xref: /kernel/linux/linux-6.6/sound/soc/fsl/fsl_sai.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0+
2//
3// Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4//
5// Copyright 2012-2015 Freescale Semiconductor, Inc.
6
7#include <linux/clk.h>
8#include <linux/delay.h>
9#include <linux/dmaengine.h>
10#include <linux/module.h>
11#include <linux/of_address.h>
12#include <linux/of_device.h>
13#include <linux/pinctrl/consumer.h>
14#include <linux/pm_qos.h>
15#include <linux/pm_runtime.h>
16#include <linux/regmap.h>
17#include <linux/slab.h>
18#include <linux/time.h>
19#include <sound/core.h>
20#include <sound/dmaengine_pcm.h>
21#include <sound/pcm_params.h>
22#include <linux/mfd/syscon.h>
23#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
24
25#include "fsl_sai.h"
26#include "fsl_utils.h"
27#include "imx-pcm.h"
28
29#define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
30		       FSL_SAI_CSR_FEIE)
31
32static const unsigned int fsl_sai_rates[] = {
33	8000, 11025, 12000, 16000, 22050,
34	24000, 32000, 44100, 48000, 64000,
35	88200, 96000, 176400, 192000, 352800,
36	384000, 705600, 768000, 1411200, 2822400,
37};
38
39static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
40	.count = ARRAY_SIZE(fsl_sai_rates),
41	.list = fsl_sai_rates,
42};
43
44/**
45 * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
46 *
47 * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
48 * or Receiver's for both streams. This function is used to check if clocks of
49 * the stream's are synced by the opposite stream.
50 *
51 * @sai: SAI context
52 * @dir: stream direction
53 */
54static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
55{
56	int adir = (dir == TX) ? RX : TX;
57
58	/* current dir in async mode while opposite dir in sync mode */
59	return !sai->synchronous[dir] && sai->synchronous[adir];
60}
61
62static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk)
63{
64	struct pinctrl_state *state = NULL;
65
66	if (sai->is_pdm_mode) {
67		/* DSD512@44.1kHz, DSD512@48kHz */
68		if (bclk >= 22579200)
69			state = pinctrl_lookup_state(sai->pinctrl, "dsd512");
70
71		/* Get default DSD state */
72		if (IS_ERR_OR_NULL(state))
73			state = pinctrl_lookup_state(sai->pinctrl, "dsd");
74	} else {
75		/* 706k32b2c, 768k32b2c, etc */
76		if (bclk >= 45158400)
77			state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m");
78	}
79
80	/* Get default state */
81	if (IS_ERR_OR_NULL(state))
82		state = pinctrl_lookup_state(sai->pinctrl, "default");
83
84	return state;
85}
86
87static irqreturn_t fsl_sai_isr(int irq, void *devid)
88{
89	struct fsl_sai *sai = (struct fsl_sai *)devid;
90	unsigned int ofs = sai->soc_data->reg_offset;
91	struct device *dev = &sai->pdev->dev;
92	u32 flags, xcsr, mask;
93	irqreturn_t iret = IRQ_NONE;
94
95	/*
96	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
97	 * different shifts. And we here create a mask only for those
98	 * IRQs that we activated.
99	 */
100	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
101
102	/* Tx IRQ */
103	regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
104	flags = xcsr & mask;
105
106	if (flags)
107		iret = IRQ_HANDLED;
108	else
109		goto irq_rx;
110
111	if (flags & FSL_SAI_CSR_WSF)
112		dev_dbg(dev, "isr: Start of Tx word detected\n");
113
114	if (flags & FSL_SAI_CSR_SEF)
115		dev_dbg(dev, "isr: Tx Frame sync error detected\n");
116
117	if (flags & FSL_SAI_CSR_FEF)
118		dev_dbg(dev, "isr: Transmit underrun detected\n");
119
120	if (flags & FSL_SAI_CSR_FWF)
121		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
122
123	if (flags & FSL_SAI_CSR_FRF)
124		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
125
126	flags &= FSL_SAI_CSR_xF_W_MASK;
127	xcsr &= ~FSL_SAI_CSR_xF_MASK;
128
129	if (flags)
130		regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
131
132irq_rx:
133	/* Rx IRQ */
134	regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
135	flags = xcsr & mask;
136
137	if (flags)
138		iret = IRQ_HANDLED;
139	else
140		goto out;
141
142	if (flags & FSL_SAI_CSR_WSF)
143		dev_dbg(dev, "isr: Start of Rx word detected\n");
144
145	if (flags & FSL_SAI_CSR_SEF)
146		dev_dbg(dev, "isr: Rx Frame sync error detected\n");
147
148	if (flags & FSL_SAI_CSR_FEF)
149		dev_dbg(dev, "isr: Receive overflow detected\n");
150
151	if (flags & FSL_SAI_CSR_FWF)
152		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
153
154	if (flags & FSL_SAI_CSR_FRF)
155		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
156
157	flags &= FSL_SAI_CSR_xF_W_MASK;
158	xcsr &= ~FSL_SAI_CSR_xF_MASK;
159
160	if (flags)
161		regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
162
163out:
164	return iret;
165}
166
167static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
168				u32 rx_mask, int slots, int slot_width)
169{
170	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
171
172	sai->slots = slots;
173	sai->slot_width = slot_width;
174
175	return 0;
176}
177
178static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
179				      unsigned int ratio)
180{
181	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
182
183	sai->bclk_ratio = ratio;
184
185	return 0;
186}
187
188static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
189		int clk_id, unsigned int freq, bool tx)
190{
191	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
192	unsigned int ofs = sai->soc_data->reg_offset;
193	u32 val_cr2 = 0;
194
195	switch (clk_id) {
196	case FSL_SAI_CLK_BUS:
197		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
198		break;
199	case FSL_SAI_CLK_MAST1:
200		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
201		break;
202	case FSL_SAI_CLK_MAST2:
203		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
204		break;
205	case FSL_SAI_CLK_MAST3:
206		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
207		break;
208	default:
209		return -EINVAL;
210	}
211
212	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
213			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
214
215	return 0;
216}
217
218static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq)
219{
220	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
221	int ret;
222
223	fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id],
224				     sai->pll8k_clk, sai->pll11k_clk, freq);
225
226	ret = clk_set_rate(sai->mclk_clk[clk_id], freq);
227	if (ret < 0)
228		dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret);
229
230	return ret;
231}
232
233static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
234		int clk_id, unsigned int freq, int dir)
235{
236	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
237	int ret;
238
239	if (dir == SND_SOC_CLOCK_IN)
240		return 0;
241
242	if (freq > 0 && clk_id != FSL_SAI_CLK_BUS) {
243		if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) {
244			dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id);
245			return -EINVAL;
246		}
247
248		if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) {
249			dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id);
250			return -EINVAL;
251		}
252
253		if (sai->mclk_streams == 0) {
254			ret = fsl_sai_set_mclk_rate(cpu_dai, clk_id, freq);
255			if (ret < 0)
256				return ret;
257		}
258	}
259
260	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
261	if (ret) {
262		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
263		return ret;
264	}
265
266	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
267	if (ret)
268		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
269
270	return ret;
271}
272
273static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
274				unsigned int fmt, bool tx)
275{
276	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
277	unsigned int ofs = sai->soc_data->reg_offset;
278	u32 val_cr2 = 0, val_cr4 = 0;
279
280	if (!sai->is_lsb_first)
281		val_cr4 |= FSL_SAI_CR4_MF;
282
283	sai->is_pdm_mode = false;
284	sai->is_dsp_mode = false;
285	/* DAI mode */
286	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
287	case SND_SOC_DAIFMT_I2S:
288		/*
289		 * Frame low, 1clk before data, one word length for frame sync,
290		 * frame sync starts one serial clock cycle earlier,
291		 * that is, together with the last bit of the previous
292		 * data word.
