xref: /kernel/linux/linux-6.6/sound/soc/ti/omap-mcbsp.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
4 *
5 * Copyright (C) 2008 Nokia Corporation
6 *
7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8 *          Peter Ujfalusi <peter.ujfalusi@ti.com>
9 */
10
11#include <linux/init.h>
12#include <linux/module.h>
13#include <linux/device.h>
14#include <linux/pm_runtime.h>
15#include <linux/of.h>
16#include <linux/of_device.h>
17#include <sound/core.h>
18#include <sound/pcm.h>
19#include <sound/pcm_params.h>
20#include <sound/initval.h>
21#include <sound/soc.h>
22#include <sound/dmaengine_pcm.h>
23
24#include "omap-mcbsp-priv.h"
25#include "omap-mcbsp.h"
26#include "sdma-pcm.h"
27
28#define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
29
30enum {
31	OMAP_MCBSP_WORD_8 = 0,
32	OMAP_MCBSP_WORD_12,
33	OMAP_MCBSP_WORD_16,
34	OMAP_MCBSP_WORD_20,
35	OMAP_MCBSP_WORD_24,
36	OMAP_MCBSP_WORD_32,
37};
38
39static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
40{
41	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
42	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n", MCBSP_READ(mcbsp, DRR2));
43	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n", MCBSP_READ(mcbsp, DRR1));
44	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n", MCBSP_READ(mcbsp, DXR2));
45	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n", MCBSP_READ(mcbsp, DXR1));
46	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2));
47	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1));
48	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n", MCBSP_READ(mcbsp, RCR2));
49	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n", MCBSP_READ(mcbsp, RCR1));
50	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n", MCBSP_READ(mcbsp, XCR2));
51	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n", MCBSP_READ(mcbsp, XCR1));
52	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2));
53	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1));
54	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n", MCBSP_READ(mcbsp, PCR0));
55	dev_dbg(mcbsp->dev, "***********************\n");
56}
57
58static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
59{
60	struct clk *fck_src;
61	const char *src;
62	int r;
63
64	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
65		src = "pad_fck";
66	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
67		src = "prcm_fck";
68	else
69		return -EINVAL;
70
71	fck_src = clk_get(mcbsp->dev, src);
72	if (IS_ERR(fck_src)) {
73		dev_info(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
74		return 0;
75	}
76
77	if (mcbsp->active)
78		pm_runtime_put_sync(mcbsp->dev);
79
80	r = clk_set_parent(mcbsp->fclk, fck_src);
81	if (r)
82		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
83			src);
84
85	if (mcbsp->active)
86		pm_runtime_get_sync(mcbsp->dev);
87
88	clk_put(fck_src);
89
90	return r;
91}
92
93static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data)
94{
95	struct omap_mcbsp *mcbsp = data;
96	u16 irqst;
97
98	irqst = MCBSP_READ(mcbsp, IRQST);
99	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
100
101	if (irqst & RSYNCERREN)
102		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
103	if (irqst & RFSREN)
104		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
105	if (irqst & REOFEN)
106		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
107	if (irqst & RRDYEN)
108		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
109	if (irqst & RUNDFLEN)
110		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
111	if (irqst & ROVFLEN)
112		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
113
114	if (irqst & XSYNCERREN)
115		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
116	if (irqst & XFSXEN)
117		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
118	if (irqst & XEOFEN)
119		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
120	if (irqst & XRDYEN)
121		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
122	if (irqst & XUNDFLEN)
123		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
124	if (irqst & XOVFLEN)
125		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
126	if (irqst & XEMPTYEOFEN)
127		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
128
129	MCBSP_WRITE(mcbsp, IRQST, irqst);
130
131	return IRQ_HANDLED;
132}
133
134static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data)
135{
136	struct omap_mcbsp *mcbsp = data;
137	u16 irqst_spcr2;
138
139	irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2);
140	dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
141
142	if (irqst_spcr2 & XSYNC_ERR) {
143		dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n",
144			irqst_spcr2);
145		/* Writing zero to XSYNC_ERR clears the IRQ */
146		MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2));
147	}
148
149	return IRQ_HANDLED;
150}
151
152static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data)
153{
154	struct omap_mcbsp *mcbsp = data;
155	u16 irqst_spcr1;
156
157	irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1);
158	dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
159
160	if (irqst_spcr1 & RSYNC_ERR) {
161		dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n",
162			irqst_spcr1);
163		/* Writing zero to RSYNC_ERR clears the IRQ */
164		MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1));
165	}
166
167	return IRQ_HANDLED;
168}
169
170/*
171 * omap_mcbsp_config simply write a config to the
172 * appropriate McBSP.
173 * You either call this function or set the McBSP registers
174 * by yourself before calling omap_mcbsp_start().
