xref: /kernel/linux/linux-6.6/sound/soc/codecs/sta350.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
4 *
5 * Copyright: 2014 Raumfeld GmbH
6 * Author: Sven Brandau <info@brandau.biz>
7 *
8 * based on code from:
9 *	Raumfeld GmbH
10 *	  Johannes Stezenbach <js@sig21.net>
11 *	Wolfson Microelectronics PLC.
12 *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
13 *	Freescale Semiconductor, Inc.
14 *	  Timur Tabi <timur@freescale.com>
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
18
19#include <linux/module.h>
20#include <linux/moduleparam.h>
21#include <linux/init.h>
22#include <linux/delay.h>
23#include <linux/pm.h>
24#include <linux/i2c.h>
25#include <linux/of_device.h>
26#include <linux/of_gpio.h>
27#include <linux/regmap.h>
28#include <linux/regulator/consumer.h>
29#include <linux/gpio/consumer.h>
30#include <linux/slab.h>
31#include <sound/core.h>
32#include <sound/pcm.h>
33#include <sound/pcm_params.h>
34#include <sound/soc.h>
35#include <sound/soc-dapm.h>
36#include <sound/initval.h>
37#include <sound/tlv.h>
38
39#include <sound/sta350.h>
40#include "sta350.h"
41
42#define STA350_RATES (SNDRV_PCM_RATE_32000 | \
43		      SNDRV_PCM_RATE_44100 | \
44		      SNDRV_PCM_RATE_48000 | \
45		      SNDRV_PCM_RATE_88200 | \
46		      SNDRV_PCM_RATE_96000 | \
47		      SNDRV_PCM_RATE_176400 | \
48		      SNDRV_PCM_RATE_192000)
49
50#define STA350_FORMATS \
51	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S18_3LE | \
52	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_3LE | \
53	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S32_LE)
54
55/* Power-up register defaults */
56static const struct reg_default sta350_regs[] = {
57	{  0x0, 0x63 },
58	{  0x1, 0x80 },
59	{  0x2, 0xdf },
60	{  0x3, 0x40 },
61	{  0x4, 0xc2 },
62	{  0x5, 0x5c },
63	{  0x6, 0x00 },
64	{  0x7, 0xff },
65	{  0x8, 0x60 },
66	{  0x9, 0x60 },
67	{  0xa, 0x60 },
68	{  0xb, 0x00 },
69	{  0xc, 0x00 },
70	{  0xd, 0x00 },
71	{  0xe, 0x00 },
72	{  0xf, 0x40 },
73	{ 0x10, 0x80 },
74	{ 0x11, 0x77 },
75	{ 0x12, 0x6a },
76	{ 0x13, 0x69 },
77	{ 0x14, 0x6a },
78	{ 0x15, 0x69 },
79	{ 0x16, 0x00 },
80	{ 0x17, 0x00 },
81	{ 0x18, 0x00 },
82	{ 0x19, 0x00 },
83	{ 0x1a, 0x00 },
84	{ 0x1b, 0x00 },
85	{ 0x1c, 0x00 },
86	{ 0x1d, 0x00 },
87	{ 0x1e, 0x00 },
88	{ 0x1f, 0x00 },
89	{ 0x20, 0x00 },
90	{ 0x21, 0x00 },
91	{ 0x22, 0x00 },
92	{ 0x23, 0x00 },
93	{ 0x24, 0x00 },
94	{ 0x25, 0x00 },
95	{ 0x26, 0x00 },
96	{ 0x27, 0x2a },
97	{ 0x28, 0xc0 },
98	{ 0x29, 0xf3 },
99	{ 0x2a, 0x33 },
100	{ 0x2b, 0x00 },
101	{ 0x2c, 0x0c },
102	{ 0x31, 0x00 },
103	{ 0x36, 0x00 },
104	{ 0x37, 0x00 },
105	{ 0x38, 0x00 },
106	{ 0x39, 0x01 },
107	{ 0x3a, 0xee },
108	{ 0x3b, 0xff },
109	{ 0x3c, 0x7e },
110	{ 0x3d, 0xc0 },
111	{ 0x3e, 0x26 },
112	{ 0x3f, 0x00 },
113	{ 0x48, 0x00 },
114	{ 0x49, 0x00 },
115	{ 0x4a, 0x00 },
116	{ 0x4b, 0x04 },
117	{ 0x4c, 0x00 },
118};
119
120static const struct regmap_range sta350_write_regs_range[] = {
121	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
122	regmap_reg_range(STA350_C1CFG,  STA350_FDRC2),
123	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
124	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
125};
126
127static const struct regmap_range sta350_read_regs_range[] = {
128	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
129	regmap_reg_range(STA350_C1CFG,  STA350_STATUS),
130	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
131	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
132};
133
134static const struct regmap_range sta350_volatile_regs_range[] = {
135	regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
136	regmap_reg_range(STA350_STATUS,  STA350_STATUS),
137};
138
139static const struct regmap_access_table sta350_write_regs = {
140	.yes_ranges =	sta350_write_regs_range,
141	.n_yes_ranges =	ARRAY_SIZE(sta350_write_regs_range),
142};
143
144static const struct regmap_access_table sta350_read_regs = {
145	.yes_ranges =	sta350_read_regs_range,
146	.n_yes_ranges =	ARRAY_SIZE(sta350_read_regs_range),
147};
148
149static const struct regmap_access_table sta350_volatile_regs = {
150	.yes_ranges =	sta350_volatile_regs_range,
151	.n_yes_ranges =	ARRAY_SIZE(sta350_volatile_regs_range),
152};
153
154/* regulator power supply names */
155static const char * const sta350_supply_names[] = {
156	"vdd-dig",	/* digital supply, 3.3V */
157	"vdd-pll",	/* pll supply, 3.3V */
158	"vcc"		/* power amp supply, 5V - 26V */
159};
160
161/* codec private data */
162struct sta350_priv {
163	struct regmap *regmap;
164	struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
165	struct sta350_platform_data *pdata;
166
167	unsigned int mclk;
168	unsigned int format;
169
170	u32 coef_shadow[STA350_COEF_COUNT];
171	int shutdown;
172
173	struct gpio_desc *gpiod_nreset;
174	struct gpio_desc *gpiod_power_down;
175
176	struct mutex coeff_lock;
177};
178
179static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
180static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
181static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
182
183static const char * const sta350_drc_ac[] = {
184	"Anti-Clipping", "Dynamic Range Compression"
185};
186static const char * const sta350_auto_gc_mode[] = {
187	"User", "AC no clipping", "AC limited clipping (10%)",
188	"DRC nighttime listening mode"
189};
190static const char * const sta350_auto_xo_mode[] = {
191	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
192	"200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
193	"340Hz", "360Hz"
194};
195static const char * const sta350_binary_output[] = {
196	"FFX 3-state output - normal operation", "Binary output"
197};
198static const char * const sta350_limiter_select[] = {
199	"Limiter Disabled", "Limiter #1", "Limiter #2"
200};
201static const char * const sta350_limiter_attack_rate[] = {
202	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