293		 */
294		val_cr2 |= FSL_SAI_CR2_BCP;
295		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
296		break;
297	case SND_SOC_DAIFMT_LEFT_J:
298		/*
299		 * Frame high, one word length for frame sync,
300		 * frame sync asserts with the first bit of the frame.
301		 */
302		val_cr2 |= FSL_SAI_CR2_BCP;
303		break;
304	case SND_SOC_DAIFMT_DSP_A:
305		/*
306		 * Frame high, 1clk before data, one bit for frame sync,
307		 * frame sync starts one serial clock cycle earlier,
308		 * that is, together with the last bit of the previous
309		 * data word.
310		 */
311		val_cr2 |= FSL_SAI_CR2_BCP;
312		val_cr4 |= FSL_SAI_CR4_FSE;
313		sai->is_dsp_mode = true;
314		break;
315	case SND_SOC_DAIFMT_DSP_B:
316		/*
317		 * Frame high, one bit for frame sync,
318		 * frame sync asserts with the first bit of the frame.
319		 */
320		val_cr2 |= FSL_SAI_CR2_BCP;
321		sai->is_dsp_mode = true;
322		break;
323	case SND_SOC_DAIFMT_PDM:
324		val_cr2 |= FSL_SAI_CR2_BCP;
325		val_cr4 &= ~FSL_SAI_CR4_MF;
326		sai->is_pdm_mode = true;
327		break;
328	case SND_SOC_DAIFMT_RIGHT_J:
329		/* To be done */
330	default:
331		return -EINVAL;
332	}
333
334	/* DAI clock inversion */
335	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
336	case SND_SOC_DAIFMT_IB_IF:
337		/* Invert both clocks */
338		val_cr2 ^= FSL_SAI_CR2_BCP;
339		val_cr4 ^= FSL_SAI_CR4_FSP;
340		break;
341	case SND_SOC_DAIFMT_IB_NF:
342		/* Invert bit clock */
343		val_cr2 ^= FSL_SAI_CR2_BCP;
344		break;
345	case SND_SOC_DAIFMT_NB_IF:
346		/* Invert frame clock */
347		val_cr4 ^= FSL_SAI_CR4_FSP;
348		break;
349	case SND_SOC_DAIFMT_NB_NF:
350		/* Nothing to do for both normal cases */
351		break;
352	default:
353		return -EINVAL;
354	}
355
356	/* DAI clock provider masks */
357	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
358	case SND_SOC_DAIFMT_BP_FP:
359		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
360		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
361		sai->is_consumer_mode = false;
362		break;
363	case SND_SOC_DAIFMT_BC_FC:
364		sai->is_consumer_mode = true;
365		break;
366	case SND_SOC_DAIFMT_BP_FC:
367		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
368		sai->is_consumer_mode = false;
369		break;
370	case SND_SOC_DAIFMT_BC_FP:
371		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
372		sai->is_consumer_mode = true;
373		break;
374	default:
375		return -EINVAL;
376	}
377
378	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
379			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
380	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
381			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
382			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
383
384	return 0;
385}
386
387static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
388{
389	int ret;
390
391	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
392	if (ret) {
393		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
394		return ret;
395	}
396
397	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
398	if (ret)
399		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
400
401	return ret;
402}
403
404static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
405{
406	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
407	unsigned int reg, ofs = sai->soc_data->reg_offset;
408	unsigned long clk_rate;
409	u32 savediv = 0, ratio, bestdiff = freq;
410	int adir = tx ? RX : TX;
411	int dir = tx ? TX : RX;
412	u32 id;
413	bool support_1_1_ratio = sai->verid.version >= 0x0301;
414
415	/* Don't apply to consumer mode */
416	if (sai->is_consumer_mode)
417		return 0;
418
419	/*
420	 * There is no point in polling MCLK0 if it is identical to MCLK1.
421	 * And given that MQS use case has to use MCLK1 though two clocks
422	 * are the same, we simply skip MCLK0 and start to find from MCLK1.
423	 */
424	id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
425
426	for (; id < FSL_SAI_MCLK_MAX; id++) {
427		int diff;
428
429		clk_rate = clk_get_rate(sai->mclk_clk[id]);
430		if (!clk_rate)
431			continue;
432
433		ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
434		if (!ratio || ratio > 512)
435			continue;
436		if (ratio == 1 && !support_1_1_ratio)
437			continue;
438		if ((ratio & 1) && ratio > 1)
439			continue;
440
441		diff = abs((long)clk_rate - ratio * freq);
442
443		/*
444		 * Drop the source that can not be
445		 * divided into the required rate.
446		 */
447		if (diff != 0 && clk_rate / diff < 1000)
448			continue;
449
450		dev_dbg(dai->dev,
451			"ratio %d for freq %dHz based on clock %ldHz\n",
452			ratio, freq, clk_rate);
453
454
455		if (diff < bestdiff) {
456			savediv = ratio;
457			sai->mclk_id[tx] = id;
458			bestdiff = diff;
459		}
460
461		if (diff == 0)
462			break;
463	}
464
465	if (savediv == 0) {
466		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
467				tx ? 'T' : 'R', freq);
468		return -EINVAL;
469	}
470
471	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
472			sai->mclk_id[tx], savediv, bestdiff);
473
474	/*
475	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
476	 *    set TCR2 register for playback.
477	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
478	 *    and capture.
479	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
480	 *    and capture.
481	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
482	 *    ignore it.