175 */
176static void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
177			      const struct omap_mcbsp_reg_cfg *config)
178{
179	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
180		mcbsp->id, mcbsp->phys_base);
181
182	/* We write the given config */
183	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
184	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
185	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
186	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
187	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
188	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
189	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
190	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
191	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
192	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
193	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
194	if (mcbsp->pdata->has_ccr) {
195		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
196		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
197	}
198	/* Enable wakeup behavior */
199	if (mcbsp->pdata->has_wakeup)
200		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
201
202	/* Enable TX/RX sync error interrupts by default */
203	if (mcbsp->irq)
204		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
205			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
206}
207
208/**
209 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
210 * @mcbsp: omap_mcbsp struct for the McBSP instance
211 * @stream: Stream direction (playback/capture)
212 *
213 * Returns the address of mcbsp data transmit register or data receive register
214 * to be used by DMA for transferring/receiving data
215 */
216static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
217				     unsigned int stream)
218{
219	int data_reg;
220
221	if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
222		if (mcbsp->pdata->reg_size == 2)
223			data_reg = OMAP_MCBSP_REG_DXR1;
224		else
225			data_reg = OMAP_MCBSP_REG_DXR;
226	} else {
227		if (mcbsp->pdata->reg_size == 2)
228			data_reg = OMAP_MCBSP_REG_DRR1;
229		else
230			data_reg = OMAP_MCBSP_REG_DRR;
231	}
232
233	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
234}
235
236/*
237 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
238 * The threshold parameter is 1 based, and it is converted (threshold - 1)
239 * for the THRSH2 register.
240 */
241static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
242{
243	if (threshold && threshold <= mcbsp->max_tx_thres)
244		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
245}
246
247/*
248 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
249 * The threshold parameter is 1 based, and it is converted (threshold - 1)
250 * for the THRSH1 register.
251 */
252static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
253{
254	if (threshold && threshold <= mcbsp->max_rx_thres)
255		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
256}
257
258/*
259 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
260 */
261static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
262{
263	u16 buffstat;
264
265	/* Returns the number of free locations in the buffer */
266	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
267
268	/* Number of slots are different in McBSP ports */
269	return mcbsp->pdata->buffer_size - buffstat;
270}
271
272/*
273 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
274 * to reach the threshold value (when the DMA will be triggered to read it)
275 */
276static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
277{
278	u16 buffstat, threshold;
279
280	/* Returns the number of used locations in the buffer */
281	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
282	/* RX threshold */
283	threshold = MCBSP_READ(mcbsp, THRSH1);
284
285	/* Return the number of location till we reach the threshold limit */
286	if (threshold <= buffstat)
287		return 0;
288	else
289		return threshold - buffstat;
290}
291
292static int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
293{
294	void *reg_cache;
295	int err;
296
297	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
298	if (!reg_cache)
299		return -ENOMEM;
300
301	spin_lock(&mcbsp->lock);
302	if (!mcbsp->free) {
303		dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id);
304		err = -EBUSY;
305		goto err_kfree;
306	}
307
308	mcbsp->free = false;
309	mcbsp->reg_cache = reg_cache;
310	spin_unlock(&mcbsp->lock);
311
312	if(mcbsp->pdata->ops && mcbsp->pdata->ops->request)
313		mcbsp->pdata->ops->request(mcbsp->id - 1);
314
315	/*
316	 * Make sure that transmitter, receiver and sample-rate generator are
317	 * not running before activating IRQs.
318	 */
319	MCBSP_WRITE(mcbsp, SPCR1, 0);
320	MCBSP_WRITE(mcbsp, SPCR2, 0);
321
322	if (mcbsp->irq) {
323		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
324				  "McBSP", (void *)mcbsp);
325		if (err != 0) {
326			dev_err(mcbsp->dev, "Unable to request IRQ\n");
327			goto err_clk_disable;
328		}
329	} else {
330		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
331				  "McBSP TX", (void *)mcbsp);
332		if (err != 0) {
333			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
334			goto err_clk_disable;
335		}
336
337		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
338				  "McBSP RX", (void *)mcbsp);
339		if (err != 0) {
340			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
341			goto err_free_irq;
342		}
343	}
344
345	return 0;
346err_free_irq:
347	free_irq(mcbsp->tx_irq, (void *)mcbsp);
348err_clk_disable:
349	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
350		mcbsp->pdata->ops->free(mcbsp->id - 1);
351
352	/* Disable wakeup behavior */
353	if (mcbsp->pdata->has_wakeup)
354		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
355
356	spin_lock(&mcbsp->lock);
357	mcbsp->free = true;
358	mcbsp->reg_cache = NULL;
359err_kfree:
360	spin_unlock(&mcbsp->lock);
361	kfree(reg_cache);
362
363	return err;
364}
365
366static void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
367{
368	void *reg_cache;
369
370	if(mcbsp->pdata->ops && mcbsp->pdata->ops->free)
371		mcbsp->pdata->ops->free(mcbsp->id - 1);
372
373	/* Disable wakeup behavior */
374	if (mcbsp->pdata->has_wakeup)
375		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
376
377	/* Disable interrupt requests */
378	if (mcbsp->irq) {
379		MCBSP_WRITE(mcbsp, IRQEN, 0);
380
381		free_irq(mcbsp->irq, (void *)mcbsp);
382	} else {
383		free_irq(mcbsp->rx_irq, (void *)mcbsp);
384		free_irq(mcbsp->tx_irq, (void *)mcbsp);
385	}
386
387	reg_cache = mcbsp->reg_cache;
388
389	/*
390	 * Select CLKS source from internal source unconditionally before
391	 * marking the McBSP port as free.
392	 * If the external clock source via MCBSP_CLKS pin has been selected the
393	 * system will refuse to enter idle if the CLKS pin source is not reset
394	 * back to internal source.
