xref: /kernel/linux/linux-6.6/sound/soc/fsl/fsl_dma.c (revision 62306a36)
162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
262306a36Sopenharmony_ci//
362306a36Sopenharmony_ci// Freescale DMA ALSA SoC PCM driver
462306a36Sopenharmony_ci//
562306a36Sopenharmony_ci// Author: Timur Tabi <timur@freescale.com>
662306a36Sopenharmony_ci//
762306a36Sopenharmony_ci// Copyright 2007-2010 Freescale Semiconductor, Inc.
862306a36Sopenharmony_ci//
962306a36Sopenharmony_ci// This driver implements ASoC support for the Elo DMA controller, which is
1062306a36Sopenharmony_ci// the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
1162306a36Sopenharmony_ci// the PCM driver is what handles the DMA buffer.
1262306a36Sopenharmony_ci
1362306a36Sopenharmony_ci#include <linux/module.h>
1462306a36Sopenharmony_ci#include <linux/init.h>
1562306a36Sopenharmony_ci#include <linux/platform_device.h>
1662306a36Sopenharmony_ci#include <linux/dma-mapping.h>
1762306a36Sopenharmony_ci#include <linux/interrupt.h>
1862306a36Sopenharmony_ci#include <linux/delay.h>
1962306a36Sopenharmony_ci#include <linux/gfp.h>
2062306a36Sopenharmony_ci#include <linux/of_address.h>
2162306a36Sopenharmony_ci#include <linux/of_irq.h>
2262306a36Sopenharmony_ci#include <linux/of_platform.h>
2362306a36Sopenharmony_ci#include <linux/list.h>
2462306a36Sopenharmony_ci#include <linux/slab.h>
2562306a36Sopenharmony_ci
2662306a36Sopenharmony_ci#include <sound/core.h>
2762306a36Sopenharmony_ci#include <sound/pcm.h>
2862306a36Sopenharmony_ci#include <sound/pcm_params.h>
2962306a36Sopenharmony_ci#include <sound/soc.h>
3062306a36Sopenharmony_ci
3162306a36Sopenharmony_ci#include <asm/io.h>
3262306a36Sopenharmony_ci
3362306a36Sopenharmony_ci#include "fsl_dma.h"
3462306a36Sopenharmony_ci#include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
3562306a36Sopenharmony_ci
3662306a36Sopenharmony_ci#define DRV_NAME "fsl_dma"
3762306a36Sopenharmony_ci
3862306a36Sopenharmony_ci/*
3962306a36Sopenharmony_ci * The formats that the DMA controller supports, which is anything
4062306a36Sopenharmony_ci * that is 8, 16, or 32 bits.
4162306a36Sopenharmony_ci */
4262306a36Sopenharmony_ci#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
4362306a36Sopenharmony_ci			    SNDRV_PCM_FMTBIT_U8 	| \
4462306a36Sopenharmony_ci			    SNDRV_PCM_FMTBIT_S16_LE     | \
4562306a36Sopenharmony_ci			    SNDRV_PCM_FMTBIT_S16_BE     | \
4662306a36Sopenharmony_ci			    SNDRV_PCM_FMTBIT_U16_LE     | \
4762306a36Sopenharmony_ci			    SNDRV_PCM_FMTBIT_U16_BE     | \
4862306a36Sopenharmony_ci			    SNDRV_PCM_FMTBIT_S24_LE     | \
4962306a36Sopenharmony_ci			    SNDRV_PCM_FMTBIT_S24_BE     | \
5062306a36Sopenharmony_ci			    SNDRV_PCM_FMTBIT_U24_LE     | \
5162306a36Sopenharmony_ci			    SNDRV_PCM_FMTBIT_U24_BE     | \
5262306a36Sopenharmony_ci			    SNDRV_PCM_FMTBIT_S32_LE     | \
5362306a36Sopenharmony_ci			    SNDRV_PCM_FMTBIT_S32_BE     | \
5462306a36Sopenharmony_ci			    SNDRV_PCM_FMTBIT_U32_LE     | \
5562306a36Sopenharmony_ci			    SNDRV_PCM_FMTBIT_U32_BE)
5662306a36Sopenharmony_cistruct dma_object {
5762306a36Sopenharmony_ci	struct snd_soc_component_driver dai;
5862306a36Sopenharmony_ci	dma_addr_t ssi_stx_phys;
5962306a36Sopenharmony_ci	dma_addr_t ssi_srx_phys;
6062306a36Sopenharmony_ci	unsigned int ssi_fifo_depth;
6162306a36Sopenharmony_ci	struct ccsr_dma_channel __iomem *channel;
6262306a36Sopenharmony_ci	unsigned int irq;
6362306a36Sopenharmony_ci	bool assigned;
6462306a36Sopenharmony_ci};
6562306a36Sopenharmony_ci
6662306a36Sopenharmony_ci/*
6762306a36Sopenharmony_ci * The number of DMA links to use.  Two is the bare minimum, but if you
6862306a36Sopenharmony_ci * have really small links you might need more.
6962306a36Sopenharmony_ci */
7062306a36Sopenharmony_ci#define NUM_DMA_LINKS   2
7162306a36Sopenharmony_ci
7262306a36Sopenharmony_ci/** fsl_dma_private: p-substream DMA data
7362306a36Sopenharmony_ci *
7462306a36Sopenharmony_ci * Each substream has a 1-to-1 association with a DMA channel.
7562306a36Sopenharmony_ci *
7662306a36Sopenharmony_ci * The link[] array is first because it needs to be aligned on a 32-byte
7762306a36Sopenharmony_ci * boundary, so putting it first will ensure alignment without padding the
7862306a36Sopenharmony_ci * structure.
7962306a36Sopenharmony_ci *
8062306a36Sopenharmony_ci * @link[]: array of link descriptors
8162306a36Sopenharmony_ci * @dma_channel: pointer to the DMA channel's registers
8262306a36Sopenharmony_ci * @irq: IRQ for this DMA channel
8362306a36Sopenharmony_ci * @substream: pointer to the substream object, needed by the ISR
8462306a36Sopenharmony_ci * @ssi_sxx_phys: bus address of the STX or SRX register to use
8562306a36Sopenharmony_ci * @ld_buf_phys: physical address of the LD buffer
8662306a36Sopenharmony_ci * @current_link: index into link[] of the link currently being processed
8762306a36Sopenharmony_ci * @dma_buf_phys: physical address of the DMA buffer
8862306a36Sopenharmony_ci * @dma_buf_next: physical address of the next period to process
8962306a36Sopenharmony_ci * @dma_buf_end: physical address of the byte after the end of the DMA
9062306a36Sopenharmony_ci * @buffer period_size: the size of a single period
9162306a36Sopenharmony_ci * @num_periods: the number of periods in the DMA buffer
9262306a36Sopenharmony_ci */
9362306a36Sopenharmony_cistruct fsl_dma_private {
9462306a36Sopenharmony_ci	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
9562306a36Sopenharmony_ci	struct ccsr_dma_channel __iomem *dma_channel;
9662306a36Sopenharmony_ci	unsigned int irq;
9762306a36Sopenharmony_ci	struct snd_pcm_substream *substream;
9862306a36Sopenharmony_ci	dma_addr_t ssi_sxx_phys;
9962306a36Sopenharmony_ci	unsigned int ssi_fifo_depth;
10062306a36Sopenharmony_ci	dma_addr_t ld_buf_phys;
10162306a36Sopenharmony_ci	unsigned int current_link;
10262306a36Sopenharmony_ci	dma_addr_t dma_buf_phys;
10362306a36Sopenharmony_ci	dma_addr_t dma_buf_next;
10462306a36Sopenharmony_ci	dma_addr_t dma_buf_end;
10562306a36Sopenharmony_ci	size_t period_size;
10662306a36Sopenharmony_ci	unsigned int num_periods;
10762306a36Sopenharmony_ci};
10862306a36Sopenharmony_ci
10962306a36Sopenharmony_ci/**
11062306a36Sopenharmony_ci * fsl_dma_hardare: define characteristics of the PCM hardware.