483	 */
484	if (fsl_sai_dir_is_synced(sai, adir))
485		reg = FSL_SAI_xCR2(!tx, ofs);
486	else if (!sai->synchronous[dir])
487		reg = FSL_SAI_xCR2(tx, ofs);
488	else
489		return 0;
490
491	regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
492			   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
493
494	if (savediv == 1) {
495		regmap_update_bits(sai->regmap, reg,
496				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
497				   FSL_SAI_CR2_BYP);
498		if (fsl_sai_dir_is_synced(sai, adir))
499			regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
500					   FSL_SAI_CR2_BCI, FSL_SAI_CR2_BCI);
501		else
502			regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
503					   FSL_SAI_CR2_BCI, 0);
504	} else {
505		regmap_update_bits(sai->regmap, reg,
506				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
507				   savediv / 2 - 1);
508	}
509
510	return 0;
511}
512
513static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
514		struct snd_pcm_hw_params *params,
515		struct snd_soc_dai *cpu_dai)
516{
517	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
518	unsigned int ofs = sai->soc_data->reg_offset;
519	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
520	unsigned int channels = params_channels(params);
521	struct snd_dmaengine_dai_dma_data *dma_params;
522	struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg;
523	u32 word_width = params_width(params);
524	int trce_mask = 0, dl_cfg_idx = 0;
525	int dl_cfg_cnt = sai->dl_cfg_cnt;
526	u32 dl_type = FSL_SAI_DL_I2S;
527	u32 val_cr4 = 0, val_cr5 = 0;
528	u32 slots = (channels == 1) ? 2 : channels;
529	u32 slot_width = word_width;
530	int adir = tx ? RX : TX;
531	u32 pins, bclk;
532	u32 watermark;
533	int ret, i;
534
535	if (sai->slot_width)
536		slot_width = sai->slot_width;
537
538	if (sai->slots)
539		slots = sai->slots;
540	else if (sai->bclk_ratio)
541		slots = sai->bclk_ratio / slot_width;
542
543	pins = DIV_ROUND_UP(channels, slots);
544
545	/*
546	 * PDM mode, channels are independent
547	 * each channels are on one dataline/FIFO.
548	 */
549	if (sai->is_pdm_mode) {
550		pins = channels;
551		dl_type = FSL_SAI_DL_PDM;
552	}
553
554	for (i = 0; i < dl_cfg_cnt; i++) {
555		if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) {
556			dl_cfg_idx = i;
557			break;
558		}
559	}
560
561	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) {
562		dev_err(cpu_dai->dev, "channel not supported\n");
563		return -EINVAL;
564	}
565
566	bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width);
567
568	if (!IS_ERR_OR_NULL(sai->pinctrl)) {
569		sai->pins_state = fsl_sai_get_pins_state(sai, bclk);
570		if (!IS_ERR_OR_NULL(sai->pins_state)) {
571			ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
572			if (ret) {
573				dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret);
574				return ret;
575			}
576		}
577	}
578
579	if (!sai->is_consumer_mode) {
580		ret = fsl_sai_set_bclk(cpu_dai, tx, bclk);
581		if (ret)
582			return ret;
583
584		/* Do not enable the clock if it is already enabled */
585		if (!(sai->mclk_streams & BIT(substream->stream))) {
586			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
587			if (ret)
588				return ret;
589
590			sai->mclk_streams |= BIT(substream->stream);
591		}
592	}
593
594	if (!sai->is_dsp_mode && !sai->is_pdm_mode)
595		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
596
597	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
598	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
599
600	if (sai->is_lsb_first || sai->is_pdm_mode)
601		val_cr5 |= FSL_SAI_CR5_FBT(0);
602	else
603		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
604
605	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
606
607	/* Set to output mode to avoid tri-stated data pins */
608	if (tx)
609		val_cr4 |= FSL_SAI_CR4_CHMOD;
610
611	/*
612	 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
613	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
614	 * RCR5(TCR5) for playback(capture), or there will be sync error.
615	 */
616
617	if (!sai->is_consumer_mode && fsl_sai_dir_is_synced(sai, adir)) {
618		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
619				   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
620				   FSL_SAI_CR4_CHMOD_MASK,
621				   val_cr4);
622		regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
623				   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
624				   FSL_SAI_CR5_FBT_MASK, val_cr5);
625	}
626
627	/*
628	 * Combine mode has limation:
629	 * - Can't used for singel dataline/FIFO case except the FIFO0
630	 * - Can't used for multi dataline/FIFO case except the enabled FIFOs
631	 *   are successive and start from FIFO0
632	 *
633	 * So for common usage, all multi fifo case disable the combine mode.
634	 */
635	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1 || sai->is_multi_fifo_dma)
636		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
637				   FSL_SAI_CR4_FCOMB_MASK, 0);
638	else
639		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
640				   FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);
641
642	dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx;
643	dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) +
644			   dl_cfg[dl_cfg_idx].start_off[tx] * 0x4;
645
646	if (sai->is_multi_fifo_dma) {
647		sai->audio_config[tx].words_per_fifo = min(slots, channels);
648		if (tx) {
649			sai->audio_config[tx].n_fifos_dst = pins;
650			sai->audio_config[tx].stride_fifos_dst = dl_cfg[dl_cfg_idx].next_off[tx];
651		} else {
652			sai->audio_config[tx].n_fifos_src = pins;
653			sai->audio_config[tx].stride_fifos_src = dl_cfg[dl_cfg_idx].next_off[tx];
654		}
655		dma_params->maxburst = sai->audio_config[tx].words_per_fifo * pins;
656		dma_params->peripheral_config = &sai->audio_config[tx];
657		dma_params->peripheral_size = sizeof(sai->audio_config[tx]);
658
659		watermark = tx ? (sai->soc_data->fifo_depth - dma_params->maxburst) :
660				 (dma_params->maxburst - 1);
661		regmap_update_bits(sai->regmap, FSL_SAI_xCR1(tx, ofs),
662				   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
663				   watermark);
664	}
665
666	/* Find a proper tcre setting */
667	for (i = 0; i < sai->soc_data->pins; i++) {
668		trce_mask = (1 << (i + 1)) - 1;
669		if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins)
670			break;
671	}
672
673	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
674			   FSL_SAI_CR3_TRCE_MASK,
675			   FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask)));
676
677	/*
678	 * When the TERE and FSD_MSTR enabled before configuring the word width
679	 * There will be no frame sync clock issue, because word width impact
680	 * the generation of frame sync clock.
681	 *
682	 * TERE enabled earlier only for i.MX8MP case for the hardware limitation,
683	 * We need to disable FSD_MSTR before configuring word width, then enable
684	 * FSD_MSTR bit for this specific case.