395	 */
396	if (!mcbsp_omap1())
397		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
398
399	spin_lock(&mcbsp->lock);
400	if (mcbsp->free)
401		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
402	else
403		mcbsp->free = true;
404	mcbsp->reg_cache = NULL;
405	spin_unlock(&mcbsp->lock);
406
407	kfree(reg_cache);
408}
409
410/*
411 * Here we start the McBSP, by enabling transmitter, receiver or both.
412 * If no transmitter or receiver is active prior calling, then sample-rate
413 * generator and frame sync are started.
414 */
415static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream)
416{
417	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
418	int rx = !tx;
419	int enable_srg = 0;
420	u16 w;
421
422	if (mcbsp->st_data)
423		omap_mcbsp_st_start(mcbsp);
424
425	/* Only enable SRG, if McBSP is master */
426	w = MCBSP_READ_CACHE(mcbsp, PCR0);
427	if (w & (FSXM | FSRM | CLKXM | CLKRM))
428		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
429				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
430
431	if (enable_srg) {
432		/* Start the sample generator */
433		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
434		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
435	}
436
437	/* Enable transmitter and receiver */
438	tx &= 1;
439	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
440	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
441
442	rx &= 1;
443	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
444	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
445
446	/*
447	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
448	 * REVISIT: 100us may give enough time for two CLKSRG, however
449	 * due to some unknown PM related, clock gating etc. reason it
450	 * is now at 500us.
451	 */
452	udelay(500);
453
454	if (enable_srg) {
455		/* Start frame sync */
456		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
457		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
458	}
459
460	if (mcbsp->pdata->has_ccr) {
461		/* Release the transmitter and receiver */
462		w = MCBSP_READ_CACHE(mcbsp, XCCR);
463		w &= ~(tx ? XDISABLE : 0);
464		MCBSP_WRITE(mcbsp, XCCR, w);
465		w = MCBSP_READ_CACHE(mcbsp, RCCR);
466		w &= ~(rx ? RDISABLE : 0);
467		MCBSP_WRITE(mcbsp, RCCR, w);
468	}
469
470	/* Dump McBSP Regs */
471	omap_mcbsp_dump_reg(mcbsp);
472}
473
474static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream)
475{
476	int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
477	int rx = !tx;
478	int idle;
479	u16 w;
480
481	/* Reset transmitter */
482	tx &= 1;
483	if (mcbsp->pdata->has_ccr) {
484		w = MCBSP_READ_CACHE(mcbsp, XCCR);
485		w |= (tx ? XDISABLE : 0);
486		MCBSP_WRITE(mcbsp, XCCR, w);
487	}
488	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
489	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
490
491	/* Reset receiver */
492	rx &= 1;
493	if (mcbsp->pdata->has_ccr) {
494		w = MCBSP_READ_CACHE(mcbsp, RCCR);
495		w |= (rx ? RDISABLE : 0);
496		MCBSP_WRITE(mcbsp, RCCR, w);
497	}
498	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
499	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
500
501	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
502			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
503
504	if (idle) {
505		/* Reset the sample rate generator */
506		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
507		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
508	}
509
510	if (mcbsp->st_data)
511		omap_mcbsp_st_stop(mcbsp);
512}
513
514#define max_thres(m)			(mcbsp->pdata->buffer_size)
515#define valid_threshold(m, val)		((val) <= max_thres(m))
516#define THRESHOLD_PROP_BUILDER(prop)					\
517static ssize_t prop##_show(struct device *dev,				\
518			struct device_attribute *attr, char *buf)	\
519{									\
520	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
521									\
522	return sysfs_emit(buf, "%u\n", mcbsp->prop);			\
523}									\
524									\
525static ssize_t prop##_store(struct device *dev,				\
526				struct device_attribute *attr,		\
527				const char *buf, size_t size)		\
528{									\
529	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
530	unsigned long val;						\
531	int status;							\
532									\
533	status = kstrtoul(buf, 0, &val);				\
534	if (status)							\
535		return status;						\
536									\
537	if (!valid_threshold(mcbsp, val))				\
538		return -EDOM;						\
539									\
540	mcbsp->prop = val;						\
541	return size;							\
542}									\
543									\
544static DEVICE_ATTR_RW(prop)
545
546THRESHOLD_PROP_BUILDER(max_tx_thres);
547THRESHOLD_PROP_BUILDER(max_rx_thres);
548
549static const char * const dma_op_modes[] = {
550	"element", "threshold",
551};
552
553static ssize_t dma_op_mode_show(struct device *dev,
554				struct device_attribute *attr, char *buf)
555{
556	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
557	int dma_op_mode, i = 0;
558	ssize_t len = 0;
559	const char * const *s;
560
561	dma_op_mode = mcbsp->dma_op_mode;
562
563	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
564		if (dma_op_mode == i)
565			len += sysfs_emit_at(buf, len, "[%s] ", *s);
566		else
567			len += sysfs_emit_at(buf, len, "%s ", *s);
568	}
569	len += sysfs_emit_at(buf, len, "\n");
570
571	return len;
572}
573
574static ssize_t dma_op_mode_store(struct device *dev,
575				 struct device_attribute *attr, const char *buf,
576				 size_t size)
577{
578	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
579	int i;
580
581	i = sysfs_match_string(dma_op_modes, buf);
582	if (i < 0)
583		return i;
584
585	spin_lock_irq(&mcbsp->lock);
586	if (!mcbsp->free) {
587		size = -EBUSY;
588		goto unlock;
589	}
590	mcbsp->dma_op_mode = i;
591
592unlock:
593	spin_unlock_irq(&mcbsp->lock);
594
595	return size;
596}
597
598static DEVICE_ATTR_RW(dma_op_mode);
599
600static const struct attribute *additional_attrs[] = {
601	&dev_attr_max_tx_thres.attr,
602	&dev_attr_max_rx_thres.attr,
603	&dev_attr_dma_op_mode.attr,
604	NULL,
605};
606
607static const struct attribute_group additional_attr_group = {
608	.attrs = (struct attribute **)additional_attrs,
609};
610
611/*
612 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
613 * 730 has only 2 McBSP, and both of them are MPU peripherals.