203	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
204	"0.0645", "0.0564", "0.0501", "0.0451"
205};
206static const char * const sta350_limiter_release_rate[] = {
207	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
208	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
209	"0.0134", "0.0117", "0.0110", "0.0104"
210};
211static const char * const sta350_noise_shaper_type[] = {
212	"Third order", "Fourth order"
213};
214
215static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
216	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
217	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
218);
219
220static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
221	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
222	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
223	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
224	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
225	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
226);
227
228static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
229	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
230	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
231	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
232);
233
234static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
235	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
236	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
237	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
238	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
239	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
240);
241
242static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
243			    STA350_CONFD, STA350_CONFD_DRC_SHIFT,
244			    sta350_drc_ac);
245static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
246			    STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
247			    sta350_noise_shaper_type);
248static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
249			    STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
250			    sta350_auto_gc_mode);
251static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
252			    STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
253			    sta350_auto_xo_mode);
254static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
255			    STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
256			    sta350_binary_output);
257static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
258			    STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
259			    sta350_binary_output);
260static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
261			    STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
262			    sta350_binary_output);
263static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
264			    STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
265			    sta350_limiter_select);
266static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
267			    STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
268			    sta350_limiter_select);
269static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
270			    STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
271			    sta350_limiter_select);
272static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
273			    STA350_L1AR, STA350_LxA_SHIFT,
274			    sta350_limiter_attack_rate);
275static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
276			    STA350_L2AR, STA350_LxA_SHIFT,
277			    sta350_limiter_attack_rate);
278static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
279			    STA350_L1AR, STA350_LxR_SHIFT,
280			    sta350_limiter_release_rate);
281static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
282			    STA350_L2AR, STA350_LxR_SHIFT,
283			    sta350_limiter_release_rate);
284
285/*
286 * byte array controls for setting biquad, mixer, scaling coefficients;
287 * for biquads all five coefficients need to be set in one go,
288 * mixer and pre/postscale coefs can be set individually;
289 * each coef is 24bit, the bytes are ordered in the same way
290 * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
291 */
292
293static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
294				   struct snd_ctl_elem_info *uinfo)
295{
296	int numcoef = kcontrol->private_value >> 16;
297	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
298	uinfo->count = 3 * numcoef;
299	return 0;
300}
301
302static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
303				  struct snd_ctl_elem_value *ucontrol)
304{
305	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
306	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
307	int numcoef = kcontrol->private_value >> 16;
308	int index = kcontrol->private_value & 0xffff;
309	unsigned int cfud, val;
310	int i, ret = 0;
311
312	mutex_lock(&sta350->coeff_lock);
313
314	/* preserve reserved bits in STA350_CFUD */
315	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
316	cfud &= 0xf0;
317	/*
318	 * chip documentation does not say if the bits are self clearing,
319	 * so do it explicitly
320	 */
321	regmap_write(sta350->regmap, STA350_CFUD, cfud);
322
323	regmap_write(sta350->regmap, STA350_CFADDR2, index);
324	if (numcoef == 1) {
325		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
326	} else if (numcoef == 5) {
327		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
328	} else {
329		ret = -EINVAL;
330		goto exit_unlock;
331	}
332
333	for (i = 0; i < 3 * numcoef; i++) {
334		regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
335		ucontrol->value.bytes.data[i] = val;
336	}
337
338exit_unlock:
339	mutex_unlock(&sta350->coeff_lock);
340
341	return ret;
342}
343
344static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
345				  struct snd_ctl_elem_value *ucontrol)
346{
347	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