685	 */
686	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
687	    !sai->is_consumer_mode)
688		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
689				   FSL_SAI_CR4_FSD_MSTR, 0);
690
691	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
692			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
693			   FSL_SAI_CR4_CHMOD_MASK,
694			   val_cr4);
695	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
696			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
697			   FSL_SAI_CR5_FBT_MASK, val_cr5);
698
699	/* Enable FSD_MSTR after configuring word width */
700	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output &&
701	    !sai->is_consumer_mode)
702		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
703				   FSL_SAI_CR4_FSD_MSTR, FSL_SAI_CR4_FSD_MSTR);
704
705	regmap_write(sai->regmap, FSL_SAI_xMR(tx),
706		     ~0UL - ((1 << min(channels, slots)) - 1));
707
708	return 0;
709}
710
711static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
712		struct snd_soc_dai *cpu_dai)
713{
714	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
715	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
716	unsigned int ofs = sai->soc_data->reg_offset;
717
718	/* Clear xMR to avoid channel swap with mclk_with_tere enabled case */
719	regmap_write(sai->regmap, FSL_SAI_xMR(tx), 0);
720
721	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
722			   FSL_SAI_CR3_TRCE_MASK, 0);
723
724	if (!sai->is_consumer_mode &&
725			sai->mclk_streams & BIT(substream->stream)) {
726		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
727		sai->mclk_streams &= ~BIT(substream->stream);
728	}
729
730	return 0;
731}
732
733static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
734{
735	unsigned int ofs = sai->soc_data->reg_offset;
736	bool tx = dir == TX;
737	u32 xcsr, count = 100, mask;
738
739	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
740		mask = FSL_SAI_CSR_TERE;
741	else
742		mask = FSL_SAI_CSR_TERE | FSL_SAI_CSR_BCE;
743
744	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
745			   mask, 0);
746
747	/* TERE will remain set till the end of current frame */
748	do {
749		udelay(10);
750		regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
751	} while (--count && xcsr & FSL_SAI_CSR_TERE);
752
753	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
754			   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
755
756	/*
757	 * For sai master mode, after several open/close sai,
758	 * there will be no frame clock, and can't recover
759	 * anymore. Add software reset to fix this issue.
760	 * This is a hardware bug, and will be fix in the
761	 * next sai version.
762	 */
763	if (!sai->is_consumer_mode) {
764		/* Software Reset */
765		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
766		/* Clear SR bit to finish the reset */
767		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
768	}
769}
770
771static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
772		struct snd_soc_dai *cpu_dai)
773{
774	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
775	unsigned int ofs = sai->soc_data->reg_offset;
776
777	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
778	int adir = tx ? RX : TX;
779	int dir = tx ? TX : RX;
780	u32 xcsr;
781
782	/*
783	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
784	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
785	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
786	 */
787	regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
788			   sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
789	regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
790			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
791
792	/*
793	 * It is recommended that the transmitter is the last enabled
794	 * and the first disabled.
795	 */
796	switch (cmd) {
797	case SNDRV_PCM_TRIGGER_START:
798	case SNDRV_PCM_TRIGGER_RESUME:
799	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
800		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
801				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
802
803		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
804				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
805		/*
806		 * Enable the opposite direction for synchronous mode
807		 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
808		 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
809		 *
810		 * RM recommends to enable RE after TE for case 1 and to enable
811		 * TE after RE for case 2, but we here may not always guarantee
812		 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
813		 * TE after RE, which is against what RM recommends but should
814		 * be safe to do, judging by years of testing results.
815		 */
816		if (fsl_sai_dir_is_synced(sai, adir))
817			regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
818					   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
819
820		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
821				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
822		break;
823	case SNDRV_PCM_TRIGGER_STOP:
824	case SNDRV_PCM_TRIGGER_SUSPEND:
825	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
826		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
827				   FSL_SAI_CSR_FRDE, 0);
828		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
829				   FSL_SAI_CSR_xIE_MASK, 0);
830
831		/* Check if the opposite FRDE is also disabled */
832		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
833
834		/*
835		 * If opposite stream provides clocks for synchronous mode and
836		 * it is inactive, disable it before disabling the current one
837		 */
838		if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
839			fsl_sai_config_disable(sai, adir);
840
841		/*
842		 * Disable current stream if either of:
843		 * 1. current stream doesn't provide clocks for synchronous mode
844		 * 2. current stream provides clocks for synchronous mode but no
845		 *    more stream is active.
846		 */
847		if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
848			fsl_sai_config_disable(sai, dir);
849
850		break;
851	default:
852		return -EINVAL;
853	}
854
855	return 0;
856}
857
858static int fsl_sai_startup(struct snd_pcm_substream *substream,
859		struct snd_soc_dai *cpu_dai)
860{
861	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
862	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
863	int ret;
864
865	/*
866	 * EDMA controller needs period size to be a multiple of
867	 * tx/rx maxburst
868	 */
869	if (sai->soc_data->use_edma)
870		snd_pcm_hw_constraint_step(substream->runtime, 0,
871					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
872					   tx ? sai->dma_params_tx.maxburst :
873					   sai->dma_params_rx.maxburst);
874
875	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
876			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
877
878	return ret;
879}
880
881static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
882{
883	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
884	unsigned int ofs = sai->soc_data->reg_offset;
885
886	/* Software Reset for both Tx and Rx */
887	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
888	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
889	/* Clear SR bit to finish the reset */
890	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
891	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
892
893	regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
894			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
895			   sai->soc_data->fifo_depth - sai->dma_params_tx.maxburst);
896	regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
897			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
898			   sai->dma_params_rx.maxburst - 1);
899
900	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
901				&sai->dma_params_rx);
902