11162306a36Sopenharmony_ci *
11262306a36Sopenharmony_ci * The PCM hardware is the Freescale DMA controller.  This structure defines
11362306a36Sopenharmony_ci * the capabilities of that hardware.
11462306a36Sopenharmony_ci *
11562306a36Sopenharmony_ci * Since the sampling rate and data format are not controlled by the DMA
11662306a36Sopenharmony_ci * controller, we specify no limits for those values.  The only exception is
11762306a36Sopenharmony_ci * period_bytes_min, which is set to a reasonably low value to prevent the
11862306a36Sopenharmony_ci * DMA controller from generating too many interrupts per second.
11962306a36Sopenharmony_ci *
12062306a36Sopenharmony_ci * Since each link descriptor has a 32-bit byte count field, we set
12162306a36Sopenharmony_ci * period_bytes_max to the largest 32-bit number.  We also have no maximum
12262306a36Sopenharmony_ci * number of periods.
12362306a36Sopenharmony_ci *
12462306a36Sopenharmony_ci * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
12562306a36Sopenharmony_ci * limitation in the SSI driver requires the sample rates for playback and
12662306a36Sopenharmony_ci * capture to be the same.
12762306a36Sopenharmony_ci */
12862306a36Sopenharmony_cistatic const struct snd_pcm_hardware fsl_dma_hardware = {
12962306a36Sopenharmony_ci
13062306a36Sopenharmony_ci	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
13162306a36Sopenharmony_ci				  SNDRV_PCM_INFO_MMAP |
13262306a36Sopenharmony_ci				  SNDRV_PCM_INFO_MMAP_VALID |
13362306a36Sopenharmony_ci				  SNDRV_PCM_INFO_JOINT_DUPLEX |
13462306a36Sopenharmony_ci				  SNDRV_PCM_INFO_PAUSE,
13562306a36Sopenharmony_ci	.formats		= FSLDMA_PCM_FORMATS,
13662306a36Sopenharmony_ci	.period_bytes_min       = 512,  	/* A reasonable limit */
13762306a36Sopenharmony_ci	.period_bytes_max       = (u32) -1,
13862306a36Sopenharmony_ci	.periods_min    	= NUM_DMA_LINKS,
13962306a36Sopenharmony_ci	.periods_max    	= (unsigned int) -1,
14062306a36Sopenharmony_ci	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
14162306a36Sopenharmony_ci};
14262306a36Sopenharmony_ci
14362306a36Sopenharmony_ci/**
14462306a36Sopenharmony_ci * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
14562306a36Sopenharmony_ci *
14662306a36Sopenharmony_ci * This function should be called by the ISR whenever the DMA controller
14762306a36Sopenharmony_ci * halts data transfer.
14862306a36Sopenharmony_ci */
14962306a36Sopenharmony_cistatic void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
15062306a36Sopenharmony_ci{
15162306a36Sopenharmony_ci	snd_pcm_stop_xrun(substream);
15262306a36Sopenharmony_ci}
15362306a36Sopenharmony_ci
15462306a36Sopenharmony_ci/**
15562306a36Sopenharmony_ci * fsl_dma_update_pointers - update LD pointers to point to the next period
15662306a36Sopenharmony_ci *
15762306a36Sopenharmony_ci * As each period is completed, this function changes the link
15862306a36Sopenharmony_ci * descriptor pointers for that period to point to the next period.
15962306a36Sopenharmony_ci */
16062306a36Sopenharmony_cistatic void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
16162306a36Sopenharmony_ci{
16262306a36Sopenharmony_ci	struct fsl_dma_link_descriptor *link =
16362306a36Sopenharmony_ci		&dma_private->link[dma_private->current_link];
16462306a36Sopenharmony_ci
16562306a36Sopenharmony_ci	/* Update our link descriptors to point to the next period. On a 36-bit
16662306a36Sopenharmony_ci	 * system, we also need to update the ESAD bits.  We also set (keep) the
16762306a36Sopenharmony_ci	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
16862306a36Sopenharmony_ci	 */
16962306a36Sopenharmony_ci	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
17062306a36Sopenharmony_ci		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
17162306a36Sopenharmony_ci#ifdef CONFIG_PHYS_64BIT
17262306a36Sopenharmony_ci		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
17362306a36Sopenharmony_ci			upper_32_bits(dma_private->dma_buf_next));
17462306a36Sopenharmony_ci#endif
17562306a36Sopenharmony_ci	} else {
17662306a36Sopenharmony_ci		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
17762306a36Sopenharmony_ci#ifdef CONFIG_PHYS_64BIT
17862306a36Sopenharmony_ci		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
17962306a36Sopenharmony_ci			upper_32_bits(dma_private->dma_buf_next));
18062306a36Sopenharmony_ci#endif
18162306a36Sopenharmony_ci	}
18262306a36Sopenharmony_ci
18362306a36Sopenharmony_ci	/* Update our variables for next time */
18462306a36Sopenharmony_ci	dma_private->dma_buf_next += dma_private->period_size;
18562306a36Sopenharmony_ci
18662306a36Sopenharmony_ci	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
18762306a36Sopenharmony_ci		dma_private->dma_buf_next = dma_private->dma_buf_phys;
18862306a36Sopenharmony_ci
18962306a36Sopenharmony_ci	if (++dma_private->current_link >= NUM_DMA_LINKS)
19062306a36Sopenharmony_ci		dma_private->current_link = 0;
19162306a36Sopenharmony_ci}
19262306a36Sopenharmony_ci
19362306a36Sopenharmony_ci/**
19462306a36Sopenharmony_ci * fsl_dma_isr: interrupt handler for the DMA controller
19562306a36Sopenharmony_ci *
19662306a36Sopenharmony_ci * @irq: IRQ of the DMA channel
19762306a36Sopenharmony_ci * @dev_id: pointer to the dma_private structure for this DMA channel
19862306a36Sopenharmony_ci */
19962306a36Sopenharmony_cistatic irqreturn_t fsl_dma_isr(int irq, void *dev_id)
20062306a36Sopenharmony_ci{
20162306a36Sopenharmony_ci	struct fsl_dma_private *dma_private = dev_id;
20262306a36Sopenharmony_ci	struct snd_pcm_substream *substream = dma_private->substream;
20362306a36Sopenharmony_ci	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
20462306a36Sopenharmony_ci	struct device *dev = rtd->dev;
20562306a36Sopenharmony_ci	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
20662306a36Sopenharmony_ci	irqreturn_t ret = IRQ_NONE;
20762306a36Sopenharmony_ci	u32 sr, sr2 = 0;
20862306a36Sopenharmony_ci
20962306a36Sopenharmony_ci	/* We got an interrupt, so read the status register to see what we
21062306a36Sopenharmony_ci	   were interrupted for.