348	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
349	int numcoef = kcontrol->private_value >> 16;
350	int index = kcontrol->private_value & 0xffff;
351	unsigned int cfud;
352	int i;
353
354	/* preserve reserved bits in STA350_CFUD */
355	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
356	cfud &= 0xf0;
357	/*
358	 * chip documentation does not say if the bits are self clearing,
359	 * so do it explicitly
360	 */
361	regmap_write(sta350->regmap, STA350_CFUD, cfud);
362
363	regmap_write(sta350->regmap, STA350_CFADDR2, index);
364	for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
365		sta350->coef_shadow[index + i] =
366			  (ucontrol->value.bytes.data[3 * i] << 16)
367			| (ucontrol->value.bytes.data[3 * i + 1] << 8)
368			| (ucontrol->value.bytes.data[3 * i + 2]);
369	for (i = 0; i < 3 * numcoef; i++)
370		regmap_write(sta350->regmap, STA350_B1CF1 + i,
371			     ucontrol->value.bytes.data[i]);
372	if (numcoef == 1)
373		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
374	else if (numcoef == 5)
375		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
376	else
377		return -EINVAL;
378
379	return 0;
380}
381
382static int sta350_sync_coef_shadow(struct snd_soc_component *component)
383{
384	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
385	unsigned int cfud;
386	int i;
387
388	/* preserve reserved bits in STA350_CFUD */
389	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
390	cfud &= 0xf0;
391
392	for (i = 0; i < STA350_COEF_COUNT; i++) {
393		regmap_write(sta350->regmap, STA350_CFADDR2, i);
394		regmap_write(sta350->regmap, STA350_B1CF1,
395			     (sta350->coef_shadow[i] >> 16) & 0xff);
396		regmap_write(sta350->regmap, STA350_B1CF2,
397			     (sta350->coef_shadow[i] >> 8) & 0xff);
398		regmap_write(sta350->regmap, STA350_B1CF3,
399			     (sta350->coef_shadow[i]) & 0xff);
400		/*
401		 * chip documentation does not say if the bits are
402		 * self-clearing, so do it explicitly
403		 */
404		regmap_write(sta350->regmap, STA350_CFUD, cfud);
405		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
406	}
407	return 0;
408}
409
410static int sta350_cache_sync(struct snd_soc_component *component)
411{
412	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
413	unsigned int mute;
414	int rc;
415
416	/* mute during register sync */
417	regmap_read(sta350->regmap, STA350_CFUD, &mute);
418	regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
419	sta350_sync_coef_shadow(component);
420	rc = regcache_sync(sta350->regmap);
421	regmap_write(sta350->regmap, STA350_MMUTE, mute);
422	return rc;
423}
424
425#define SINGLE_COEF(xname, index) \
426{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
427	.info = sta350_coefficient_info, \
428	.get = sta350_coefficient_get,\
429	.put = sta350_coefficient_put, \
430	.private_value = index | (1 << 16) }
431
432#define BIQUAD_COEFS(xname, index) \
433{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
434	.info = sta350_coefficient_info, \
435	.get = sta350_coefficient_get,\
436	.put = sta350_coefficient_put, \
437	.private_value = index | (5 << 16) }
438
439static const struct snd_kcontrol_new sta350_snd_controls[] = {
440SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
441/* VOL */
442SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
443SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
444SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
445/* CONFD */
446SOC_SINGLE("High Pass Filter Bypass Switch",
447	   STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
448SOC_SINGLE("De-emphasis Filter Switch",
449	   STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
450SOC_SINGLE("DSP Bypass Switch",
451	   STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
452SOC_SINGLE("Post-scale Link Switch",
453	   STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
454SOC_SINGLE("Biquad Coefficient Link Switch",
455	   STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
456SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
457SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
458SOC_SINGLE("Zero-detect Mute Enable Switch",
459	   STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
460SOC_SINGLE("Submix Mode Switch",
461	   STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
462/* CONFE */
463SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
464SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
465/* MUTE */
466SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
467SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
468SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
469SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
470/* AUTOx */
471SOC_ENUM("Automode GC", sta350_auto_gc_enum),
472SOC_ENUM("Automode XO", sta350_auto_xo_enum),
473/* CxCFG */
474SOC_SINGLE("Ch1 Tone Control Bypass Switch",
475	   STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
476SOC_SINGLE("Ch2 Tone Control Bypass Switch",
477	   STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
478SOC_SINGLE("Ch1 EQ Bypass Switch",
479	   STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
480SOC_SINGLE("Ch2 EQ Bypass Switch",
481	   STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
482SOC_SINGLE("Ch1 Master Volume Bypass Switch",
483	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
484SOC_SINGLE("Ch2 Master Volume Bypass Switch",
485	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
486SOC_SINGLE("Ch3 Master Volume Bypass Switch",
487	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
488SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
489SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
490SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
491SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
492SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
493SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