903	return 0;
904}
905
906static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
907	.probe		= fsl_sai_dai_probe,
908	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
909	.set_sysclk	= fsl_sai_set_dai_sysclk,
910	.set_fmt	= fsl_sai_set_dai_fmt,
911	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
912	.hw_params	= fsl_sai_hw_params,
913	.hw_free	= fsl_sai_hw_free,
914	.trigger	= fsl_sai_trigger,
915	.startup	= fsl_sai_startup,
916};
917
918static int fsl_sai_dai_resume(struct snd_soc_component *component)
919{
920	struct fsl_sai *sai = snd_soc_component_get_drvdata(component);
921	struct device *dev = &sai->pdev->dev;
922	int ret;
923
924	if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) {
925		ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
926		if (ret) {
927			dev_err(dev, "failed to set proper pins state: %d\n", ret);
928			return ret;
929		}
930	}
931
932	return 0;
933}
934
935static struct snd_soc_dai_driver fsl_sai_dai_template = {
936	.playback = {
937		.stream_name = "CPU-Playback",
938		.channels_min = 1,
939		.channels_max = 32,
940		.rate_min = 8000,
941		.rate_max = 2822400,
942		.rates = SNDRV_PCM_RATE_KNOT,
943		.formats = FSL_SAI_FORMATS,
944	},
945	.capture = {
946		.stream_name = "CPU-Capture",
947		.channels_min = 1,
948		.channels_max = 32,
949		.rate_min = 8000,
950		.rate_max = 2822400,
951		.rates = SNDRV_PCM_RATE_KNOT,
952		.formats = FSL_SAI_FORMATS,
953	},
954	.ops = &fsl_sai_pcm_dai_ops,
955};
956
957static const struct snd_soc_component_driver fsl_component = {
958	.name			= "fsl-sai",
959	.resume			= fsl_sai_dai_resume,
960	.legacy_dai_naming	= 1,
961};
962
963static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
964	{FSL_SAI_TCR1(0), 0},
965	{FSL_SAI_TCR2(0), 0},
966	{FSL_SAI_TCR3(0), 0},
967	{FSL_SAI_TCR4(0), 0},
968	{FSL_SAI_TCR5(0), 0},
969	{FSL_SAI_TDR0, 0},
970	{FSL_SAI_TDR1, 0},
971	{FSL_SAI_TDR2, 0},
972	{FSL_SAI_TDR3, 0},
973	{FSL_SAI_TDR4, 0},
974	{FSL_SAI_TDR5, 0},
975	{FSL_SAI_TDR6, 0},
976	{FSL_SAI_TDR7, 0},
977	{FSL_SAI_TMR, 0},
978	{FSL_SAI_RCR1(0), 0},
979	{FSL_SAI_RCR2(0), 0},
980	{FSL_SAI_RCR3(0), 0},
981	{FSL_SAI_RCR4(0), 0},
982	{FSL_SAI_RCR5(0), 0},
983	{FSL_SAI_RMR, 0},
984};
985
986static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
987	{FSL_SAI_TCR1(8), 0},
988	{FSL_SAI_TCR2(8), 0},
989	{FSL_SAI_TCR3(8), 0},
990	{FSL_SAI_TCR4(8), 0},
991	{FSL_SAI_TCR5(8), 0},
992	{FSL_SAI_TDR0, 0},
993	{FSL_SAI_TDR1, 0},
994	{FSL_SAI_TDR2, 0},
995	{FSL_SAI_TDR3, 0},
996	{FSL_SAI_TDR4, 0},
997	{FSL_SAI_TDR5, 0},
998	{FSL_SAI_TDR6, 0},
999	{FSL_SAI_TDR7, 0},
1000	{FSL_SAI_TMR, 0},
1001	{FSL_SAI_RCR1(8), 0},
1002	{FSL_SAI_RCR2(8), 0},
1003	{FSL_SAI_RCR3(8), 0},
1004	{FSL_SAI_RCR4(8), 0},
1005	{FSL_SAI_RCR5(8), 0},
1006	{FSL_SAI_RMR, 0},
1007	{FSL_SAI_MCTL, 0},
1008	{FSL_SAI_MDIV, 0},
1009};
1010
1011static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
1012{
1013	struct fsl_sai *sai = dev_get_drvdata(dev);
1014	unsigned int ofs = sai->soc_data->reg_offset;
1015
1016	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1017		return true;
1018
1019	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1020		return true;
1021
1022	switch (reg) {
1023	case FSL_SAI_TFR0:
1024	case FSL_SAI_TFR1:
1025	case FSL_SAI_TFR2:
1026	case FSL_SAI_TFR3:
1027	case FSL_SAI_TFR4:
1028	case FSL_SAI_TFR5:
1029	case FSL_SAI_TFR6:
1030	case FSL_SAI_TFR7:
1031	case FSL_SAI_TMR:
1032	case FSL_SAI_RDR0:
1033	case FSL_SAI_RDR1:
1034	case FSL_SAI_RDR2:
1035	case FSL_SAI_RDR3:
1036	case FSL_SAI_RDR4:
1037	case FSL_SAI_RDR5:
1038	case FSL_SAI_RDR6:
1039	case FSL_SAI_RDR7:
1040	case FSL_SAI_RFR0:
1041	case FSL_SAI_RFR1:
1042	case FSL_SAI_RFR2:
1043	case FSL_SAI_RFR3:
1044	case FSL_SAI_RFR4:
1045	case FSL_SAI_RFR5:
1046	case FSL_SAI_RFR6:
1047	case FSL_SAI_RFR7:
1048	case FSL_SAI_RMR:
1049	case FSL_SAI_MCTL:
1050	case FSL_SAI_MDIV:
1051	case FSL_SAI_VERID:
1052	case FSL_SAI_PARAM:
1053	case FSL_SAI_TTCTN:
1054	case FSL_SAI_RTCTN:
1055	case FSL_SAI_TTCTL:
1056	case FSL_SAI_TBCTN:
1057	case FSL_SAI_TTCAP:
1058	case FSL_SAI_RTCTL:
1059	case FSL_SAI_RBCTN:
1060	case FSL_SAI_RTCAP:
1061		return true;
1062	default:
1063		return false;
1064	}
1065}
1066
1067static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
1068{
1069	struct fsl_sai *sai = dev_get_drvdata(dev);
1070	unsigned int ofs = sai->soc_data->reg_offset;
1071
1072	if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
1073		return true;
1074
1075	/* Set VERID and PARAM be volatile for reading value in probe */
1076	if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
1077		return true;
1078
1079	switch (reg) {
1080	case FSL_SAI_TFR0:
1081	case FSL_SAI_TFR1:
1082	case FSL_SAI_TFR2:
1083	case FSL_SAI_TFR3:
1084	case FSL_SAI_TFR4:
1085	case FSL_SAI_TFR5:
1086	case FSL_SAI_TFR6:
1087	case FSL_SAI_TFR7:
1088	case FSL_SAI_RFR0:
1089	case FSL_SAI_RFR1:
1090	case FSL_SAI_RFR2:
1091	case FSL_SAI_RFR3:
1092	case FSL_SAI_RFR4:
1093	case FSL_SAI_RFR5:
1094	case FSL_SAI_RFR6:
1095	case FSL_SAI_RFR7:
1096	case FSL_SAI_RDR0:
1097	case FSL_SAI_RDR1:
1098	case FSL_SAI_RDR2:
1099	case FSL_SAI_RDR3:
1100	case FSL_SAI_RDR4:
1101	case FSL_SAI_RDR5:
1102	case FSL_SAI_RDR6:
1103	case FSL_SAI_RDR7:
1104		return true;
1105	default:
1106		return false;
1107	}
1108}
1109
1110static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
1111{
1112	struct fsl_sai *sai = dev_get_drvdata(dev);
1113	unsigned int ofs = sai->soc_data->reg_offset;
1114
1115	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1116		return true;
1117
1118	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1119		return true;
1120
1121	switch (reg) {
1122	case FSL_SAI_TDR0:
1123	case FSL_SAI_TDR1:
1124	case FSL_SAI_TDR2:
1125	case FSL_SAI_TDR3:
1126	case FSL_SAI_TDR4:
1127	case FSL_SAI_TDR5:
1128	case FSL_SAI_TDR6:
1129	case FSL_SAI_TDR7:
1130	case FSL_SAI_TMR:
1131	case FSL_SAI_RMR:
1132	case FSL_SAI_MCTL:
1133	case FSL_SAI_MDIV:
1134	case FSL_SAI_TTCTL:
1135	case FSL_SAI_RTCTL:
1136		return true;
1137	default:
1138		return false;
1139	}
1140}
1141
1142static struct regmap_config fsl_sai_regmap_config = {
1143	.reg_bits = 32,
1144	.reg_stride = 4,
1145	.val_bits = 32,
1146	.fast_io = true,
1147
1148	.max_register = FSL_SAI_RMR,
1149	.reg_defaults = fsl_sai_reg_defaults_ofs0,
1150	.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
1151	.readable_reg = fsl_sai_readable_reg,
1152	.volatile_reg = fsl_sai_volatile_reg,
1153	.writeable_reg = fsl_sai_writeable_reg,
1154	.cache_type = REGCACHE_FLAT,
1155};
1156
1157static int fsl_sai_check_version(struct device *dev)
1158{
1159	struct fsl_sai *sai = dev_get_drvdata(dev);
1160	unsigned char ofs = sai->soc_data->reg_offset;
1161	unsigned int val;
1162	int ret;
1163
1164	if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
1165		return 0;
1166
1167	ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
1168	if (ret < 0)
1169		return ret;
1170
1171	dev_dbg(dev, "VERID: 0x%016X\n", val);
1172
1173	sai->verid.version = val &
1174		(FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
1175	sai->verid.version >>= FSL_SAI_VERID_MINOR_SHIFT;
1176	sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
1177
1178	ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
1179	if (ret < 0)
1180		return ret;
1181
1182	dev_dbg(dev, "PARAM: 0x%016X\n", val);
1183
1184	/* Max slots per frame, power of 2 */
1185	sai->param.slot_num = 1 <<
1186		((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
1187
1188	/* Words per fifo, power of 2 */
1189	sai->param.fifo_depth = 1 <<
1190		((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
1191
1192	/* Number of datalines implemented */
1193	sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
1194
1195	return 0;
1196}
1197
1198/*
1199 * Calculate the offset between first two datalines, don't
1200 * different offset in one case.