21162306a36Sopenharmony_ci	 */
21262306a36Sopenharmony_ci	sr = in_be32(&dma_channel->sr);
21362306a36Sopenharmony_ci
21462306a36Sopenharmony_ci	if (sr & CCSR_DMA_SR_TE) {
21562306a36Sopenharmony_ci		dev_err(dev, "dma transmit error\n");
21662306a36Sopenharmony_ci		fsl_dma_abort_stream(substream);
21762306a36Sopenharmony_ci		sr2 |= CCSR_DMA_SR_TE;
21862306a36Sopenharmony_ci		ret = IRQ_HANDLED;
21962306a36Sopenharmony_ci	}
22062306a36Sopenharmony_ci
22162306a36Sopenharmony_ci	if (sr & CCSR_DMA_SR_CH)
22262306a36Sopenharmony_ci		ret = IRQ_HANDLED;
22362306a36Sopenharmony_ci
22462306a36Sopenharmony_ci	if (sr & CCSR_DMA_SR_PE) {
22562306a36Sopenharmony_ci		dev_err(dev, "dma programming error\n");
22662306a36Sopenharmony_ci		fsl_dma_abort_stream(substream);
22762306a36Sopenharmony_ci		sr2 |= CCSR_DMA_SR_PE;
22862306a36Sopenharmony_ci		ret = IRQ_HANDLED;
22962306a36Sopenharmony_ci	}
23062306a36Sopenharmony_ci
23162306a36Sopenharmony_ci	if (sr & CCSR_DMA_SR_EOLNI) {
23262306a36Sopenharmony_ci		sr2 |= CCSR_DMA_SR_EOLNI;
23362306a36Sopenharmony_ci		ret = IRQ_HANDLED;
23462306a36Sopenharmony_ci	}
23562306a36Sopenharmony_ci
23662306a36Sopenharmony_ci	if (sr & CCSR_DMA_SR_CB)
23762306a36Sopenharmony_ci		ret = IRQ_HANDLED;
23862306a36Sopenharmony_ci
23962306a36Sopenharmony_ci	if (sr & CCSR_DMA_SR_EOSI) {
24062306a36Sopenharmony_ci		/* Tell ALSA we completed a period. */
24162306a36Sopenharmony_ci		snd_pcm_period_elapsed(substream);
24262306a36Sopenharmony_ci
24362306a36Sopenharmony_ci		/*
24462306a36Sopenharmony_ci		 * Update our link descriptors to point to the next period. We
24562306a36Sopenharmony_ci		 * only need to do this if the number of periods is not equal to
24662306a36Sopenharmony_ci		 * the number of links.
24762306a36Sopenharmony_ci		 */
24862306a36Sopenharmony_ci		if (dma_private->num_periods != NUM_DMA_LINKS)
24962306a36Sopenharmony_ci			fsl_dma_update_pointers(dma_private);
25062306a36Sopenharmony_ci
25162306a36Sopenharmony_ci		sr2 |= CCSR_DMA_SR_EOSI;
25262306a36Sopenharmony_ci		ret = IRQ_HANDLED;
25362306a36Sopenharmony_ci	}
25462306a36Sopenharmony_ci
25562306a36Sopenharmony_ci	if (sr & CCSR_DMA_SR_EOLSI) {
25662306a36Sopenharmony_ci		sr2 |= CCSR_DMA_SR_EOLSI;
25762306a36Sopenharmony_ci		ret = IRQ_HANDLED;
25862306a36Sopenharmony_ci	}
25962306a36Sopenharmony_ci
26062306a36Sopenharmony_ci	/* Clear the bits that we set */
26162306a36Sopenharmony_ci	if (sr2)
26262306a36Sopenharmony_ci		out_be32(&dma_channel->sr, sr2);
26362306a36Sopenharmony_ci
26462306a36Sopenharmony_ci	return ret;
26562306a36Sopenharmony_ci}
26662306a36Sopenharmony_ci
26762306a36Sopenharmony_ci/**
26862306a36Sopenharmony_ci * fsl_dma_new: initialize this PCM driver.
26962306a36Sopenharmony_ci *
27062306a36Sopenharmony_ci * This function is called when the codec driver calls snd_soc_new_pcms(),
27162306a36Sopenharmony_ci * once for each .dai_link in the machine driver's snd_soc_card
27262306a36Sopenharmony_ci * structure.
27362306a36Sopenharmony_ci *
27462306a36Sopenharmony_ci * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
27562306a36Sopenharmony_ci * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
27662306a36Sopenharmony_ci * is specified. Therefore, any DMA buffers we allocate will always be in low
27762306a36Sopenharmony_ci * memory, but we support for 36-bit physical addresses anyway.
27862306a36Sopenharmony_ci *
27962306a36Sopenharmony_ci * Regardless of where the memory is actually allocated, since the device can
28062306a36Sopenharmony_ci * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
28162306a36Sopenharmony_ci */
28262306a36Sopenharmony_cistatic int fsl_dma_new(struct snd_soc_component *component,
28362306a36Sopenharmony_ci		       struct snd_soc_pcm_runtime *rtd)
28462306a36Sopenharmony_ci{
28562306a36Sopenharmony_ci	struct snd_card *card = rtd->card->snd_card;
28662306a36Sopenharmony_ci	struct snd_pcm *pcm = rtd->pcm;
28762306a36Sopenharmony_ci	int ret;
28862306a36Sopenharmony_ci
28962306a36Sopenharmony_ci	ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
29062306a36Sopenharmony_ci	if (ret)
29162306a36Sopenharmony_ci		return ret;
29262306a36Sopenharmony_ci
29362306a36Sopenharmony_ci	return snd_pcm_set_fixed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
29462306a36Sopenharmony_ci					    card->dev,
29562306a36Sopenharmony_ci					    fsl_dma_hardware.buffer_bytes_max);
29662306a36Sopenharmony_ci}
29762306a36Sopenharmony_ci
29862306a36Sopenharmony_ci/**
29962306a36Sopenharmony_ci * fsl_dma_open: open a new substream.
30062306a36Sopenharmony_ci *
30162306a36Sopenharmony_ci * Each substream has its own DMA buffer.
30262306a36Sopenharmony_ci *
30362306a36Sopenharmony_ci * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
30462306a36Sopenharmony_ci * descriptors that ping-pong from one period to the next.  For example, if
30562306a36Sopenharmony_ci * there are six periods and two link descriptors, this is how they look
30662306a36Sopenharmony_ci * before playback starts:
30762306a36Sopenharmony_ci *
30862306a36Sopenharmony_ci *      	   The last link descriptor
30962306a36Sopenharmony_ci *   ____________  points back to the first
31062306a36Sopenharmony_ci *  |   	 |
31162306a36Sopenharmony_ci *  V   	 |
31262306a36Sopenharmony_ci *  ___    ___   |
31362306a36Sopenharmony_ci * |   |->|   |->|
31462306a36Sopenharmony_ci * |___|  |___|
31562306a36Sopenharmony_ci *   |      |
31662306a36Sopenharmony_ci *   |      |
31762306a36Sopenharmony_ci *   V      V
31862306a36Sopenharmony_ci *  _________________________________________
31962306a36Sopenharmony_ci * |      |      |      |      |      |      |  The DMA buffer is
32062306a36Sopenharmony_ci * |      |      |      |      |      |      |    divided into 6 parts
32162306a36Sopenharmony_ci * |______|______|______|______|______|______|
32262306a36Sopenharmony_ci *
32362306a36Sopenharmony_ci * and here's how they look after the first period is finished playing:
32462306a36Sopenharmony_ci *
32562306a36Sopenharmony_ci *   ____________
32662306a36Sopenharmony_ci *  |   	 |
32762306a36Sopenharmony_ci *  V   	 |
32862306a36Sopenharmony_ci *  ___    ___   |
32962306a36Sopenharmony_ci * |   |->|   |->|
33062306a36Sopenharmony_ci * |___|  |___|
33162306a36Sopenharmony_ci *   |      |
33262306a36Sopenharmony_ci *   |______________
33362306a36Sopenharmony_ci *          |       |
33462306a36Sopenharmony_ci *          V       V
33562306a36Sopenharmony_ci *  _________________________________________
33662306a36Sopenharmony_ci * |      |      |      |      |      |      |
33762306a36Sopenharmony_ci * |      |      |      |      |      |      |
33862306a36Sopenharmony_ci * |______|______|______|______|______|______|
33962306a36Sopenharmony_ci *
34062306a36Sopenharmony_ci * The first link descriptor now points to the third period.  The DMA
34162306a36Sopenharmony_ci * controller is currently playing the second period.  When it finishes, it
34262306a36Sopenharmony_ci * will jump back to the first descriptor and play the third period.