494/* TONE */
495SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
496		     STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
497SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
498		     STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
499SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
500SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
501SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
502SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
503
504/*
505 * depending on mode, the attack/release thresholds have
506 * two different enum definitions; provide both
507 */
508SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
509	       STA350_L1ATRT, STA350_LxA_SHIFT,
510	       16, 0, sta350_limiter_ac_attack_tlv),
511SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
512	       STA350_L2ATRT, STA350_LxA_SHIFT,
513	       16, 0, sta350_limiter_ac_attack_tlv),
514SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
515	       STA350_L1ATRT, STA350_LxR_SHIFT,
516	       16, 0, sta350_limiter_ac_release_tlv),
517SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
518	       STA350_L2ATRT, STA350_LxR_SHIFT,
519	       16, 0, sta350_limiter_ac_release_tlv),
520SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
521	       STA350_L1ATRT, STA350_LxA_SHIFT,
522	       16, 0, sta350_limiter_drc_attack_tlv),
523SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
524	       STA350_L2ATRT, STA350_LxA_SHIFT,
525	       16, 0, sta350_limiter_drc_attack_tlv),
526SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
527	       STA350_L1ATRT, STA350_LxR_SHIFT,
528	       16, 0, sta350_limiter_drc_release_tlv),
529SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
530	       STA350_L2ATRT, STA350_LxR_SHIFT,
531	       16, 0, sta350_limiter_drc_release_tlv),
532
533BIQUAD_COEFS("Ch1 - Biquad 1", 0),
534BIQUAD_COEFS("Ch1 - Biquad 2", 5),
535BIQUAD_COEFS("Ch1 - Biquad 3", 10),
536BIQUAD_COEFS("Ch1 - Biquad 4", 15),
537BIQUAD_COEFS("Ch2 - Biquad 1", 20),
538BIQUAD_COEFS("Ch2 - Biquad 2", 25),
539BIQUAD_COEFS("Ch2 - Biquad 3", 30),
540BIQUAD_COEFS("Ch2 - Biquad 4", 35),
541BIQUAD_COEFS("High-pass", 40),
542BIQUAD_COEFS("Low-pass", 45),
543SINGLE_COEF("Ch1 - Prescale", 50),
544SINGLE_COEF("Ch2 - Prescale", 51),
545SINGLE_COEF("Ch1 - Postscale", 52),
546SINGLE_COEF("Ch2 - Postscale", 53),
547SINGLE_COEF("Ch3 - Postscale", 54),
548SINGLE_COEF("Thermal warning - Postscale", 55),
549SINGLE_COEF("Ch1 - Mix 1", 56),
550SINGLE_COEF("Ch1 - Mix 2", 57),
551SINGLE_COEF("Ch2 - Mix 1", 58),
552SINGLE_COEF("Ch2 - Mix 2", 59),
553SINGLE_COEF("Ch3 - Mix 1", 60),
554SINGLE_COEF("Ch3 - Mix 2", 61),
555};
556
557static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
558SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
559SND_SOC_DAPM_OUTPUT("LEFT"),
560SND_SOC_DAPM_OUTPUT("RIGHT"),
561SND_SOC_DAPM_OUTPUT("SUB"),
562};
563
564static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
565	{ "LEFT", NULL, "DAC" },
566	{ "RIGHT", NULL, "DAC" },
567	{ "SUB", NULL, "DAC" },
568	{ "DAC", NULL, "Playback" },
569};
570
571/* MCLK interpolation ratio per fs */
572static struct {
573	int fs;
574	int ir;
575} interpolation_ratios[] = {
576	{ 32000, 0 },
577	{ 44100, 0 },
578	{ 48000, 0 },
579	{ 88200, 1 },
580	{ 96000, 1 },
581	{ 176400, 2 },
582	{ 192000, 2 },
583};
584
585/* MCLK to fs clock ratios */
586static int mcs_ratio_table[3][6] = {
587	{ 768, 512, 384, 256, 128, 576 },
588	{ 384, 256, 192, 128,  64,   0 },
589	{ 192, 128,  96,  64,  32,   0 },
590};
591
592/**
593 * sta350_set_dai_sysclk - configure MCLK
594 * @codec_dai: the codec DAI
595 * @clk_id: the clock ID (ignored)
596 * @freq: the MCLK input frequency
597 * @dir: the clock direction (ignored)
598 *
599 * The value of MCLK is used to determine which sample rates are supported
600 * by the STA350, based on the mcs_ratio_table.
601 *
602 * This function must be called by the machine driver's 'startup' function,
603 * otherwise the list of supported sample rates will not be available in
604 * time for ALSA.
605 */
606static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
607				 int clk_id, unsigned int freq, int dir)
608{
609	struct snd_soc_component *component = codec_dai->component;
610	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
611
612	dev_dbg(component->dev, "mclk=%u\n", freq);
613	sta350->mclk = freq;
614
615	return 0;
616}
617
618/**
619 * sta350_set_dai_fmt - configure the codec for the selected audio format
620 * @codec_dai: the codec DAI
621 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
622 *
623 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
624 * codec accordingly.
625 */
626static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
627			      unsigned int fmt)
628{
629	struct snd_soc_component *component = codec_dai->component;
630	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
631	unsigned int confb = 0;
632
633	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
634	case SND_SOC_DAIFMT_CBC_CFC:
635		break;
636	default:
637		return -EINVAL;
638	}
639
640	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
641	case SND_SOC_DAIFMT_I2S:
642	case SND_SOC_DAIFMT_RIGHT_J:
643	case SND_SOC_DAIFMT_LEFT_J:
644		sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
645		break;
646	default:
647		return -EINVAL;
648	}
649
650	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
651	case SND_SOC_DAIFMT_NB_NF:
652		confb |= STA350_CONFB_C2IM;
653		break;
654	case SND_SOC_DAIFMT_NB_IF:
655		confb |= STA350_CONFB_C1IM;
656		break;
657	default:
658		return -EINVAL;
659	}
660
661	return regmap_update_bits(sta350->regmap, STA350_CONFB,
662				  STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
663}
664
665/**
666 * sta350_hw_params - program the STA350 with the given hardware parameters.
