx->tmds_clock_speed = 0;
1556		ctx->link_rate = 0;
1557
1558		/* Shut down the stream */
1559		had_process_hot_unplug(ctx);
1560
1561		ctx->pipe = -1;
1562	} else {
1563		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1564			__func__, ctx->port, ppdata->ls_clock);
1565
1566		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1567
1568		ctx->dp_output = ppdata->dp_output;
1569		if (ctx->dp_output) {
1570			ctx->tmds_clock_speed = 0;
1571			ctx->link_rate = ppdata->ls_clock;
1572		} else {
1573			ctx->tmds_clock_speed = ppdata->ls_clock;
1574			ctx->link_rate = 0;
1575		}
1576
1577		/*
1578		 * Shut down the stream before we change
1579		 * the pipe assignment for this pcm device
1580		 */
1581		had_process_hot_plug(ctx);
1582
1583		ctx->pipe = ppdata->pipe;
1584
1585		/* Restart the stream if necessary */
1586		had_process_mode_change(ctx);
1587	}
1588
1589	mutex_unlock(&ctx->mutex);
1590	pm_runtime_mark_last_busy(ctx->dev);
1591	pm_runtime_put_autosuspend(ctx->dev);
1592}
1593
1594/*
1595 * Jack interface
1596 */
1597static int had_create_jack(struct snd_intelhad *ctx,
1598			   struct snd_pcm *pcm)
1599{
1600	char hdmi_str[32];
1601	int err;
1602
1603	snprintf(hdmi_str, sizeof(hdmi_str),
1604		 "HDMI/DP,pcm=%d", pcm->device);
1605
1606	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1607			   SND_JACK_AVOUT, &ctx->jack,
1608			   true, false);
1609	if (err < 0)
1610		return err;
1611	ctx->jack->private_data = ctx;
1612	return 0;
1613}
1614
1615/*
1616 * PM callbacks
1617 */
1618
1619static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1620{
1621	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1622
1623	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1624
1625	return 0;
1626}
1627
1628static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1629{
1630	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1631
1632	pm_runtime_mark_last_busy(dev);
1633
1634	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1635
1636	return 0;
1637}
1638
1639/* release resources */
1640static void hdmi_lpe_audio_free(struct snd_card *card)
1641{
1642	struct snd_intelhad_card *card_ctx = card->private_data;
1643	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1644	int port;
1645
1646	spin_lock_irq(&pdata->lpe_audio_slock);
1647	pdata->notify_audio_lpe = NULL;
1648	spin_unlock_irq(&pdata->lpe_audio_slock);
1649
1650	for_each_port(card_ctx, port) {
1651		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1652
1653		cancel_work_sync(&ctx->hdmi_audio_wq);
1654	}
1655}
1656
1657/*
1658 * hdmi_lpe_audio_probe - start bridge with i915
1659 *
1660 * This function is called when the i915 driver creates the
1661 * hdmi-lpe-audio platform device.
1662 */
1663static int __hdmi_lpe_audio_probe(struct platform_device *pdev)
1664{
1665	struct snd_card *card;
1666	struct snd_intelhad_card *card_ctx;
1667	struct snd_intelhad *ctx;
1668	struct snd_pcm *pcm;
1669	struct intel_hdmi_lpe_audio_pdata *pdata;
1670	int irq;
1671	struct resource *res_mmio;
1672	int port, ret;
1673
1674	pdata = pdev->dev.platform_data;
1675	if (!pdata) {
1676		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1677		return -EINVAL;
1678	}
1679
1680	/* get resources */
1681	irq = platform_get_irq(pdev, 0);
1682	if (irq < 0)
1683		return irq;
1684
1685	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1686	if (!res_mmio) {
1687		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1688		return -ENXIO;
1689	}
1690
1691	/* create a card instance with ALSA framework */
1692	ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1693				THIS_MODULE, sizeof(*card_ctx), &card);
1694	if (ret)
1695		return ret;
1696
1697	card_ctx = card->private_data;
1698	card_ctx->dev = &pdev->dev;
1699	card_ctx->card = card;
1700	strcpy(card->driver, INTEL_HAD);
1701	strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1702	strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1703
1704	card_ctx->irq = -1;
1705
1706	card->private_free = hdmi_lpe_audio_free;
1707
1708	platform_set_drvdata(pdev, card_ctx);
1709
1710	card_ctx->num_pipes = pdata->num_pipes;
1711	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1712
1713	for_each_port(card_ctx, port) {
1714		ctx = &card_ctx->pcm_ctx[port];