614 */
615static int omap_mcbsp_init(struct platform_device *pdev)
616{
617	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
618	struct resource *res;
619	int ret;
620
621	spin_lock_init(&mcbsp->lock);
622	mcbsp->free = true;
623
624	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
625	if (!res)
626		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
627
628	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
629	if (IS_ERR(mcbsp->io_base))
630		return PTR_ERR(mcbsp->io_base);
631
632	mcbsp->phys_base = res->start;
633	mcbsp->reg_cache_size = resource_size(res);
634
635	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
636	if (!res)
637		mcbsp->phys_dma_base = mcbsp->phys_base;
638	else
639		mcbsp->phys_dma_base = res->start;
640
641	/*
642	 * OMAP1, 2 uses two interrupt lines: TX, RX
643	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
644	 * OMAP4 and newer SoC only have the combined IRQ line.
645	 * Use the combined IRQ if available since it gives better debugging
646	 * possibilities.
647	 */
648	mcbsp->irq = platform_get_irq_byname(pdev, "common");
649	if (mcbsp->irq == -ENXIO) {
650		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
651
652		if (mcbsp->tx_irq == -ENXIO) {
653			mcbsp->irq = platform_get_irq(pdev, 0);
654			mcbsp->tx_irq = 0;
655		} else {
656			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
657			mcbsp->irq = 0;
658		}
659	}
660
661	if (!pdev->dev.of_node) {
662		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
663		if (!res) {
664			dev_err(&pdev->dev, "invalid tx DMA channel\n");
665			return -ENODEV;
666		}
667		mcbsp->dma_req[0] = res->start;
668		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
669
670		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
671		if (!res) {
672			dev_err(&pdev->dev, "invalid rx DMA channel\n");
673			return -ENODEV;
674		}
675		mcbsp->dma_req[1] = res->start;
676		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
677	} else {
678		mcbsp->dma_data[0].filter_data = "tx";
679		mcbsp->dma_data[1].filter_data = "rx";
680	}
681
682	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp,
683						SNDRV_PCM_STREAM_PLAYBACK);
684	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp,
685						SNDRV_PCM_STREAM_CAPTURE);
686
687	mcbsp->fclk = devm_clk_get(&pdev->dev, "fck");
688	if (IS_ERR(mcbsp->fclk)) {
689		ret = PTR_ERR(mcbsp->fclk);
690		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
691		return ret;
692	}
693
694	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
695	if (mcbsp->pdata->buffer_size) {
696		/*
697		 * Initially configure the maximum thresholds to a safe value.
698		 * The McBSP FIFO usage with these values should not go under
699		 * 16 locations.
700		 * If the whole FIFO without safety buffer is used, than there
701		 * is a possibility that the DMA will be not able to push the
702		 * new data on time, causing channel shifts in runtime.
703		 */
704		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
705		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
706
707		ret = devm_device_add_group(mcbsp->dev, &additional_attr_group);
708		if (ret) {
709			dev_err(mcbsp->dev,
710				"Unable to create additional controls\n");
711			return ret;
712		}
713	}
714
715	return omap_mcbsp_st_init(pdev);
716}
717
718/*
719 * Stream DMA parameters. DMA request line and port address are set runtime
720 * since they are different between OMAP1 and later OMAPs
721 */
722static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
723		unsigned int packet_size)
724{
725	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
726	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
727	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
728	int words;
729
730	/* No need to proceed further if McBSP does not have FIFO */
731	if (mcbsp->pdata->buffer_size == 0)
732		return;
733
734	/*
735	 * Configure McBSP threshold based on either:
736	 * packet_size, when the sDMA is in packet mode, or based on the
737	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
738	 * for mono streams.
739	 */
740	if (packet_size)
741		words = packet_size;
742	else
743		words = 1;
744
745	/* Configure McBSP internal buffer usage */
746	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
747		omap_mcbsp_set_tx_threshold(mcbsp, words);
748	else
749		omap_mcbsp_set_rx_threshold(mcbsp, words);
750}
751
752static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
753				    struct snd_pcm_hw_rule *rule)
754{
755	struct snd_interval *buffer_size = hw_param_interval(params,
756					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
757	struct snd_interval *channels = hw_param_interval(params,
758					SNDRV_PCM_HW_PARAM_CHANNELS);
759	struct omap_mcbsp *mcbsp = rule->private;
760	struct snd_interval frames;
761	int size;
762
763	snd_interval_any(&frames);
764	size = mcbsp->pdata->buffer_size;
765
766	frames.min = size / channels->min;
767	frames.integer = 1;
768	return snd_interval_refine(buffer_size, &frames);
769}
770
771static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
772				  struct snd_soc_dai *cpu_dai)
773{
774	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
775	int err = 0;
776
777	if (!snd_soc_dai_active(cpu_dai))
778		err = omap_mcbsp_request(mcbsp);
779
780	/*
781	 * OMAP3 McBSP FIFO is word structured.