667 * @substream: the audio stream
668 * @params: the hardware parameters to set
669 * @dai: the SOC DAI (ignored)
670 *
671 * This function programs the hardware with the values provided.
672 * Specifically, the sample rate and the data format.
673 */
674static int sta350_hw_params(struct snd_pcm_substream *substream,
675			    struct snd_pcm_hw_params *params,
676			    struct snd_soc_dai *dai)
677{
678	struct snd_soc_component *component = dai->component;
679	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
680	int i, mcs = -EINVAL, ir = -EINVAL;
681	unsigned int confa, confb;
682	unsigned int rate, ratio;
683	int ret;
684
685	if (!sta350->mclk) {
686		dev_err(component->dev,
687			"sta350->mclk is unset. Unable to determine ratio\n");
688		return -EIO;
689	}
690
691	rate = params_rate(params);
692	ratio = sta350->mclk / rate;
693	dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
694
695	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
696		if (interpolation_ratios[i].fs == rate) {
697			ir = interpolation_ratios[i].ir;
698			break;
699		}
700	}
701
702	if (ir < 0) {
703		dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
704		return -EINVAL;
705	}
706
707	for (i = 0; i < 6; i++) {
708		if (mcs_ratio_table[ir][i] == ratio) {
709			mcs = i;
710			break;
711		}
712	}
713
714	if (mcs < 0) {
715		dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
716		return -EINVAL;
717	}
718
719	confa = (ir << STA350_CONFA_IR_SHIFT) |
720		(mcs << STA350_CONFA_MCS_SHIFT);
721	confb = 0;
722
723	switch (params_width(params)) {
724	case 24:
725		dev_dbg(component->dev, "24bit\n");
726		fallthrough;
727	case 32:
728		dev_dbg(component->dev, "24bit or 32bit\n");
729		switch (sta350->format) {
730		case SND_SOC_DAIFMT_I2S:
731			confb |= 0x0;
732			break;
733		case SND_SOC_DAIFMT_LEFT_J:
734			confb |= 0x1;
735			break;
736		case SND_SOC_DAIFMT_RIGHT_J:
737			confb |= 0x2;
738			break;
739		}
740
741		break;
742	case 20:
743		dev_dbg(component->dev, "20bit\n");
744		switch (sta350->format) {
745		case SND_SOC_DAIFMT_I2S:
746			confb |= 0x4;
747			break;
748		case SND_SOC_DAIFMT_LEFT_J:
749			confb |= 0x5;
750			break;
751		case SND_SOC_DAIFMT_RIGHT_J:
752			confb |= 0x6;
753			break;
754		}
755
756		break;
757	case 18:
758		dev_dbg(component->dev, "18bit\n");
759		switch (sta350->format) {
760		case SND_SOC_DAIFMT_I2S:
761			confb |= 0x8;
762			break;
763		case SND_SOC_DAIFMT_LEFT_J:
764			confb |= 0x9;
765			break;
766		case SND_SOC_DAIFMT_RIGHT_J:
767			confb |= 0xa;
768			break;
769		}
770
771		break;
772	case 16:
773		dev_dbg(component->dev, "16bit\n");
774		switch (sta350->format) {
775		case SND_SOC_DAIFMT_I2S:
776			confb |= 0x0;
777			break;
778		case SND_SOC_DAIFMT_LEFT_J:
779			confb |= 0xd;
780			break;
781		case SND_SOC_DAIFMT_RIGHT_J:
782			confb |= 0xe;
783			break;
784		}
785
786		break;
787	default:
788		return -EINVAL;
789	}
790
791	ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
792				 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
793				 confa);
794	if (ret < 0)
795		return ret;
796
797	ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
798				 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
799				 confb);
800	if (ret < 0)
801		return ret;
802
803	return 0;
804}
805
806static int sta350_startup_sequence(struct sta350_priv *sta350)
807{
808	if (sta350->gpiod_power_down)
809		gpiod_set_value(sta350->gpiod_power_down, 1);
810
811	if (sta350->gpiod_nreset) {
812		gpiod_set_value(sta350->gpiod_nreset, 0);
813		mdelay(1);
814		gpiod_set_value(sta350->gpiod_nreset, 1);
815		mdelay(1);
816	}
817
818	return 0;
819}
820
821/**
822 * sta350_set_bias_level - DAPM callback
823 * @component: the component device
824 * @level: DAPM power level
825 *
826 * This is called by ALSA to put the component into low power mode
827 * or to wake it up.  If the component is powered off completely
828 * all registers must be restored after power on.