34362306a36Sopenharmony_ci *
34462306a36Sopenharmony_ci * There are four reasons we do this:
34562306a36Sopenharmony_ci *
34662306a36Sopenharmony_ci * 1. The only way to get the DMA controller to automatically restart the
34762306a36Sopenharmony_ci *    transfer when it gets to the end of the buffer is to use chaining
34862306a36Sopenharmony_ci *    mode.  Basic direct mode doesn't offer that feature.
34962306a36Sopenharmony_ci * 2. We need to receive an interrupt at the end of every period.  The DMA
35062306a36Sopenharmony_ci *    controller can generate an interrupt at the end of every link transfer
35162306a36Sopenharmony_ci *    (aka segment).  Making each period into a DMA segment will give us the
35262306a36Sopenharmony_ci *    interrupts we need.
35362306a36Sopenharmony_ci * 3. By creating only two link descriptors, regardless of the number of
35462306a36Sopenharmony_ci *    periods, we do not need to reallocate the link descriptors if the
35562306a36Sopenharmony_ci *    number of periods changes.
35662306a36Sopenharmony_ci * 4. All of the audio data is still stored in a single, contiguous DMA
35762306a36Sopenharmony_ci *    buffer, which is what ALSA expects.  We're just dividing it into
35862306a36Sopenharmony_ci *    contiguous parts, and creating a link descriptor for each one.
35962306a36Sopenharmony_ci */
36062306a36Sopenharmony_cistatic int fsl_dma_open(struct snd_soc_component *component,
36162306a36Sopenharmony_ci			struct snd_pcm_substream *substream)
36262306a36Sopenharmony_ci{
36362306a36Sopenharmony_ci	struct snd_pcm_runtime *runtime = substream->runtime;
36462306a36Sopenharmony_ci	struct device *dev = component->dev;
36562306a36Sopenharmony_ci	struct dma_object *dma =
36662306a36Sopenharmony_ci		container_of(component->driver, struct dma_object, dai);
36762306a36Sopenharmony_ci	struct fsl_dma_private *dma_private;
36862306a36Sopenharmony_ci	struct ccsr_dma_channel __iomem *dma_channel;
36962306a36Sopenharmony_ci	dma_addr_t ld_buf_phys;
37062306a36Sopenharmony_ci	u64 temp_link;  	/* Pointer to next link descriptor */
37162306a36Sopenharmony_ci	u32 mr;
37262306a36Sopenharmony_ci	int ret = 0;
37362306a36Sopenharmony_ci	unsigned int i;
37462306a36Sopenharmony_ci
37562306a36Sopenharmony_ci	/*
37662306a36Sopenharmony_ci	 * Reject any DMA buffer whose size is not a multiple of the period
37762306a36Sopenharmony_ci	 * size.  We need to make sure that the DMA buffer can be evenly divided
37862306a36Sopenharmony_ci	 * into periods.
37962306a36Sopenharmony_ci	 */
38062306a36Sopenharmony_ci	ret = snd_pcm_hw_constraint_integer(runtime,
38162306a36Sopenharmony_ci		SNDRV_PCM_HW_PARAM_PERIODS);
38262306a36Sopenharmony_ci	if (ret < 0) {
38362306a36Sopenharmony_ci		dev_err(dev, "invalid buffer size\n");
38462306a36Sopenharmony_ci		return ret;
38562306a36Sopenharmony_ci	}
38662306a36Sopenharmony_ci
38762306a36Sopenharmony_ci	if (dma->assigned) {
38862306a36Sopenharmony_ci		dev_err(dev, "dma channel already assigned\n");
38962306a36Sopenharmony_ci		return -EBUSY;
39062306a36Sopenharmony_ci	}
39162306a36Sopenharmony_ci
39262306a36Sopenharmony_ci	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
39362306a36Sopenharmony_ci					 &ld_buf_phys, GFP_KERNEL);
39462306a36Sopenharmony_ci	if (!dma_private) {
39562306a36Sopenharmony_ci		dev_err(dev, "can't allocate dma private data\n");
39662306a36Sopenharmony_ci		return -ENOMEM;
39762306a36Sopenharmony_ci	}
39862306a36Sopenharmony_ci	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
39962306a36Sopenharmony_ci		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
40062306a36Sopenharmony_ci	else
40162306a36Sopenharmony_ci		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
40262306a36Sopenharmony_ci
40362306a36Sopenharmony_ci	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
40462306a36Sopenharmony_ci	dma_private->dma_channel = dma->channel;
40562306a36Sopenharmony_ci	dma_private->irq = dma->irq;
40662306a36Sopenharmony_ci	dma_private->substream = substream;
40762306a36Sopenharmony_ci	dma_private->ld_buf_phys = ld_buf_phys;
40862306a36Sopenharmony_ci	dma_private->dma_buf_phys = substream->dma_buffer.addr;
40962306a36Sopenharmony_ci
41062306a36Sopenharmony_ci	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
41162306a36Sopenharmony_ci			  dma_private);
41262306a36Sopenharmony_ci	if (ret) {
41362306a36Sopenharmony_ci		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
41462306a36Sopenharmony_ci			dma_private->irq, ret);
41562306a36Sopenharmony_ci		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
41662306a36Sopenharmony_ci			dma_private, dma_private->ld_buf_phys);
41762306a36Sopenharmony_ci		return ret;
41862306a36Sopenharmony_ci	}
41962306a36Sopenharmony_ci
42062306a36Sopenharmony_ci	dma->assigned = true;
42162306a36Sopenharmony_ci
42262306a36Sopenharmony_ci	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
42362306a36Sopenharmony_ci	runtime->private_data = dma_private;
42462306a36Sopenharmony_ci
42562306a36Sopenharmony_ci	/* Program the fixed DMA controller parameters */
42662306a36Sopenharmony_ci
42762306a36Sopenharmony_ci	dma_channel = dma_private->dma_channel;
42862306a36Sopenharmony_ci
42962306a36Sopenharmony_ci	temp_link = dma_private->ld_buf_phys +
43062306a36Sopenharmony_ci		sizeof(struct fsl_dma_link_descriptor);
43162306a36Sopenharmony_ci
43262306a36Sopenharmony_ci	for (i = 0; i < NUM_DMA_LINKS; i++) {
43362306a36Sopenharmony_ci		dma_private->link[i].next = cpu_to_be64(temp_link);
43462306a36Sopenharmony_ci
43562306a36Sopenharmony_ci		temp_link += sizeof(struct fsl_dma_link_descriptor);
43662306a36Sopenharmony_ci	}
43762306a36Sopenharmony_ci	/* The last link descriptor points to the first */
43862306a36Sopenharmony_ci	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
43962306a36Sopenharmony_ci
44062306a36Sopenharmony_ci	/* Tell the DMA controller where the first link descriptor is */
44162306a36Sopenharmony_ci	out_be32(&dma_channel->clndar,
44262306a36Sopenharmony_ci		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
44362306a36Sopenharmony_ci	out_be32(&dma_channel->eclndar,
44462306a36Sopenharmony_ci		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
44562306a36Sopenharmony_ci
44662306a36Sopenharmony_ci	/* The manual says the BCR must be clear before enabling EMP */
44762306a36Sopenharmony_ci	out_be32(&dma_channel->bcr, 0);
44862306a36Sopenharmony_ci
44962306a36Sopenharmony_ci	/*
45062306a36Sopenharmony_ci	 * Program the mode register for interrupts, external master control,
45162306a36Sopenharmony_ci	 * and source/destination hold.  Also clear the Channel Abort bit.
45262306a36Sopenharmony_ci	 */
45362306a36Sopenharmony_ci	mr = in_be32(&dma_channel->mr) &
45462306a36Sopenharmony_ci		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
45562306a36Sopenharmony_ci
45662306a36Sopenharmony_ci	/*
45762306a36Sopenharmony_ci	 * We want External Master Start and External Master Pause enabled,
45862306a36Sopenharmony_ci	 * because the SSI is controlling the DMA controller.  We want the DMA
45962306a36Sopenharmony_ci	 * controller to be set up in advance, and then we signal only the SSI
46062306a36Sopenharmony_ci	 * to start transferring.