1201 */
1202static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask)
1203{
1204	int fbidx, nbidx, offset;
1205
1206	fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1207	nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1);
1208	offset = nbidx - fbidx - 1;
1209
1210	return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset);
1211}
1212
1213/*
1214 * read the fsl,dataline property from dts file.
1215 * It has 3 value for each configuration, first one means the type:
1216 * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is
1217 * dataline mask for 'tx'. for example
1218 *
1219 * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>,
1220 *
1221 * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type
1222 * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled).
1223 *
1224 */
1225static int fsl_sai_read_dlcfg(struct fsl_sai *sai)
1226{
1227	struct platform_device *pdev = sai->pdev;
1228	struct device_node *np = pdev->dev.of_node;
1229	struct device *dev = &pdev->dev;
1230	int ret, elems, i, index, num_cfg;
1231	char *propname = "fsl,dataline";
1232	struct fsl_sai_dl_cfg *cfg;
1233	unsigned long dl_mask;
1234	unsigned int soc_dl;
1235	u32 rx, tx, type;
1236
1237	elems = of_property_count_u32_elems(np, propname);
1238
1239	if (elems <= 0) {
1240		elems = 0;
1241	} else if (elems % 3) {
1242		dev_err(dev, "Number of elements must be divisible to 3.\n");
1243		return -EINVAL;
1244	}
1245
1246	num_cfg = elems / 3;
1247	/*  Add one more for default value */
1248	cfg = devm_kzalloc(&pdev->dev, (num_cfg + 1) * sizeof(*cfg), GFP_KERNEL);
1249	if (!cfg)
1250		return -ENOMEM;
1251
1252	/* Consider default value "0 0xFF 0xFF" if property is missing */
1253	soc_dl = BIT(sai->soc_data->pins) - 1;
1254	cfg[0].type = FSL_SAI_DL_DEFAULT;
1255	cfg[0].pins[0] = sai->soc_data->pins;
1256	cfg[0].mask[0] = soc_dl;
1257	cfg[0].start_off[0] = 0;
1258	cfg[0].next_off[0] = 0;
1259
1260	cfg[0].pins[1] = sai->soc_data->pins;
1261	cfg[0].mask[1] = soc_dl;
1262	cfg[0].start_off[1] = 0;
1263	cfg[0].next_off[1] = 0;
1264	for (i = 1, index = 0; i < num_cfg + 1; i++) {
1265		/*
1266		 * type of dataline
1267		 * 0 means default mode
1268		 * 1 means I2S mode
1269		 * 2 means PDM mode
1270		 */
1271		ret = of_property_read_u32_index(np, propname, index++, &type);
1272		if (ret)
1273			return -EINVAL;
1274
1275		ret = of_property_read_u32_index(np, propname, index++, &rx);
1276		if (ret)
1277			return -EINVAL;
1278
1279		ret = of_property_read_u32_index(np, propname, index++, &tx);
1280		if (ret)
1281			return -EINVAL;
1282
1283		if ((rx & ~soc_dl) || (tx & ~soc_dl)) {
1284			dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl);
1285			return -EINVAL;
1286		}
1287
1288		rx = rx & soc_dl;
1289		tx = tx & soc_dl;
1290
1291		cfg[i].type = type;
1292		cfg[i].pins[0] = hweight8(rx);
1293		cfg[i].mask[0] = rx;
1294		dl_mask = rx;
1295		cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1296		cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx);
1297
1298		cfg[i].pins[1] = hweight8(tx);
1299		cfg[i].mask[1] = tx;
1300		dl_mask = tx;
1301		cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1302		cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx);
1303	}
1304
1305	sai->dl_cfg = cfg;
1306	sai->dl_cfg_cnt = num_cfg + 1;
1307	return 0;
1308}
1309
1310static int fsl_sai_runtime_suspend(struct device *dev);
1311static int fsl_sai_runtime_resume(struct device *dev);
1312
1313static int fsl_sai_probe(struct platform_device *pdev)
1314{
1315	struct device_node *np = pdev->dev.of_node;
1316	struct device *dev = &pdev->dev;
1317	struct fsl_sai *sai;
1318	struct regmap *gpr;
1319	void __iomem *base;
1320	char tmp[8];
1321	int irq, ret, i;
1322	int index;
1323	u32 dmas[4];
1324
1325	sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL);
1326	if (!sai)
1327		return -ENOMEM;
1328
1329	sai->pdev = pdev;
1330	sai->soc_data = of_device_get_match_data(dev);
1331
1332	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1333
1334	base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res);
1335	if (IS_ERR(base))
1336		return PTR_ERR(base);
1337
1338	if (sai->soc_data->reg_offset == 8) {
1339		fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1340		fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1341		fsl_sai_regmap_config.num_reg_defaults =
1342			ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1343	}
1344
1345	sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config);
1346	if (IS_ERR(sai->regmap)) {
1347		dev_err(dev, "regmap init failed\n");
1348		return PTR_ERR(sai->regmap);
1349	}
1350
1351	sai->bus_clk = devm_clk_get(dev, "bus");
1352	/* Compatible with old DTB cases */
1353	if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1354		sai->bus_clk = devm_clk_get(dev, "sai");
1355	if (IS_ERR(sai->bus_clk)) {
1356		dev_err(dev, "failed to get bus clock: %ld\n",
1357				PTR_ERR(sai->bus_clk));
1358		/* -EPROBE_DEFER */
1359		return PTR_ERR(sai->bus_clk);
1360	}
1361
1362	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1363		sprintf(tmp, "mclk%d", i);
1364		sai->mclk_clk[i] = devm_clk_get(dev, tmp);
1365		if (IS_ERR(sai->mclk_clk[i])) {
1366			dev_err(dev, "failed to get mclk%d clock: %ld\n",
1367					i, PTR_ERR(sai->mclk_clk[i]));
1368			sai->mclk_clk[i] = NULL;
1369		}
1370	}
1371
1372	if (sai->soc_data->mclk0_is_mclk1)
1373		sai->mclk_clk[0] = sai->mclk_clk[1];
1374	else
1375		sai->mclk_clk[0] = sai->bus_clk;
1376
1377	fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk,
1378				&sai->pll11k_clk);
1379
1380	/* Use Multi FIFO mode depending on the support from SDMA script */
1381	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1382	if (!sai->soc_data->use_edma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1383		sai->is_multi_fifo_dma = true;