829 */
830static int sta350_set_bias_level(struct snd_soc_component *component,
831				 enum snd_soc_bias_level level)
832{
833	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
834	int ret;
835
836	dev_dbg(component->dev, "level = %d\n", level);
837	switch (level) {
838	case SND_SOC_BIAS_ON:
839		break;
840
841	case SND_SOC_BIAS_PREPARE:
842		/* Full power on */
843		regmap_update_bits(sta350->regmap, STA350_CONFF,
844				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
845				   STA350_CONFF_PWDN | STA350_CONFF_EAPD);
846		break;
847
848	case SND_SOC_BIAS_STANDBY:
849		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
850			ret = regulator_bulk_enable(
851				ARRAY_SIZE(sta350->supplies),
852				sta350->supplies);
853			if (ret < 0) {
854				dev_err(component->dev,
855					"Failed to enable supplies: %d\n",
856					ret);
857				return ret;
858			}
859			sta350_startup_sequence(sta350);
860			sta350_cache_sync(component);
861		}
862
863		/* Power down */
864		regmap_update_bits(sta350->regmap, STA350_CONFF,
865				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
866				   0);
867
868		break;
869
870	case SND_SOC_BIAS_OFF:
871		/* The chip runs through the power down sequence for us */
872		regmap_update_bits(sta350->regmap, STA350_CONFF,
873				   STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
874
875		/* power down: low */
876		if (sta350->gpiod_power_down)
877			gpiod_set_value(sta350->gpiod_power_down, 0);
878
879		if (sta350->gpiod_nreset)
880			gpiod_set_value(sta350->gpiod_nreset, 0);
881
882		regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
883				       sta350->supplies);
884		break;
885	}
886	return 0;
887}
888
889static const struct snd_soc_dai_ops sta350_dai_ops = {
890	.hw_params	= sta350_hw_params,
891	.set_sysclk	= sta350_set_dai_sysclk,
892	.set_fmt	= sta350_set_dai_fmt,
893};
894
895static struct snd_soc_dai_driver sta350_dai = {
896	.name = "sta350-hifi",
897	.playback = {
898		.stream_name = "Playback",
899		.channels_min = 2,
900		.channels_max = 2,
901		.rates = STA350_RATES,
902		.formats = STA350_FORMATS,
903	},
904	.ops = &sta350_dai_ops,
905};
906
907static int sta350_probe(struct snd_soc_component *component)
908{
909	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
910	struct sta350_platform_data *pdata = sta350->pdata;
911	int i, ret = 0, thermal = 0;
912
913	ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
914				    sta350->supplies);
915	if (ret < 0) {
916		dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
917		return ret;
918	}
919
920	ret = sta350_startup_sequence(sta350);
921	if (ret < 0) {
922		dev_err(component->dev, "Failed to startup device\n");
923		return ret;
924	}
925
926	/* CONFA */
927	if (!pdata->thermal_warning_recovery)
928		thermal |= STA350_CONFA_TWAB;
929	if (!pdata->thermal_warning_adjustment)
930		thermal |= STA350_CONFA_TWRB;
931	if (!pdata->fault_detect_recovery)
932		thermal |= STA350_CONFA_FDRB;
933	regmap_update_bits(sta350->regmap, STA350_CONFA,
934			   STA350_CONFA_TWAB | STA350_CONFA_TWRB |
935			   STA350_CONFA_FDRB,
936			   thermal);
937
938	/* CONFC */
939	regmap_update_bits(sta350->regmap, STA350_CONFC,
940			   STA350_CONFC_OM_MASK,
941			   pdata->ffx_power_output_mode
942				<< STA350_CONFC_OM_SHIFT);
943	regmap_update_bits(sta350->regmap, STA350_CONFC,
944			   STA350_CONFC_CSZ_MASK,
945			   pdata->drop_compensation_ns
946				<< STA350_CONFC_CSZ_SHIFT);
947	regmap_update_bits(sta350->regmap,
948			   STA350_CONFC,
949			   STA350_CONFC_OCRB,
950			   pdata->oc_warning_adjustment ?
951				STA350_CONFC_OCRB : 0);
952
953	/* CONFE */
954	regmap_update_bits(sta350->regmap, STA350_CONFE,
955			   STA350_CONFE_MPCV,
956			   pdata->max_power_use_mpcc ?
957				STA350_CONFE_MPCV : 0);
958	regmap_update_bits(sta350->regmap, STA350_CONFE,
959			   STA350_CONFE_MPC,
960			   pdata->max_power_correction ?
961				STA350_CONFE_MPC : 0);
962	regmap_update_bits(sta350->regmap, STA350_CONFE,
963			   STA350_CONFE_AME,
964			   pdata->am_reduction_mode ?
965				STA350_CONFE_AME : 0);
966	regmap_update_bits(sta350->regmap, STA350_CONFE,
967			   STA350_CONFE_PWMS,
968			   pdata->odd_pwm_speed_mode ?
969				STA350_CONFE_PWMS : 0);
970	regmap_update_bits(sta350->regmap, STA350_CONFE,
971			   STA350_CONFE_DCCV,
972			   pdata->distortion_compensation ?
973				STA350_CONFE_DCCV : 0);
974	/*  CONFF */
975	regmap_update_bits(sta350->regmap, STA350_CONFF,
976			   STA350_CONFF_IDE,
977			   pdata->invalid_input_detect_mute ?