782	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
783	 * McBSP1,3,4,5 has 128 word long buffer
784	 * This means that the size of the FIFO depends on the sample format.
785	 * For example on McBSP3:
786	 * 16bit samples: size is 128 * 2 = 256 bytes
787	 * 32bit samples: size is 128 * 4 = 512 bytes
788	 * It is simpler to place constraint for buffer and period based on
789	 * channels.
790	 * McBSP3 as example again (16 or 32 bit samples):
791	 * 1 channel (mono): size is 128 frames (128 words)
792	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
793	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
794	 */
795	if (mcbsp->pdata->buffer_size) {
796		/*
797		* Rule for the buffer size. We should not allow
798		* smaller buffer than the FIFO size to avoid underruns.
799		* This applies only for the playback stream.
800		*/
801		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
802			snd_pcm_hw_rule_add(substream->runtime, 0,
803					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
804					    omap_mcbsp_hwrule_min_buffersize,
805					    mcbsp,
806					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
807
808		/* Make sure, that the period size is always even */
809		snd_pcm_hw_constraint_step(substream->runtime, 0,
810					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
811	}
812
813	return err;
814}
815
816static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
817				    struct snd_soc_dai *cpu_dai)
818{
819	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
820	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
821	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
822	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
823
824	if (mcbsp->latency[stream2])
825		cpu_latency_qos_update_request(&mcbsp->pm_qos_req,
826					       mcbsp->latency[stream2]);
827	else if (mcbsp->latency[stream1])
828		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
829
830	mcbsp->latency[stream1] = 0;
831
832	if (!snd_soc_dai_active(cpu_dai)) {
833		omap_mcbsp_free(mcbsp);
834		mcbsp->configured = 0;
835	}
836}
837
838static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
839				  struct snd_soc_dai *cpu_dai)
840{
841	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
842	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
843	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
844	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
845	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
846	int latency = mcbsp->latency[stream2];
847
848	/* Prevent omap hardware from hitting off between FIFO fills */
849	if (!latency || mcbsp->latency[stream1] < latency)
850		latency = mcbsp->latency[stream1];
851
852	if (cpu_latency_qos_request_active(pm_qos_req))
853		cpu_latency_qos_update_request(pm_qos_req, latency);
854	else if (latency)
855		cpu_latency_qos_add_request(pm_qos_req, latency);
856
857	return 0;
858}
859
860static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
861				  struct snd_soc_dai *cpu_dai)
862{
863	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
864
865	switch (cmd) {
866	case SNDRV_PCM_TRIGGER_START:
867	case SNDRV_PCM_TRIGGER_RESUME:
868	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
869		mcbsp->active++;
870		omap_mcbsp_start(mcbsp, substream->stream);
871		break;
872
873	case SNDRV_PCM_TRIGGER_STOP:
874	case SNDRV_PCM_TRIGGER_SUSPEND:
875	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
876		omap_mcbsp_stop(mcbsp, substream->stream);
877		mcbsp->active--;
878		break;
879	default:
880		return -EINVAL;
881	}
882
883	return 0;
884}
885
886static snd_pcm_sframes_t omap_mcbsp_dai_delay(
887			struct snd_pcm_substream *substream,
888			struct snd_soc_dai *dai)
889{
890	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
891	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
892	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
893	u16 fifo_use;
894	snd_pcm_sframes_t delay;
895
896	/* No need to proceed further if McBSP does not have FIFO */
897	if (mcbsp->pdata->buffer_size == 0)
898		return 0;
899
900	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
901		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
902	else
903		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
904
905	/*
906	 * Divide the used locations with the channel count to get the
907	 * FIFO usage in samples (don't care about partial samples in the
908	 * buffer).
909	 */
910	delay = fifo_use / substream->runtime->channels;
911
912	return delay;
913}
914
915static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
916				    struct snd_pcm_hw_params *params,
917				    struct snd_soc_dai *cpu_dai)
918{
919	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
920	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
921	struct snd_dmaengine_dai_dma_data *dma_data;
922	int wlen, channels, wpf;
923	int pkt_size = 0;
924	unsigned int format, div, framesize, master;
925	unsigned int buffer_size = mcbsp->pdata->buffer_size;
926
927	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
928	channels = params_channels(params);
929
930	switch (params_format(params)) {
931	case SNDRV_PCM_FORMAT_S16_LE:
932		wlen = 16;
933		break;
934	case SNDRV_PCM_FORMAT_S32_LE:
935		wlen = 32;
936		break;
937	default:
938		return -EINVAL;
939	}
940	if (buffer_size) {
941		int latency;
942
943		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
944			int period_words, max_thrsh;
945			int divider = 0;
946
947			period_words = params_period_bytes(params) / (wlen / 8);
948			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
949				max_thrsh = mcbsp->max_tx_thres;
950			else
951				max_thrsh = mcbsp->max_rx_thres;
952			/*
953			 * Use sDMA packet mode if McBSP is in threshold mode:
954			 * If period words less than the FIFO size the packet
955			 * size is set to the number of period words, otherwise
956			 * Look for the biggest threshold value which divides
957			 * the period size evenly.