1715		ctx->card_ctx = card_ctx;
1716		ctx->dev = card_ctx->dev;
1717		ctx->port = single_port ? -1 : port;
1718		ctx->pipe = -1;
1719
1720		spin_lock_init(&ctx->had_spinlock);
1721		mutex_init(&ctx->mutex);
1722		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1723	}
1724
1725	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1726		__func__, (unsigned int)res_mmio->start,
1727		(unsigned int)res_mmio->end);
1728
1729	card_ctx->mmio_start =
1730		devm_ioremap(&pdev->dev, res_mmio->start,
1731			     (size_t)(resource_size(res_mmio)));
1732	if (!card_ctx->mmio_start) {
1733		dev_err(&pdev->dev, "Could not get ioremap\n");
1734		return -EACCES;
1735	}
1736
1737	/* setup interrupt handler */
1738	ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1739			       0, pdev->name, card_ctx);
1740	if (ret < 0) {
1741		dev_err(&pdev->dev, "request_irq failed\n");
1742		return ret;
1743	}
1744
1745	card_ctx->irq = irq;
1746
1747	/* only 32bit addressable */
1748	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1749	if (ret)
1750		return ret;
1751
1752	init_channel_allocations();
1753
1754	card_ctx->num_pipes = pdata->num_pipes;
1755	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1756
1757	for_each_port(card_ctx, port) {
1758		int i;
1759
1760		ctx = &card_ctx->pcm_ctx[port];
1761		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1762				  MAX_CAP_STREAMS, &pcm);
1763		if (ret)
1764			return ret;
1765
1766		/* setup private data which can be retrieved when required */
1767		pcm->private_data = ctx;
1768		pcm->info_flags = 0;
1769		strscpy(pcm->name, card->shortname, strlen(card->shortname));
1770		/* setup the ops for playback */
1771		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1772
1773		/* allocate dma pages;
1774		 * try to allocate 600k buffer as default which is large enough
1775		 */
1776		snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1777					       card->dev, HAD_DEFAULT_BUFFER,
1778					       HAD_MAX_BUFFER);
1779
1780		/* create controls */
1781		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1782			struct snd_kcontrol *kctl;
1783
1784			kctl = snd_ctl_new1(&had_controls[i], ctx);
1785			if (!kctl)
1786				return -ENOMEM;
1787
1788			kctl->id.device = pcm->device;
1789
1790			ret = snd_ctl_add(card, kctl);
1791			if (ret < 0)
1792				return ret;
1793		}
1794
1795		/* Register channel map controls */
1796		ret = had_register_chmap_ctls(ctx, pcm);
1797		if (ret < 0)
1798			return ret;
1799
1800		ret = had_create_jack(ctx, pcm);
1801		if (ret < 0)
1802			return ret;
1803	}
1804
1805	ret = snd_card_register(card);
1806	if (ret)
1807		return ret;
1808
1809	spin_lock_irq(&pdata->lpe_audio_slock);
1810	pdata->notify_audio_lpe = notify_audio_lpe;
1811	spin_unlock_irq(&pdata->lpe_audio_slock);
1812
1813	pm_runtime_set_autosuspend_delay(&pdev->dev, INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS);
1814	pm_runtime_use_autosuspend(&pdev->dev);
1815	pm_runtime_enable(&pdev->dev);
1816	pm_runtime_mark_last_busy(&pdev->dev);
1817	pm_runtime_idle(&pdev->dev);
1818
1819	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1820	for_each_port(card_ctx, port) {
1821		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1822
1823		schedule_work(&ctx->hdmi_audio_wq);
1824	}
1825
1826	return 0;
1827}
1828
1829static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1830{
1831	return snd_card_free_on_error(&pdev->dev, __hdmi_lpe_audio_probe(pdev));
1832}
1833
1834static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1835	SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1836};
1837
1838static struct platform_driver hdmi_lpe_audio_driver = {
1839	.driver		= {
1840		.name  = "hdmi-lpe-audio",
1841		.pm = &hdmi_lpe_audio_pm,
1842	},
1843	.probe          = hdmi_lpe_audio_probe,
1844};
1845
1846module_platform_driver(hdmi_lpe_audio_driver);
1847MODULE_ALIAS("platform:hdmi_lpe_audio");
1848
1849MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1850MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1851MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1852MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1853MODULE_DESCRIPTION("Intel HDMI Audio driver");
1854MODULE_LICENSE("GPL v2");
1855