1384
1385	/* read dataline mask for rx and tx*/
1386	ret = fsl_sai_read_dlcfg(sai);
1387	if (ret < 0) {
1388		dev_err(dev, "failed to read dlcfg %d\n", ret);
1389		return ret;
1390	}
1391
1392	irq = platform_get_irq(pdev, 0);
1393	if (irq < 0)
1394		return irq;
1395
1396	ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED,
1397			       np->name, sai);
1398	if (ret) {
1399		dev_err(dev, "failed to claim irq %u\n", irq);
1400		return ret;
1401	}
1402
1403	memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
1404	       sizeof(fsl_sai_dai_template));
1405
1406	/* Sync Tx with Rx as default by following old DT binding */
1407	sai->synchronous[RX] = true;
1408	sai->synchronous[TX] = false;
1409	sai->cpu_dai_drv.symmetric_rate = 1;
1410	sai->cpu_dai_drv.symmetric_channels = 1;
1411	sai->cpu_dai_drv.symmetric_sample_bits = 1;
1412
1413	if (of_property_read_bool(np, "fsl,sai-synchronous-rx") &&
1414	    of_property_read_bool(np, "fsl,sai-asynchronous")) {
1415		/* error out if both synchronous and asynchronous are present */
1416		dev_err(dev, "invalid binding for synchronous mode\n");
1417		return -EINVAL;
1418	}
1419
1420	if (of_property_read_bool(np, "fsl,sai-synchronous-rx")) {
1421		/* Sync Rx with Tx */
1422		sai->synchronous[RX] = false;
1423		sai->synchronous[TX] = true;
1424	} else if (of_property_read_bool(np, "fsl,sai-asynchronous")) {
1425		/* Discard all settings for asynchronous mode */
1426		sai->synchronous[RX] = false;
1427		sai->synchronous[TX] = false;
1428		sai->cpu_dai_drv.symmetric_rate = 0;
1429		sai->cpu_dai_drv.symmetric_channels = 0;
1430		sai->cpu_dai_drv.symmetric_sample_bits = 0;
1431	}
1432
1433	sai->mclk_direction_output = of_property_read_bool(np, "fsl,sai-mclk-direction-output");
1434
1435	if (sai->mclk_direction_output &&
1436	    of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1437		gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1438		if (IS_ERR(gpr)) {
1439			dev_err(dev, "cannot find iomuxc registers\n");
1440			return PTR_ERR(gpr);
1441		}
1442
1443		index = of_alias_get_id(np, "sai");
1444		if (index < 0)
1445			return index;
1446
1447		regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1448				   MCLK_DIR(index));
1449	}
1450
1451	sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0;
1452	sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0;
1453	sai->dma_params_rx.maxburst =
1454		sai->soc_data->max_burst[RX] ? sai->soc_data->max_burst[RX] : FSL_SAI_MAXBURST_RX;
1455	sai->dma_params_tx.maxburst =
1456		sai->soc_data->max_burst[TX] ? sai->soc_data->max_burst[TX] : FSL_SAI_MAXBURST_TX;
1457
1458	sai->pinctrl = devm_pinctrl_get(&pdev->dev);
1459
1460	platform_set_drvdata(pdev, sai);
1461	pm_runtime_enable(dev);
1462	if (!pm_runtime_enabled(dev)) {
1463		ret = fsl_sai_runtime_resume(dev);
1464		if (ret)
1465			goto err_pm_disable;
1466	}
1467
1468	ret = pm_runtime_resume_and_get(dev);
1469	if (ret < 0)
1470		goto err_pm_get_sync;
1471
1472	/* Get sai version */
1473	ret = fsl_sai_check_version(dev);
1474	if (ret < 0)
1475		dev_warn(dev, "Error reading SAI version: %d\n", ret);
1476
1477	/* Select MCLK direction */
1478	if (sai->mclk_direction_output &&
1479	    sai->soc_data->max_register >= FSL_SAI_MCTL) {
1480		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1481				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1482	}
1483
1484	ret = pm_runtime_put_sync(dev);
1485	if (ret < 0 && ret != -ENOSYS)
1486		goto err_pm_get_sync;
1487
1488	/*
1489	 * Register platform component before registering cpu dai for there
1490	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1491	 */
1492	if (sai->soc_data->use_imx_pcm) {
1493		ret = imx_pcm_dma_init(pdev);
1494		if (ret) {
1495			dev_err_probe(dev, ret, "PCM DMA init failed\n");
1496			if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA))
1497				dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n");
1498			goto err_pm_get_sync;
1499		}
1500	} else {
1501		ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
1502		if (ret) {
1503			dev_err_probe(dev, ret, "Registering PCM dmaengine failed\n");
1504			goto err_pm_get_sync;
1505		}
1506	}
1507
1508	ret = devm_snd_soc_register_component(dev, &fsl_component,
1509					      &sai->cpu_dai_drv, 1);
1510	if (ret)
1511		goto err_pm_get_sync;
1512
1513	return ret;
1514
1515err_pm_get_sync:
1516	if (!pm_runtime_status_suspended(dev))
1517		fsl_sai_runtime_suspend(dev);
1518err_pm_disable:
1519	pm_runtime_disable(dev);
1520
1521	return ret;
1522}
1523
1524static void fsl_sai_remove(struct platform_device *pdev)
1525{
1526	pm_runtime_disable(&pdev->dev);
1527	if (!pm_runtime_status_suspended(&pdev->dev))
1528		fsl_sai_runtime_suspend(&pdev->dev);
1529}
1530
1531static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1532	.use_imx_pcm = false,
1533	.use_edma = false,
1534	.fifo_depth = 32,
1535	.pins = 1,
1536	.reg_offset = 0,
1537	.mclk0_is_mclk1 = false,
1538	.flags = 0,
1539	.max_register = FSL_SAI_RMR,
1540};
1541
1542static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1543	.use_imx_pcm = true,
1544	.use_edma = false,
1545	.fifo_depth = 32,
1546	.pins = 1,
1547	.reg_offset = 0,
1548	.mclk0_is_mclk1 = true,
1549	.flags = 0,
1550	.max_register = FSL_SAI_RMR,
1551};
1552
1553static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1554	.use_imx_pcm = true,
1555	.use_edma = false,
1556	.fifo_depth = 16,
1557	.pins = 2,
1558	.reg_offset = 8,
1559	.mclk0_is_mclk1 = false,
1560	.flags = PMQOS_CPU_LATENCY,
1561	.max_register = FSL_SAI_RMR,
1562};
1563
1564static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1565	.use_imx_pcm = true,
1566	.use_edma = false,
1567	.fifo_depth = 128,
1568	.pins = 8,
1569	.reg_offset = 8,
1570	.mclk0_is_mclk1 = false,