958			 */
959			divider = period_words / max_thrsh;
960			if (period_words % max_thrsh)
961				divider++;
962			while (period_words % divider &&
963				divider < period_words)
964				divider++;
965			if (divider == period_words)
966				return -EINVAL;
967
968			pkt_size = period_words / divider;
969		} else if (channels > 1) {
970			/* Use packet mode for non mono streams */
971			pkt_size = channels;
972		}
973
974		latency = (buffer_size - pkt_size) / channels;
975		latency = latency * USEC_PER_SEC /
976			  (params->rate_num / params->rate_den);
977		mcbsp->latency[substream->stream] = latency;
978
979		omap_mcbsp_set_threshold(substream, pkt_size);
980	}
981
982	dma_data->maxburst = pkt_size;
983
984	if (mcbsp->configured) {
985		/* McBSP already configured by another stream */
986		return 0;
987	}
988
989	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
990	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
991	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
992	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
993	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
994	wpf = channels;
995	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
996			      format == SND_SOC_DAIFMT_LEFT_J)) {
997		/* Use dual-phase frames */
998		regs->rcr2	|= RPHASE;
999		regs->xcr2	|= XPHASE;
1000		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
1001		wpf--;
1002		regs->rcr2	|= RFRLEN2(wpf - 1);
1003		regs->xcr2	|= XFRLEN2(wpf - 1);
1004	}
1005
1006	regs->rcr1	|= RFRLEN1(wpf - 1);
1007	regs->xcr1	|= XFRLEN1(wpf - 1);
1008
1009	switch (params_format(params)) {
1010	case SNDRV_PCM_FORMAT_S16_LE:
1011		/* Set word lengths */
1012		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
1013		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
1014		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
1015		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
1016		break;
1017	case SNDRV_PCM_FORMAT_S32_LE:
1018		/* Set word lengths */
1019		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
1020		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
1021		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
1022		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
1023		break;
1024	default:
1025		/* Unsupported PCM format */
1026		return -EINVAL;
1027	}
1028
1029	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
1030	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
1031	master = mcbsp->fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK;
1032	if (master == SND_SOC_DAIFMT_BP_FP) {
1033		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
1034		framesize = (mcbsp->in_freq / div) / params_rate(params);
1035
1036		if (framesize < wlen * channels) {
1037			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
1038					"channels\n", __func__);
1039			return -EINVAL;
1040		}
1041	} else
1042		framesize = wlen * channels;
1043
1044	/* Set FS period and length in terms of bit clock periods */
1045	regs->srgr2	&= ~FPER(0xfff);
1046	regs->srgr1	&= ~FWID(0xff);
1047	switch (format) {
1048	case SND_SOC_DAIFMT_I2S:
1049	case SND_SOC_DAIFMT_LEFT_J:
1050		regs->srgr2	|= FPER(framesize - 1);
1051		regs->srgr1	|= FWID((framesize >> 1) - 1);
1052		break;
1053	case SND_SOC_DAIFMT_DSP_A:
1054	case SND_SOC_DAIFMT_DSP_B:
1055		regs->srgr2	|= FPER(framesize - 1);
1056		regs->srgr1	|= FWID(0);
1057		break;
1058	}
1059
1060	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
1061	mcbsp->wlen = wlen;
1062	mcbsp->configured = 1;
1063
1064	return 0;
1065}
1066
1067/*
1068 * This must be called before _set_clkdiv and _set_sysclk since McBSP register
1069 * cache is initialized here
1070 */
1071static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
1072				      unsigned int fmt)
1073{
1074	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1075	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1076	bool inv_fs = false;
1077
1078	if (mcbsp->configured)
1079		return 0;
1080
1081	mcbsp->fmt = fmt;
1082	memset(regs, 0, sizeof(*regs));
1083	/* Generic McBSP register settings */
1084	regs->spcr2	|= XINTM(3) | FREE;
1085	regs->spcr1	|= RINTM(3);
1086	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
1087	if (!mcbsp->pdata->has_ccr) {
1088		regs->rcr2	|= RFIG;
1089		regs->xcr2	|= XFIG;
1090	}
1091
1092	/* Configure XCCR/RCCR only for revisions which have ccr registers */
1093	if (mcbsp->pdata->has_ccr) {
1094		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
1095		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
1096	}
1097
1098	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
1099	case SND_SOC_DAIFMT_I2S:
1100		/* 1-bit data delay */
1101		regs->rcr2	|= RDATDLY(1);
1102		regs->xcr2	|= XDATDLY(1);
1103		break;