46162306a36Sopenharmony_ci	 *
46262306a36Sopenharmony_ci	 * We want End-Of-Segment Interrupts enabled, because this will generate
46362306a36Sopenharmony_ci	 * an interrupt at the end of each segment (each link descriptor
46462306a36Sopenharmony_ci	 * represents one segment).  Each DMA segment is the same thing as an
46562306a36Sopenharmony_ci	 * ALSA period, so this is how we get an interrupt at the end of every
46662306a36Sopenharmony_ci	 * period.
46762306a36Sopenharmony_ci	 *
46862306a36Sopenharmony_ci	 * We want Error Interrupt enabled, so that we can get an error if
46962306a36Sopenharmony_ci	 * the DMA controller is mis-programmed somehow.
47062306a36Sopenharmony_ci	 */
47162306a36Sopenharmony_ci	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
47262306a36Sopenharmony_ci		CCSR_DMA_MR_EMS_EN;
47362306a36Sopenharmony_ci
47462306a36Sopenharmony_ci	/* For playback, we want the destination address to be held.  For
47562306a36Sopenharmony_ci	   capture, set the source address to be held. */
47662306a36Sopenharmony_ci	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
47762306a36Sopenharmony_ci		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
47862306a36Sopenharmony_ci
47962306a36Sopenharmony_ci	out_be32(&dma_channel->mr, mr);
48062306a36Sopenharmony_ci
48162306a36Sopenharmony_ci	return 0;
48262306a36Sopenharmony_ci}
48362306a36Sopenharmony_ci
48462306a36Sopenharmony_ci/**
48562306a36Sopenharmony_ci * fsl_dma_hw_params: continue initializing the DMA links
48662306a36Sopenharmony_ci *
48762306a36Sopenharmony_ci * This function obtains hardware parameters about the opened stream and
48862306a36Sopenharmony_ci * programs the DMA controller accordingly.
48962306a36Sopenharmony_ci *
49062306a36Sopenharmony_ci * One drawback of big-endian is that when copying integers of different
49162306a36Sopenharmony_ci * sizes to a fixed-sized register, the address to which the integer must be
49262306a36Sopenharmony_ci * copied is dependent on the size of the integer.
49362306a36Sopenharmony_ci *
49462306a36Sopenharmony_ci * For example, if P is the address of a 32-bit register, and X is a 32-bit
49562306a36Sopenharmony_ci * integer, then X should be copied to address P.  However, if X is a 16-bit
49662306a36Sopenharmony_ci * integer, then it should be copied to P+2.  If X is an 8-bit register,
49762306a36Sopenharmony_ci * then it should be copied to P+3.
49862306a36Sopenharmony_ci *
49962306a36Sopenharmony_ci * So for playback of 8-bit samples, the DMA controller must transfer single
50062306a36Sopenharmony_ci * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
50162306a36Sopenharmony_ci * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
50262306a36Sopenharmony_ci *
50362306a36Sopenharmony_ci * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
50462306a36Sopenharmony_ci * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
50562306a36Sopenharmony_ci * and 8 bytes at a time).  So we do not support packed 24-bit samples.
50662306a36Sopenharmony_ci * 24-bit data must be padded to 32 bits.
50762306a36Sopenharmony_ci */
50862306a36Sopenharmony_cistatic int fsl_dma_hw_params(struct snd_soc_component *component,
50962306a36Sopenharmony_ci			     struct snd_pcm_substream *substream,
51062306a36Sopenharmony_ci			     struct snd_pcm_hw_params *hw_params)
51162306a36Sopenharmony_ci{
51262306a36Sopenharmony_ci	struct snd_pcm_runtime *runtime = substream->runtime;
51362306a36Sopenharmony_ci	struct fsl_dma_private *dma_private = runtime->private_data;
51462306a36Sopenharmony_ci	struct device *dev = component->dev;
51562306a36Sopenharmony_ci
51662306a36Sopenharmony_ci	/* Number of bits per sample */
51762306a36Sopenharmony_ci	unsigned int sample_bits =
51862306a36Sopenharmony_ci		snd_pcm_format_physical_width(params_format(hw_params));
51962306a36Sopenharmony_ci
52062306a36Sopenharmony_ci	/* Number of bytes per frame */
52162306a36Sopenharmony_ci	unsigned int sample_bytes = sample_bits / 8;
52262306a36Sopenharmony_ci
52362306a36Sopenharmony_ci	/* Bus address of SSI STX register */
52462306a36Sopenharmony_ci	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
52562306a36Sopenharmony_ci
52662306a36Sopenharmony_ci	/* Size of the DMA buffer, in bytes */
52762306a36Sopenharmony_ci	size_t buffer_size = params_buffer_bytes(hw_params);
52862306a36Sopenharmony_ci
52962306a36Sopenharmony_ci	/* Number of bytes per period */
53062306a36Sopenharmony_ci	size_t period_size = params_period_bytes(hw_params);
53162306a36Sopenharmony_ci
53262306a36Sopenharmony_ci	/* Pointer to next period */
53362306a36Sopenharmony_ci	dma_addr_t temp_addr = substream->dma_buffer.addr;
53462306a36Sopenharmony_ci
53562306a36Sopenharmony_ci	/* Pointer to DMA controller */
53662306a36Sopenharmony_ci	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
53762306a36Sopenharmony_ci
53862306a36Sopenharmony_ci	u32 mr; /* DMA Mode Register */
53962306a36Sopenharmony_ci
54062306a36Sopenharmony_ci	unsigned int i;
54162306a36Sopenharmony_ci
54262306a36Sopenharmony_ci	/* Initialize our DMA tracking variables */
54362306a36Sopenharmony_ci	dma_private->period_size = period_size;
54462306a36Sopenharmony_ci	dma_private->num_periods = params_periods(hw_params);
54562306a36Sopenharmony_ci	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
54662306a36Sopenharmony_ci	dma_private->dma_buf_next = dma_private->dma_buf_phys +
54762306a36Sopenharmony_ci		(NUM_DMA_LINKS * period_size);
54862306a36Sopenharmony_ci
54962306a36Sopenharmony_ci	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
55062306a36Sopenharmony_ci		/* This happens if the number of periods == NUM_DMA_LINKS */
55162306a36Sopenharmony_ci		dma_private->dma_buf_next = dma_private->dma_buf_phys;
55262306a36Sopenharmony_ci
55362306a36Sopenharmony_ci	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
55462306a36Sopenharmony_ci		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
55562306a36Sopenharmony_ci
55662306a36Sopenharmony_ci	/* Due to a quirk of the SSI's STX register, the target address
55762306a36Sopenharmony_ci	 * for the DMA operations depends on the sample size.  So we calculate
55862306a36Sopenharmony_ci	 * that offset here.  While we're at it, also tell the DMA controller
55962306a36Sopenharmony_ci	 * how much data to transfer per sample.