978				STA350_CONFF_IDE : 0);
979	regmap_update_bits(sta350->regmap, STA350_CONFF,
980			   STA350_CONFF_OCFG_MASK,
981			   pdata->output_conf
982				<< STA350_CONFF_OCFG_SHIFT);
983
984	/* channel to output mapping */
985	regmap_update_bits(sta350->regmap, STA350_C1CFG,
986			   STA350_CxCFG_OM_MASK,
987			   pdata->ch1_output_mapping
988				<< STA350_CxCFG_OM_SHIFT);
989	regmap_update_bits(sta350->regmap, STA350_C2CFG,
990			   STA350_CxCFG_OM_MASK,
991			   pdata->ch2_output_mapping
992				<< STA350_CxCFG_OM_SHIFT);
993	regmap_update_bits(sta350->regmap, STA350_C3CFG,
994			   STA350_CxCFG_OM_MASK,
995			   pdata->ch3_output_mapping
996				<< STA350_CxCFG_OM_SHIFT);
997
998	/* miscellaneous registers */
999	regmap_update_bits(sta350->regmap, STA350_MISC1,
1000			   STA350_MISC1_CPWMEN,
1001			   pdata->activate_mute_output ?
1002				STA350_MISC1_CPWMEN : 0);
1003	regmap_update_bits(sta350->regmap, STA350_MISC1,
1004			   STA350_MISC1_BRIDGOFF,
1005			   pdata->bridge_immediate_off ?
1006				STA350_MISC1_BRIDGOFF : 0);
1007	regmap_update_bits(sta350->regmap, STA350_MISC1,
1008			   STA350_MISC1_NSHHPEN,
1009			   pdata->noise_shape_dc_cut ?
1010				STA350_MISC1_NSHHPEN : 0);
1011	regmap_update_bits(sta350->regmap, STA350_MISC1,
1012			   STA350_MISC1_RPDNEN,
1013			   pdata->powerdown_master_vol ?
1014				STA350_MISC1_RPDNEN: 0);
1015
1016	regmap_update_bits(sta350->regmap, STA350_MISC2,
1017			   STA350_MISC2_PNDLSL_MASK,
1018			   pdata->powerdown_delay_divider
1019				<< STA350_MISC2_PNDLSL_SHIFT);
1020
1021	/* initialize coefficient shadow RAM with reset values */
1022	for (i = 4; i <= 49; i += 5)
1023		sta350->coef_shadow[i] = 0x400000;
1024	for (i = 50; i <= 54; i++)
1025		sta350->coef_shadow[i] = 0x7fffff;
1026	sta350->coef_shadow[55] = 0x5a9df7;
1027	sta350->coef_shadow[56] = 0x7fffff;
1028	sta350->coef_shadow[59] = 0x7fffff;
1029	sta350->coef_shadow[60] = 0x400000;
1030	sta350->coef_shadow[61] = 0x400000;
1031
1032	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
1033	/* Bias level configuration will have done an extra enable */
1034	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1035
1036	return 0;
1037}
1038
1039static void sta350_remove(struct snd_soc_component *component)
1040{
1041	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
1042
1043	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1044}
1045
1046static const struct snd_soc_component_driver sta350_component = {
1047	.probe			= sta350_probe,
1048	.remove			= sta350_remove,
1049	.set_bias_level		= sta350_set_bias_level,
1050	.controls		= sta350_snd_controls,
1051	.num_controls		= ARRAY_SIZE(sta350_snd_controls),
1052	.dapm_widgets		= sta350_dapm_widgets,
1053	.num_dapm_widgets	= ARRAY_SIZE(sta350_dapm_widgets),
1054	.dapm_routes		= sta350_dapm_routes,
1055	.num_dapm_routes	= ARRAY_SIZE(sta350_dapm_routes),
1056	.suspend_bias_off	= 1,
1057	.idle_bias_on		= 1,
1058	.use_pmdown_time	= 1,
1059	.endianness		= 1,
1060};
1061
1062static const struct regmap_config sta350_regmap = {
1063	.reg_bits =		8,
1064	.val_bits =		8,
1065	.max_register =		STA350_MISC2,
1066	.reg_defaults =		sta350_regs,
1067	.num_reg_defaults =	ARRAY_SIZE(sta350_regs),
1068	.cache_type =		REGCACHE_MAPLE,
1069	.wr_table =		&sta350_write_regs,
1070	.rd_table =		&sta350_read_regs,
1071	.volatile_table =	&sta350_volatile_regs,
1072};
1073
1074#ifdef CONFIG_OF
1075static const struct of_device_id st350_dt_ids[] = {
1076	{ .compatible = "st,sta350", },
1077	{ }
1078};
1079MODULE_DEVICE_TABLE(of, st350_dt_ids);
1080
1081static const char * const sta350_ffx_modes[] = {
1082	[STA350_FFX_PM_DROP_COMP]		= "drop-compensation",
1083	[STA350_FFX_PM_TAPERED_COMP]		= "tapered-compensation",
1084	[STA350_FFX_PM_FULL_POWER]		= "full-power-mode",
1085	[STA350_FFX_PM_VARIABLE_DROP_COMP]	= "variable-drop-compensation",
1086};
1087
1088static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1089{
1090	struct device_node *np = dev->of_node;
1091	struct sta350_platform_data *pdata;
1092	const char *ffx_power_mode;
1093	u16 tmp;
1094	u8 tmp8;
1095
1096	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1097	if (!pdata)
1098		return -ENOMEM;
1099
1100	of_property_read_u8(np, "st,output-conf",
1101			    &pdata->output_conf);
1102	of_property_read_u8(np, "st,ch1-output-mapping",
1103			    &pdata->ch1_output_mapping);
1104	of_property_read_u8(np, "st,ch2-output-mapping",
1105			    &pdata->ch2_output_mapping);
1106	of_property_read_u8(np, "st,ch3-output-mapping",
1107			    &pdata->ch3_output_mapping);
1108
1109	pdata->thermal_warning_recovery =
1110		of_property_read_bool(np, "st,thermal-warning-recovery");
1111	pdata->thermal_warning_adjustment =