1104	case SND_SOC_DAIFMT_LEFT_J:
1105		/* 0-bit data delay */
1106		regs->rcr2	|= RDATDLY(0);
1107		regs->xcr2	|= XDATDLY(0);
1108		regs->spcr1	|= RJUST(2);
1109		/* Invert FS polarity configuration */
1110		inv_fs = true;
1111		break;
1112	case SND_SOC_DAIFMT_DSP_A:
1113		/* 1-bit data delay */
1114		regs->rcr2      |= RDATDLY(1);
1115		regs->xcr2      |= XDATDLY(1);
1116		/* Invert FS polarity configuration */
1117		inv_fs = true;
1118		break;
1119	case SND_SOC_DAIFMT_DSP_B:
1120		/* 0-bit data delay */
1121		regs->rcr2      |= RDATDLY(0);
1122		regs->xcr2      |= XDATDLY(0);
1123		/* Invert FS polarity configuration */
1124		inv_fs = true;
1125		break;
1126	default:
1127		/* Unsupported data format */
1128		return -EINVAL;
1129	}
1130
1131	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
1132	case SND_SOC_DAIFMT_BP_FP:
1133		/* McBSP master. Set FS and bit clocks as outputs */
1134		regs->pcr0	|= FSXM | FSRM |
1135				   CLKXM | CLKRM;
1136		/* Sample rate generator drives the FS */
1137		regs->srgr2	|= FSGM;
1138		break;
1139	case SND_SOC_DAIFMT_BC_FP:
1140		/* McBSP slave. FS clock as output */
1141		regs->srgr2	|= FSGM;
1142		regs->pcr0	|= FSXM | FSRM;
1143		break;
1144	case SND_SOC_DAIFMT_BC_FC:
1145		/* McBSP slave */
1146		break;
1147	default:
1148		/* Unsupported master/slave configuration */
1149		return -EINVAL;
1150	}
1151
1152	/* Set bit clock (CLKX/CLKR) and FS polarities */
1153	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
1154	case SND_SOC_DAIFMT_NB_NF:
1155		/*
1156		 * Normal BCLK + FS.
1157		 * FS active low. TX data driven on falling edge of bit clock
1158		 * and RX data sampled on rising edge of bit clock.
1159		 */
1160		regs->pcr0	|= FSXP | FSRP |
1161				   CLKXP | CLKRP;
1162		break;
1163	case SND_SOC_DAIFMT_NB_IF:
1164		regs->pcr0	|= CLKXP | CLKRP;
1165		break;
1166	case SND_SOC_DAIFMT_IB_NF:
1167		regs->pcr0	|= FSXP | FSRP;
1168		break;
1169	case SND_SOC_DAIFMT_IB_IF:
1170		break;
1171	default:
1172		return -EINVAL;
1173	}
1174	if (inv_fs)
1175		regs->pcr0 ^= FSXP | FSRP;
1176
1177	return 0;
1178}
1179
1180static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
1181				     int div_id, int div)
1182{
1183	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1184	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1185
1186	if (div_id != OMAP_MCBSP_CLKGDV)
1187		return -ENODEV;
1188
1189	mcbsp->clk_div = div;
1190	regs->srgr1	&= ~CLKGDV(0xff);
1191	regs->srgr1	|= CLKGDV(div - 1);
1192
1193	return 0;
1194}
1195
1196static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
1197					 int clk_id, unsigned int freq,
1198					 int dir)
1199{
1200	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
1201	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
1202	int err = 0;
1203
1204	if (mcbsp->active) {
1205		if (freq == mcbsp->in_freq)
1206			return 0;
1207		else
1208			return -EBUSY;
1209	}
1210
1211	mcbsp->in_freq = freq;
1212	regs->srgr2 &= ~CLKSM;
1213	regs->pcr0 &= ~SCLKME;
1214
1215	switch (clk_id) {
1216	case OMAP_MCBSP_SYSCLK_CLK:
1217		regs->srgr2	|= CLKSM;
1218		break;
1219	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
1220		if (mcbsp_omap1()) {
1221			err = -EINVAL;
1222			break;
1223		}
1224		err = omap2_mcbsp_set_clks_src(mcbsp,
1225					       MCBSP_CLKS_PRCM_SRC);
1226		break;
1227	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
1228		if (mcbsp_omap1()) {
1229			err = 0;
1230			break;
1231		}
1232		err = omap2_mcbsp_set_clks_src(mcbsp,
1233					       MCBSP_CLKS_PAD_SRC);
1234		break;
1235
1236	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
1237		regs->srgr2	|= CLKSM;
1238		regs->pcr0	|= SCLKME;
1239		/*
1240		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
1241		 * disable output on those pins. This enables to inject the
1242		 * reference clock through CLKX/CLKR. For this to work
1243		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
1244		 */
1245		regs->pcr0	&= ~CLKXM;
1246		break;
1247	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
1248		regs->pcr0	|= SCLKME;
1249		/* Disable ouput on CLKR pin in master mode */
1250		regs->pcr0	&= ~CLKRM;
1251		break;
1252	default:
1253		err = -ENODEV;
1254	}
1255
1256	return err;
1257}
1258
1259static int omap_mcbsp_probe(struct snd_soc_dai *dai)
1260{
1261	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1262
1263	pm_runtime_enable(mcbsp->dev);
1264
1265	snd_soc_dai_init_dma_data(dai,
1266				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
1267				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
1268
1269	return 0;
1270}
1271
1272static int omap_mcbsp_remove(struct snd_soc_dai *dai)
1273{
1274	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
1275
1276	pm_runtime_disable(mcbsp->dev);