56062306a36Sopenharmony_ci	 */
56162306a36Sopenharmony_ci	switch (sample_bits) {
56262306a36Sopenharmony_ci	case 8:
56362306a36Sopenharmony_ci		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
56462306a36Sopenharmony_ci		ssi_sxx_phys += 3;
56562306a36Sopenharmony_ci		break;
56662306a36Sopenharmony_ci	case 16:
56762306a36Sopenharmony_ci		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
56862306a36Sopenharmony_ci		ssi_sxx_phys += 2;
56962306a36Sopenharmony_ci		break;
57062306a36Sopenharmony_ci	case 32:
57162306a36Sopenharmony_ci		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
57262306a36Sopenharmony_ci		break;
57362306a36Sopenharmony_ci	default:
57462306a36Sopenharmony_ci		/* We should never get here */
57562306a36Sopenharmony_ci		dev_err(dev, "unsupported sample size %u\n", sample_bits);
57662306a36Sopenharmony_ci		return -EINVAL;
57762306a36Sopenharmony_ci	}
57862306a36Sopenharmony_ci
57962306a36Sopenharmony_ci	/*
58062306a36Sopenharmony_ci	 * BWC determines how many bytes are sent/received before the DMA
58162306a36Sopenharmony_ci	 * controller checks the SSI to see if it needs to stop. BWC should
58262306a36Sopenharmony_ci	 * always be a multiple of the frame size, so that we always transmit
58362306a36Sopenharmony_ci	 * whole frames.  Each frame occupies two slots in the FIFO.  The
58462306a36Sopenharmony_ci	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
58562306a36Sopenharmony_ci	 * (MR[BWC] can only represent even powers of two).
58662306a36Sopenharmony_ci	 *
58762306a36Sopenharmony_ci	 * To simplify the process, we set BWC to the largest value that is
58862306a36Sopenharmony_ci	 * less than or equal to the FIFO watermark.  For playback, this ensures
58962306a36Sopenharmony_ci	 * that we transfer the maximum amount without overrunning the FIFO.
59062306a36Sopenharmony_ci	 * For capture, this ensures that we transfer the maximum amount without
59162306a36Sopenharmony_ci	 * underrunning the FIFO.
59262306a36Sopenharmony_ci	 *
59362306a36Sopenharmony_ci	 * f = SSI FIFO depth
59462306a36Sopenharmony_ci	 * w = SSI watermark value (which equals f - 2)
59562306a36Sopenharmony_ci	 * b = DMA bandwidth count (in bytes)
59662306a36Sopenharmony_ci	 * s = sample size (in bytes, which equals frame_size * 2)
59762306a36Sopenharmony_ci	 *
59862306a36Sopenharmony_ci	 * For playback, we never transmit more than the transmit FIFO
59962306a36Sopenharmony_ci	 * watermark, otherwise we might write more data than the FIFO can hold.
60062306a36Sopenharmony_ci	 * The watermark is equal to the FIFO depth minus two.
60162306a36Sopenharmony_ci	 *
60262306a36Sopenharmony_ci	 * For capture, two equations must hold:
60362306a36Sopenharmony_ci	 *	w > f - (b / s)
60462306a36Sopenharmony_ci	 *	w >= b / s
60562306a36Sopenharmony_ci	 *
60662306a36Sopenharmony_ci	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
60762306a36Sopenharmony_ci	 * b = s * w, which is equal to
60862306a36Sopenharmony_ci	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
60962306a36Sopenharmony_ci	 */
61062306a36Sopenharmony_ci	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
61162306a36Sopenharmony_ci
61262306a36Sopenharmony_ci	out_be32(&dma_channel->mr, mr);
61362306a36Sopenharmony_ci
61462306a36Sopenharmony_ci	for (i = 0; i < NUM_DMA_LINKS; i++) {
61562306a36Sopenharmony_ci		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
61662306a36Sopenharmony_ci
61762306a36Sopenharmony_ci		link->count = cpu_to_be32(period_size);
61862306a36Sopenharmony_ci
61962306a36Sopenharmony_ci		/* The snoop bit tells the DMA controller whether it should tell
62062306a36Sopenharmony_ci		 * the ECM to snoop during a read or write to an address. For
62162306a36Sopenharmony_ci		 * audio, we use DMA to transfer data between memory and an I/O
62262306a36Sopenharmony_ci		 * device (the SSI's STX0 or SRX0 register). Snooping is only
62362306a36Sopenharmony_ci		 * needed if there is a cache, so we need to snoop memory
62462306a36Sopenharmony_ci		 * addresses only.  For playback, that means we snoop the source
62562306a36Sopenharmony_ci		 * but not the destination.  For capture, we snoop the
62662306a36Sopenharmony_ci		 * destination but not the source.
62762306a36Sopenharmony_ci		 *
62862306a36Sopenharmony_ci		 * Note that failing to snoop properly is unlikely to cause
62962306a36Sopenharmony_ci		 * cache incoherency if the period size is larger than the
63062306a36Sopenharmony_ci		 * size of L1 cache.  This is because filling in one period will
63162306a36Sopenharmony_ci		 * flush out the data for the previous period.  So if you
63262306a36Sopenharmony_ci		 * increased period_bytes_min to a large enough size, you might
63362306a36Sopenharmony_ci		 * get more performance by not snooping, and you'll still be
63462306a36Sopenharmony_ci		 * okay.  You'll need to update fsl_dma_update_pointers() also.
63562306a36Sopenharmony_ci		 */
63662306a36Sopenharmony_ci		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
63762306a36Sopenharmony_ci			link->source_addr = cpu_to_be32(temp_addr);
63862306a36Sopenharmony_ci			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
63962306a36Sopenharmony_ci				upper_32_bits(temp_addr));
64062306a36Sopenharmony_ci
64162306a36Sopenharmony_ci			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
64262306a36Sopenharmony_ci			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
64362306a36Sopenharmony_ci				upper_32_bits(ssi_sxx_phys));
64462306a36Sopenharmony_ci		} else {
64562306a36Sopenharmony_ci			link->source_addr = cpu_to_be32(ssi_sxx_phys);
64662306a36Sopenharmony_ci			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
64762306a36Sopenharmony_ci				upper_32_bits(ssi_sxx_phys));
64862306a36Sopenharmony_ci
64962306a36Sopenharmony_ci			link->dest_addr = cpu_to_be32(temp_addr);
65062306a36Sopenharmony_ci			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
65162306a36Sopenharmony_ci				upper_32_bits(temp_addr));
65262306a36Sopenharmony_ci		}
65362306a36Sopenharmony_ci
65462306a36Sopenharmony_ci		temp_addr += period_size;
65562306a36Sopenharmony_ci	}
65662306a36Sopenharmony_ci
65762306a36Sopenharmony_ci	return 0;
65862306a36Sopenharmony_ci}
65962306a36Sopenharmony_ci
66062306a36Sopenharmony_ci/**
66162306a36Sopenharmony_ci * fsl_dma_pointer: determine the current position of the DMA transfer
66262306a36Sopenharmony_ci *
66362306a36Sopenharmony_ci * This function is called by ALSA when ALSA wants to know where in the
66462306a36Sopenharmony_ci * stream buffer the hardware currently is.
66562306a36Sopenharmony_ci *
66662306a36Sopenharmony_ci * For playback, the SAR register contains the physical address of the most
66762306a36Sopenharmony_ci * recent DMA transfer.  For capture, the value is in the DAR register.
66862306a36Sopenharmony_ci *
66962306a36Sopenharmony_ci * The base address of the buffer is stored in the source_addr field of the
67062306a36Sopenharmony_ci * first link descriptor.
67162306a36Sopenharmony_ci */
67262306a36Sopenharmony_cistatic snd_pcm_uframes_t fsl_dma_pointer(struct snd_soc_component *component,
67362306a36Sopenharmony_ci					 struct snd_pcm_substream *substream)
67462306a36Sopenharmony_ci{
67562306a36Sopenharmony_ci	struct snd_pcm_runtime *runtime = substream->runtime;
67662306a36Sopenharmony_ci	struct fsl_dma_private *dma_private = runtime->private_data;
67762306a36Sopenharmony_ci	struct device *dev = component->dev;
67862306a36Sopenharmony_ci	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
67962306a36Sopenharmony_ci	dma_addr_t position;
68062306a36Sopenharmony_ci	snd_pcm_uframes_t frames;
68162306a36Sopenharmony_ci
68262306a36Sopenharmony_ci	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
68362306a36Sopenharmony_ci	 * only have 32-bit DMA addresses.  This function is typically called
68462306a36Sopenharmony_ci	 * in interrupt context, so we need to optimize it.