1571	.flags = 0,
1572	.max_register = FSL_SAI_RMR,
1573};
1574
1575static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1576	.use_imx_pcm = true,
1577	.use_edma = true,
1578	.fifo_depth = 64,
1579	.pins = 4,
1580	.reg_offset = 0,
1581	.mclk0_is_mclk1 = false,
1582	.flags = 0,
1583	.max_register = FSL_SAI_RMR,
1584};
1585
1586static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
1587	.use_imx_pcm = true,
1588	.use_edma = false,
1589	.fifo_depth = 128,
1590	.reg_offset = 8,
1591	.mclk0_is_mclk1 = false,
1592	.pins = 8,
1593	.flags = 0,
1594	.max_register = FSL_SAI_MCTL,
1595};
1596
1597static const struct fsl_sai_soc_data fsl_sai_imx8mn_data = {
1598	.use_imx_pcm = true,
1599	.use_edma = false,
1600	.fifo_depth = 128,
1601	.reg_offset = 8,
1602	.mclk0_is_mclk1 = false,
1603	.pins = 8,
1604	.flags = 0,
1605	.max_register = FSL_SAI_MDIV,
1606};
1607
1608static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
1609	.use_imx_pcm = true,
1610	.use_edma = false,
1611	.fifo_depth = 128,
1612	.reg_offset = 8,
1613	.mclk0_is_mclk1 = false,
1614	.pins = 8,
1615	.flags = 0,
1616	.max_register = FSL_SAI_MDIV,
1617	.mclk_with_tere = true,
1618};
1619
1620static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
1621	.use_imx_pcm = true,
1622	.use_edma = true,
1623	.fifo_depth = 16,
1624	.reg_offset = 8,
1625	.mclk0_is_mclk1 = false,
1626	.pins = 4,
1627	.flags = PMQOS_CPU_LATENCY,
1628	.max_register = FSL_SAI_RTCAP,
1629};
1630
1631static const struct fsl_sai_soc_data fsl_sai_imx93_data = {
1632	.use_imx_pcm = true,
1633	.use_edma = true,
1634	.fifo_depth = 128,
1635	.reg_offset = 8,
1636	.mclk0_is_mclk1 = false,
1637	.pins = 4,
1638	.flags = 0,
1639	.max_register = FSL_SAI_MCTL,
1640	.max_burst = {8, 8},
1641};
1642
1643static const struct of_device_id fsl_sai_ids[] = {
1644	{ .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1645	{ .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1646	{ .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1647	{ .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1648	{ .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1649	{ .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1650	{ .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
1651	{ .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
1652	{ .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
1653	{ .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mn_data },
1654	{ .compatible = "fsl,imx93-sai", .data = &fsl_sai_imx93_data },
1655	{ /* sentinel */ }
1656};
1657MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1658
1659static int fsl_sai_runtime_suspend(struct device *dev)
1660{
1661	struct fsl_sai *sai = dev_get_drvdata(dev);
1662
1663	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1664		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1665
1666	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1667		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1668
1669	clk_disable_unprepare(sai->bus_clk);
1670
1671	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1672		cpu_latency_qos_remove_request(&sai->pm_qos_req);
1673
1674	regcache_cache_only(sai->regmap, true);
1675
1676	return 0;
1677}
1678
1679static int fsl_sai_runtime_resume(struct device *dev)
1680{
1681	struct fsl_sai *sai = dev_get_drvdata(dev);
1682	unsigned int ofs = sai->soc_data->reg_offset;
1683	int ret;
1684
1685	ret = clk_prepare_enable(sai->bus_clk);
1686	if (ret) {
1687		dev_err(dev, "failed to enable bus clock: %d\n", ret);
1688		return ret;
1689	}
1690
1691	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1692		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1693		if (ret)
1694			goto disable_bus_clk;
1695	}
1696
1697	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1698		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1699		if (ret)
1700			goto disable_tx_clk;
1701	}
1702
1703	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1704		cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1705
1706	regcache_cache_only(sai->regmap, false);
1707	regcache_mark_dirty(sai->regmap);
1708	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
1709	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1710	usleep_range(1000, 2000);
1711	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
1712	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1713
1714	ret = regcache_sync(sai->regmap);
1715	if (ret)
1716		goto disable_rx_clk;
1717
1718	if (sai->soc_data->mclk_with_tere && sai->mclk_direction_output)
1719		regmap_update_bits(sai->regmap, FSL_SAI_TCSR(ofs),
1720				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
1721
1722	return 0;
1723
1724disable_rx_clk:
1725	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1726		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1727disable_tx_clk:
1728	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1729		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1730disable_bus_clk:
1731	clk_disable_unprepare(sai->bus_clk);
1732
1733	return ret;
1734}
1735
1736static const struct dev_pm_ops fsl_sai_pm_ops = {
1737	SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
1738			   fsl_sai_runtime_resume, NULL)
1739	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1740				pm_runtime_force_resume)
1741};
1742
1743static struct platform_driver fsl_sai_driver = {
1744	.probe = fsl_sai_probe,
1745	.remove_new = fsl_sai_remove,
1746	.driver = {
1747		.name = "fsl-sai",
1748		.pm = &fsl_sai_pm_ops,
1749		.of_match_table = fsl_sai_ids,
1750	},
1751};
1752module_platform_driver(fsl_sai_driver);
1753
1754MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1755MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1756MODULE_ALIAS("platform:fsl-sai");
1757MODULE_LICENSE("GPL");
1758