1277
1278	return 0;
1279}
1280
1281static const struct snd_soc_dai_ops mcbsp_dai_ops = {
1282	.probe		= omap_mcbsp_probe,
1283	.remove		= omap_mcbsp_remove,
1284	.startup	= omap_mcbsp_dai_startup,
1285	.shutdown	= omap_mcbsp_dai_shutdown,
1286	.prepare	= omap_mcbsp_dai_prepare,
1287	.trigger	= omap_mcbsp_dai_trigger,
1288	.delay		= omap_mcbsp_dai_delay,
1289	.hw_params	= omap_mcbsp_dai_hw_params,
1290	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
1291	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
1292	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
1293};
1294
1295static struct snd_soc_dai_driver omap_mcbsp_dai = {
1296	.playback = {
1297		.channels_min = 1,
1298		.channels_max = 16,
1299		.rates = OMAP_MCBSP_RATES,
1300		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1301	},
1302	.capture = {
1303		.channels_min = 1,
1304		.channels_max = 16,
1305		.rates = OMAP_MCBSP_RATES,
1306		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
1307	},
1308	.ops = &mcbsp_dai_ops,
1309};
1310
1311static const struct snd_soc_component_driver omap_mcbsp_component = {
1312	.name			= "omap-mcbsp",
1313	.legacy_dai_naming	= 1,
1314};
1315
1316static struct omap_mcbsp_platform_data omap2420_pdata = {
1317	.reg_step = 4,
1318	.reg_size = 2,
1319};
1320
1321static struct omap_mcbsp_platform_data omap2430_pdata = {
1322	.reg_step = 4,
1323	.reg_size = 4,
1324	.has_ccr = true,
1325};
1326
1327static struct omap_mcbsp_platform_data omap3_pdata = {
1328	.reg_step = 4,
1329	.reg_size = 4,
1330	.has_ccr = true,
1331	.has_wakeup = true,
1332};
1333
1334static struct omap_mcbsp_platform_data omap4_pdata = {
1335	.reg_step = 4,
1336	.reg_size = 4,
1337	.has_ccr = true,
1338	.has_wakeup = true,
1339};
1340
1341static const struct of_device_id omap_mcbsp_of_match[] = {
1342	{
1343		.compatible = "ti,omap2420-mcbsp",
1344		.data = &omap2420_pdata,
1345	},
1346	{
1347		.compatible = "ti,omap2430-mcbsp",
1348		.data = &omap2430_pdata,
1349	},
1350	{
1351		.compatible = "ti,omap3-mcbsp",
1352		.data = &omap3_pdata,
1353	},
1354	{
1355		.compatible = "ti,omap4-mcbsp",
1356		.data = &omap4_pdata,
1357	},
1358	{ },
1359};
1360MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
1361
1362static int asoc_mcbsp_probe(struct platform_device *pdev)
1363{
1364	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
1365	struct omap_mcbsp *mcbsp;
1366	const struct of_device_id *match;
1367	int ret;
1368
1369	match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
1370	if (match) {
1371		struct device_node *node = pdev->dev.of_node;
1372		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
1373		int buffer_size;
1374
1375		pdata = devm_kzalloc(&pdev->dev,
1376				     sizeof(struct omap_mcbsp_platform_data),
1377				     GFP_KERNEL);
1378		if (!pdata)
1379			return -ENOMEM;
1380
1381		memcpy(pdata, match->data, sizeof(*pdata));
1382		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
1383			pdata->buffer_size = buffer_size;
1384		if (pdata_quirk)
1385			pdata->force_ick_on = pdata_quirk->force_ick_on;
1386	} else if (!pdata) {
1387		dev_err(&pdev->dev, "missing platform data.\n");
1388		return -EINVAL;
1389	}
1390	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
1391	if (!mcbsp)
1392		return -ENOMEM;
1393
1394	mcbsp->id = pdev->id;
1395	mcbsp->pdata = pdata;
1396	mcbsp->dev = &pdev->dev;
1397	platform_set_drvdata(pdev, mcbsp);
1398
1399	ret = omap_mcbsp_init(pdev);
1400	if (ret)
1401		return ret;
1402
1403	if (mcbsp->pdata->reg_size == 2) {
1404		omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1405		omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1406	}
1407
1408	ret = devm_snd_soc_register_component(&pdev->dev,
1409					      &omap_mcbsp_component,
1410					      &omap_mcbsp_dai, 1);
1411	if (ret)
1412		return ret;
1413
1414	return sdma_pcm_platform_register(&pdev->dev, "tx", "rx");
1415}
1416
1417static void asoc_mcbsp_remove(struct platform_device *pdev)
1418{
1419	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
1420
1421	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
1422		mcbsp->pdata->ops->free(mcbsp->id);
1423
1424	if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req))
1425		cpu_latency_qos_remove_request(&mcbsp->pm_qos_req);
1426}
1427
1428static struct platform_driver asoc_mcbsp_driver = {
1429	.driver = {
1430			.name = "omap-mcbsp",
1431			.of_match_table = omap_mcbsp_of_match,
1432	},
1433
1434	.probe = asoc_mcbsp_probe,
1435	.remove_new = asoc_mcbsp_remove,
1436};
1437
1438module_platform_driver(asoc_mcbsp_driver);
1439
1440MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
1441MODULE_DESCRIPTION("OMAP I2S SoC Interface");
1442MODULE_LICENSE("GPL");
1443MODULE_ALIAS("platform:omap-mcbsp");
1444