68562306a36Sopenharmony_ci	 */
68662306a36Sopenharmony_ci	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
68762306a36Sopenharmony_ci		position = in_be32(&dma_channel->sar);
68862306a36Sopenharmony_ci#ifdef CONFIG_PHYS_64BIT
68962306a36Sopenharmony_ci		position |= (u64)(in_be32(&dma_channel->satr) &
69062306a36Sopenharmony_ci				  CCSR_DMA_ATR_ESAD_MASK) << 32;
69162306a36Sopenharmony_ci#endif
69262306a36Sopenharmony_ci	} else {
69362306a36Sopenharmony_ci		position = in_be32(&dma_channel->dar);
69462306a36Sopenharmony_ci#ifdef CONFIG_PHYS_64BIT
69562306a36Sopenharmony_ci		position |= (u64)(in_be32(&dma_channel->datr) &
69662306a36Sopenharmony_ci				  CCSR_DMA_ATR_ESAD_MASK) << 32;
69762306a36Sopenharmony_ci#endif
69862306a36Sopenharmony_ci	}
69962306a36Sopenharmony_ci
70062306a36Sopenharmony_ci	/*
70162306a36Sopenharmony_ci	 * When capture is started, the SSI immediately starts to fill its FIFO.
70262306a36Sopenharmony_ci	 * This means that the DMA controller is not started until the FIFO is
70362306a36Sopenharmony_ci	 * full.  However, ALSA calls this function before that happens, when
70462306a36Sopenharmony_ci	 * MR.DAR is still zero.  In this case, just return zero to indicate
70562306a36Sopenharmony_ci	 * that nothing has been received yet.
70662306a36Sopenharmony_ci	 */
70762306a36Sopenharmony_ci	if (!position)
70862306a36Sopenharmony_ci		return 0;
70962306a36Sopenharmony_ci
71062306a36Sopenharmony_ci	if ((position < dma_private->dma_buf_phys) ||
71162306a36Sopenharmony_ci	    (position > dma_private->dma_buf_end)) {
71262306a36Sopenharmony_ci		dev_err(dev, "dma pointer is out of range, halting stream\n");
71362306a36Sopenharmony_ci		return SNDRV_PCM_POS_XRUN;
71462306a36Sopenharmony_ci	}
71562306a36Sopenharmony_ci
71662306a36Sopenharmony_ci	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
71762306a36Sopenharmony_ci
71862306a36Sopenharmony_ci	/*
71962306a36Sopenharmony_ci	 * If the current address is just past the end of the buffer, wrap it
72062306a36Sopenharmony_ci	 * around.
72162306a36Sopenharmony_ci	 */
72262306a36Sopenharmony_ci	if (frames == runtime->buffer_size)
72362306a36Sopenharmony_ci		frames = 0;
72462306a36Sopenharmony_ci
72562306a36Sopenharmony_ci	return frames;
72662306a36Sopenharmony_ci}
72762306a36Sopenharmony_ci
72862306a36Sopenharmony_ci/**
72962306a36Sopenharmony_ci * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
73062306a36Sopenharmony_ci *
73162306a36Sopenharmony_ci * Release the resources allocated in fsl_dma_hw_params() and de-program the
73262306a36Sopenharmony_ci * registers.
73362306a36Sopenharmony_ci *
73462306a36Sopenharmony_ci * This function can be called multiple times.
73562306a36Sopenharmony_ci */
73662306a36Sopenharmony_cistatic int fsl_dma_hw_free(struct snd_soc_component *component,
73762306a36Sopenharmony_ci			   struct snd_pcm_substream *substream)
73862306a36Sopenharmony_ci{
73962306a36Sopenharmony_ci	struct snd_pcm_runtime *runtime = substream->runtime;
74062306a36Sopenharmony_ci	struct fsl_dma_private *dma_private = runtime->private_data;
74162306a36Sopenharmony_ci
74262306a36Sopenharmony_ci	if (dma_private) {
74362306a36Sopenharmony_ci		struct ccsr_dma_channel __iomem *dma_channel;
74462306a36Sopenharmony_ci
74562306a36Sopenharmony_ci		dma_channel = dma_private->dma_channel;
74662306a36Sopenharmony_ci
74762306a36Sopenharmony_ci		/* Stop the DMA */
74862306a36Sopenharmony_ci		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
74962306a36Sopenharmony_ci		out_be32(&dma_channel->mr, 0);
75062306a36Sopenharmony_ci
75162306a36Sopenharmony_ci		/* Reset all the other registers */
75262306a36Sopenharmony_ci		out_be32(&dma_channel->sr, -1);
75362306a36Sopenharmony_ci		out_be32(&dma_channel->clndar, 0);
75462306a36Sopenharmony_ci		out_be32(&dma_channel->eclndar, 0);
75562306a36Sopenharmony_ci		out_be32(&dma_channel->satr, 0);
75662306a36Sopenharmony_ci		out_be32(&dma_channel->sar, 0);
75762306a36Sopenharmony_ci		out_be32(&dma_channel->datr, 0);
75862306a36Sopenharmony_ci		out_be32(&dma_channel->dar, 0);
75962306a36Sopenharmony_ci		out_be32(&dma_channel->bcr, 0);
76062306a36Sopenharmony_ci		out_be32(&dma_channel->nlndar, 0);
76162306a36Sopenharmony_ci		out_be32(&dma_channel->enlndar, 0);
76262306a36Sopenharmony_ci	}
76362306a36Sopenharmony_ci
76462306a36Sopenharmony_ci	return 0;
76562306a36Sopenharmony_ci}
76662306a36Sopenharmony_ci
76762306a36Sopenharmony_ci/**
76862306a36Sopenharmony_ci * fsl_dma_close: close the stream.
76962306a36Sopenharmony_ci */
77062306a36Sopenharmony_cistatic int fsl_dma_close(struct snd_soc_component *component,
77162306a36Sopenharmony_ci			 struct snd_pcm_substream *substream)
77262306a36Sopenharmony_ci{
77362306a36Sopenharmony_ci	struct snd_pcm_runtime *runtime = substream->runtime;
77462306a36Sopenharmony_ci	struct fsl_dma_private *dma_private = runtime->private_data;
77562306a36Sopenharmony_ci	struct device *dev = component->dev;
77662306a36Sopenharmony_ci	struct dma_object *dma =
77762306a36Sopenharmony_ci		container_of(component->driver, struct dma_object, dai);
77862306a36Sopenharmony_ci
77962306a36Sopenharmony_ci	if (dma_private) {
78062306a36Sopenharmony_ci		if (dma_private->irq)
78162306a36Sopenharmony_ci			free_irq(dma_private->irq, dma_private);
78262306a36Sopenharmony_ci
78362306a36Sopenharmony_ci		/* Deallocate the fsl_dma_private structure */
78462306a36Sopenharmony_ci		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
78562306a36Sopenharmony_ci				  dma_private, dma_private->ld_buf_phys);
78662306a36Sopenharmony_ci		substream->runtime->private_data = NULL;
78762306a36Sopenharmony_ci	}
78862306a36Sopenharmony_ci
78962306a36Sopenharmony_ci	dma->assigned = false;
79062306a36Sopenharmony_ci
79162306a36Sopenharmony_ci	return 0;
79262306a36Sopenharmony_ci}
79362306a36Sopenharmony_ci
79462306a36Sopenharmony_ci/**
79562306a36Sopenharmony_ci * find_ssi_node -- returns the SSI node that points to its DMA channel node
79662306a36Sopenharmony_ci *
79762306a36Sopenharmony_ci * Although this DMA driver attempts to operate independently of the other
79862306a36Sopenharmony_ci * devices, it still needs to determine some information about the SSI device
79962306a36Sopenharmony_ci * that it's working with.  Unfortunately, the device tree does not contain
80062306a36Sopenharmony_ci * a pointer from the DMA channel node to the SSI node -- the pointer goes the
80162306a36Sopenharmony_ci * other way.  So we need to scan the device tree for SSI nodes until we find
80262306a36Sopenharmony_ci * the one that points to the given DMA channel node.  It's ugly, but at least
80362306a36Sopenharmony_ci * it's contained in this one function.