1112		of_property_read_bool(np, "st,thermal-warning-adjustment");
1113	pdata->fault_detect_recovery =
1114		of_property_read_bool(np, "st,fault-detect-recovery");
1115
1116	pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1117	if (!of_property_read_string(np, "st,ffx-power-output-mode",
1118				     &ffx_power_mode)) {
1119		int i, mode = -EINVAL;
1120
1121		for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1122			if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1123				mode = i;
1124
1125		if (mode < 0)
1126			dev_warn(dev, "Unsupported ffx output mode: %s\n",
1127				 ffx_power_mode);
1128		else
1129			pdata->ffx_power_output_mode = mode;
1130	}
1131
1132	tmp = 140;
1133	of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1134	pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1135
1136	pdata->oc_warning_adjustment =
1137		of_property_read_bool(np, "st,overcurrent-warning-adjustment");
1138
1139	/* CONFE */
1140	pdata->max_power_use_mpcc =
1141		of_property_read_bool(np, "st,max-power-use-mpcc");
1142	pdata->max_power_correction =
1143		of_property_read_bool(np, "st,max-power-correction");
1144	pdata->am_reduction_mode =
1145		of_property_read_bool(np, "st,am-reduction-mode");
1146	pdata->odd_pwm_speed_mode =
1147		of_property_read_bool(np, "st,odd-pwm-speed-mode");
1148	pdata->distortion_compensation =
1149		of_property_read_bool(np, "st,distortion-compensation");
1150
1151	/* CONFF */
1152	pdata->invalid_input_detect_mute =
1153		of_property_read_bool(np, "st,invalid-input-detect-mute");
1154
1155	/* MISC */
1156	pdata->activate_mute_output =
1157		of_property_read_bool(np, "st,activate-mute-output");
1158	pdata->bridge_immediate_off =
1159		of_property_read_bool(np, "st,bridge-immediate-off");
1160	pdata->noise_shape_dc_cut =
1161		of_property_read_bool(np, "st,noise-shape-dc-cut");
1162	pdata->powerdown_master_vol =
1163		of_property_read_bool(np, "st,powerdown-master-volume");
1164
1165	if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1166		if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1167			pdata->powerdown_delay_divider = ilog2(tmp8);
1168		else
1169			dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1170				 tmp8);
1171	}
1172
1173	sta350->pdata = pdata;
1174
1175	return 0;
1176}
1177#endif
1178
1179static int sta350_i2c_probe(struct i2c_client *i2c)
1180{
1181	struct device *dev = &i2c->dev;
1182	struct sta350_priv *sta350;
1183	int ret, i;
1184
1185	sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1186	if (!sta350)
1187		return -ENOMEM;
1188
1189	mutex_init(&sta350->coeff_lock);
1190	sta350->pdata = dev_get_platdata(dev);
1191
1192#ifdef CONFIG_OF
1193	if (dev->of_node) {
1194		ret = sta350_probe_dt(dev, sta350);
1195		if (ret < 0)
1196			return ret;
1197	}
1198#endif
1199
1200	/* GPIOs */
1201	sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1202						       GPIOD_OUT_LOW);
1203	if (IS_ERR(sta350->gpiod_nreset))
1204		return PTR_ERR(sta350->gpiod_nreset);
1205
1206	sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
1207							   GPIOD_OUT_LOW);
1208	if (IS_ERR(sta350->gpiod_power_down))
1209		return PTR_ERR(sta350->gpiod_power_down);
1210
1211	/* regulators */
1212	for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1213		sta350->supplies[i].supply = sta350_supply_names[i];
1214
1215	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1216				      sta350->supplies);
1217	if (ret < 0) {
1218		dev_err(dev, "Failed to request supplies: %d\n", ret);
1219		return ret;
1220	}
1221
1222	sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1223	if (IS_ERR(sta350->regmap)) {
1224		ret = PTR_ERR(sta350->regmap);
1225		dev_err(dev, "Failed to init regmap: %d\n", ret);
1226		return ret;
1227	}
1228
1229	i2c_set_clientdata(i2c, sta350);
1230
1231	ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1);
1232	if (ret < 0)
1233		dev_err(dev, "Failed to register component (%d)\n", ret);
1234
1235	return ret;
1236}
1237
1238static void sta350_i2c_remove(struct i2c_client *client)
1239{}
1240
1241static const struct i2c_device_id sta350_i2c_id[] = {
1242	{ "sta350", 0 },
1243	{ }
1244};
1245MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1246
1247static struct i2c_driver sta350_i2c_driver = {
1248	.driver = {
1249		.name = "sta350",
1250		.of_match_table = of_match_ptr(st350_dt_ids),
1251	},
1252	.probe =    sta350_i2c_probe,
1253	.remove =   sta350_i2c_remove,
1254	.id_table = sta350_i2c_id,
1255};
1256
1257module_i2c_driver(sta350_i2c_driver);
1258
1259MODULE_DESCRIPTION("ASoC STA350 driver");
1260MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1261MODULE_LICENSE("GPL");
1262