80462306a36Sopenharmony_ci */
80562306a36Sopenharmony_cistatic struct device_node *find_ssi_node(struct device_node *dma_channel_np)
80662306a36Sopenharmony_ci{
80762306a36Sopenharmony_ci	struct device_node *ssi_np, *np;
80862306a36Sopenharmony_ci
80962306a36Sopenharmony_ci	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
81062306a36Sopenharmony_ci		/* Check each DMA phandle to see if it points to us.  We
81162306a36Sopenharmony_ci		 * assume that device_node pointers are a valid comparison.
81262306a36Sopenharmony_ci		 */
81362306a36Sopenharmony_ci		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
81462306a36Sopenharmony_ci		of_node_put(np);
81562306a36Sopenharmony_ci		if (np == dma_channel_np)
81662306a36Sopenharmony_ci			return ssi_np;
81762306a36Sopenharmony_ci
81862306a36Sopenharmony_ci		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
81962306a36Sopenharmony_ci		of_node_put(np);
82062306a36Sopenharmony_ci		if (np == dma_channel_np)
82162306a36Sopenharmony_ci			return ssi_np;
82262306a36Sopenharmony_ci	}
82362306a36Sopenharmony_ci
82462306a36Sopenharmony_ci	return NULL;
82562306a36Sopenharmony_ci}
82662306a36Sopenharmony_ci
82762306a36Sopenharmony_cistatic int fsl_soc_dma_probe(struct platform_device *pdev)
82862306a36Sopenharmony_ci{
82962306a36Sopenharmony_ci	struct dma_object *dma;
83062306a36Sopenharmony_ci	struct device_node *np = pdev->dev.of_node;
83162306a36Sopenharmony_ci	struct device_node *ssi_np;
83262306a36Sopenharmony_ci	struct resource res;
83362306a36Sopenharmony_ci	const uint32_t *iprop;
83462306a36Sopenharmony_ci	int ret;
83562306a36Sopenharmony_ci
83662306a36Sopenharmony_ci	/* Find the SSI node that points to us. */
83762306a36Sopenharmony_ci	ssi_np = find_ssi_node(np);
83862306a36Sopenharmony_ci	if (!ssi_np) {
83962306a36Sopenharmony_ci		dev_err(&pdev->dev, "cannot find parent SSI node\n");
84062306a36Sopenharmony_ci		return -ENODEV;
84162306a36Sopenharmony_ci	}
84262306a36Sopenharmony_ci
84362306a36Sopenharmony_ci	ret = of_address_to_resource(ssi_np, 0, &res);
84462306a36Sopenharmony_ci	if (ret) {
84562306a36Sopenharmony_ci		dev_err(&pdev->dev, "could not determine resources for %pOF\n",
84662306a36Sopenharmony_ci			ssi_np);
84762306a36Sopenharmony_ci		of_node_put(ssi_np);
84862306a36Sopenharmony_ci		return ret;
84962306a36Sopenharmony_ci	}
85062306a36Sopenharmony_ci
85162306a36Sopenharmony_ci	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
85262306a36Sopenharmony_ci	if (!dma) {
85362306a36Sopenharmony_ci		of_node_put(ssi_np);
85462306a36Sopenharmony_ci		return -ENOMEM;
85562306a36Sopenharmony_ci	}
85662306a36Sopenharmony_ci
85762306a36Sopenharmony_ci	dma->dai.name = DRV_NAME;
85862306a36Sopenharmony_ci	dma->dai.open = fsl_dma_open;
85962306a36Sopenharmony_ci	dma->dai.close = fsl_dma_close;
86062306a36Sopenharmony_ci	dma->dai.hw_params = fsl_dma_hw_params;
86162306a36Sopenharmony_ci	dma->dai.hw_free = fsl_dma_hw_free;
86262306a36Sopenharmony_ci	dma->dai.pointer = fsl_dma_pointer;
86362306a36Sopenharmony_ci	dma->dai.pcm_construct = fsl_dma_new;
86462306a36Sopenharmony_ci
86562306a36Sopenharmony_ci	/* Store the SSI-specific information that we need */
86662306a36Sopenharmony_ci	dma->ssi_stx_phys = res.start + REG_SSI_STX0;
86762306a36Sopenharmony_ci	dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
86862306a36Sopenharmony_ci
86962306a36Sopenharmony_ci	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
87062306a36Sopenharmony_ci	if (iprop)
87162306a36Sopenharmony_ci		dma->ssi_fifo_depth = be32_to_cpup(iprop);
87262306a36Sopenharmony_ci	else
87362306a36Sopenharmony_ci                /* Older 8610 DTs didn't have the fifo-depth property */
87462306a36Sopenharmony_ci		dma->ssi_fifo_depth = 8;
87562306a36Sopenharmony_ci
87662306a36Sopenharmony_ci	of_node_put(ssi_np);
87762306a36Sopenharmony_ci
87862306a36Sopenharmony_ci	ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
87962306a36Sopenharmony_ci	if (ret) {
88062306a36Sopenharmony_ci		dev_err(&pdev->dev, "could not register platform\n");
88162306a36Sopenharmony_ci		kfree(dma);
88262306a36Sopenharmony_ci		return ret;
88362306a36Sopenharmony_ci	}
88462306a36Sopenharmony_ci
88562306a36Sopenharmony_ci	dma->channel = of_iomap(np, 0);
88662306a36Sopenharmony_ci	dma->irq = irq_of_parse_and_map(np, 0);
88762306a36Sopenharmony_ci
88862306a36Sopenharmony_ci	dev_set_drvdata(&pdev->dev, dma);
88962306a36Sopenharmony_ci
89062306a36Sopenharmony_ci	return 0;
89162306a36Sopenharmony_ci}
89262306a36Sopenharmony_ci
89362306a36Sopenharmony_cistatic void fsl_soc_dma_remove(struct platform_device *pdev)
89462306a36Sopenharmony_ci{
89562306a36Sopenharmony_ci	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
89662306a36Sopenharmony_ci
89762306a36Sopenharmony_ci	iounmap(dma->channel);
89862306a36Sopenharmony_ci	irq_dispose_mapping(dma->irq);
89962306a36Sopenharmony_ci	kfree(dma);
90062306a36Sopenharmony_ci}
90162306a36Sopenharmony_ci
90262306a36Sopenharmony_cistatic const struct of_device_id fsl_soc_dma_ids[] = {
90362306a36Sopenharmony_ci	{ .compatible = "fsl,ssi-dma-channel", },
90462306a36Sopenharmony_ci	{}
90562306a36Sopenharmony_ci};
90662306a36Sopenharmony_ciMODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
90762306a36Sopenharmony_ci
90862306a36Sopenharmony_cistatic struct platform_driver fsl_soc_dma_driver = {
90962306a36Sopenharmony_ci	.driver = {
91062306a36Sopenharmony_ci		.name = "fsl-pcm-audio",
91162306a36Sopenharmony_ci		.of_match_table = fsl_soc_dma_ids,
91262306a36Sopenharmony_ci	},
91362306a36Sopenharmony_ci	.probe = fsl_soc_dma_probe,
91462306a36Sopenharmony_ci	.remove_new = fsl_soc_dma_remove,
91562306a36Sopenharmony_ci};
91662306a36Sopenharmony_ci
91762306a36Sopenharmony_cimodule_platform_driver(fsl_soc_dma_driver);
91862306a36Sopenharmony_ci
91962306a36Sopenharmony_ciMODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
92062306a36Sopenharmony_ciMODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
92162306a36Sopenharmony_ciMODULE_LICENSE("GPL v2");
922