xref: /kernel/linux/linux-6.6/sound/pci/emu10k1/io.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 *                   Lee Revell <rlrevell@joe-job.com>
5 *                   James Courtier-Dutton <James@superbug.co.uk>
6 *                   Oswald Buddenhagen <oswald.buddenhagen@gmx.de>
7 *                   Creative Labs, Inc.
8 *
9 *  Routines for control of EMU10K1 chips
10 */
11
12#include <linux/time.h>
13#include <sound/core.h>
14#include <sound/emu10k1.h>
15#include <linux/delay.h>
16#include <linux/export.h>
17#include "p17v.h"
18
19static inline bool check_ptr_reg(struct snd_emu10k1 *emu, unsigned int reg)
20{
21	if (snd_BUG_ON(!emu))
22		return false;
23	if (snd_BUG_ON(reg & (emu->audigy ? (0xffff0000 & ~A_PTR_ADDRESS_MASK)
24					  : (0xffff0000 & ~PTR_ADDRESS_MASK))))
25		return false;
26	if (snd_BUG_ON(reg & 0x0000ffff & ~PTR_CHANNELNUM_MASK))
27		return false;
28	return true;
29}
30
31unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn)
32{
33	unsigned long flags;
34	unsigned int regptr, val;
35	unsigned int mask;
36
37	regptr = (reg << 16) | chn;
38	if (!check_ptr_reg(emu, regptr))
39		return 0;
40
41	spin_lock_irqsave(&emu->emu_lock, flags);
42	outl(regptr, emu->port + PTR);
43	val = inl(emu->port + DATA);
44	spin_unlock_irqrestore(&emu->emu_lock, flags);
45
46	if (reg & 0xff000000) {
47		unsigned char size, offset;
48
49		size = (reg >> 24) & 0x3f;
50		offset = (reg >> 16) & 0x1f;
51		mask = (1 << size) - 1;
52
53		return (val >> offset) & mask;
54	} else {
55		return val;
56	}
57}
58
59EXPORT_SYMBOL(snd_emu10k1_ptr_read);
60
61void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data)
62{
63	unsigned int regptr;
64	unsigned long flags;
65	unsigned int mask;
66
67	regptr = (reg << 16) | chn;
68	if (!check_ptr_reg(emu, regptr))
69		return;
70
71	if (reg & 0xff000000) {
72		unsigned char size, offset;
73
74		size = (reg >> 24) & 0x3f;
75		offset = (reg >> 16) & 0x1f;
76		mask = (1 << size) - 1;
77		if (snd_BUG_ON(data & ~mask))
78			return;
79		mask <<= offset;
80		data <<= offset;
81
82		spin_lock_irqsave(&emu->emu_lock, flags);
83		outl(regptr, emu->port + PTR);
84		data |= inl(emu->port + DATA) & ~mask;
85	} else {
86		spin_lock_irqsave(&emu->emu_lock, flags);
87		outl(regptr, emu->port + PTR);
88	}
89	outl(data, emu->port + DATA);
90	spin_unlock_irqrestore(&emu->emu_lock, flags);
91}
92
93EXPORT_SYMBOL(snd_emu10k1_ptr_write);
94
95void snd_emu10k1_ptr_write_multiple(struct snd_emu10k1 *emu, unsigned int chn, ...)
96{
97	va_list va;
98	u32 addr_mask;
99	unsigned long flags;
100
101	if (snd_BUG_ON(!emu))
102		return;
103	if (snd_BUG_ON(chn & ~PTR_CHANNELNUM_MASK))
104		return;
105	addr_mask = ~((emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK) >> 16);
106
107	va_start(va, chn);
108	spin_lock_irqsave(&emu->emu_lock, flags);
109	for (;;) {
110		u32 data;
111		u32 reg = va_arg(va, u32);
112		if (reg == REGLIST_END)
113			break;
114		data = va_arg(va, u32);
115		if (snd_BUG_ON(reg & addr_mask))  // Only raw registers supported here
116			continue;
117		outl((reg << 16) | chn, emu->port + PTR);
118		outl(data, emu->port + DATA);
119	}
120	spin_unlock_irqrestore(&emu->emu_lock, flags);
121	va_end(va);
122}
123
124EXPORT_SYMBOL(snd_emu10k1_ptr_write_multiple);
125
126unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu,
127					  unsigned int reg,
128					  unsigned int chn)
129{
130	unsigned long flags;
131	unsigned int regptr, val;
132
133	regptr = (reg << 16) | chn;
134
135	spin_lock_irqsave(&emu->emu_lock, flags);
136	outl(regptr, emu->port + PTR2);
137	val = inl(emu->port + DATA2);
138	spin_unlock_irqrestore(&emu->emu_lock, flags);
139	return val;
140}
141
142void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu,
143				   unsigned int reg,
144				   unsigned int chn,
145				   unsigned int data)
146{
147	unsigned int regptr;
148	unsigned long flags;
149
150	regptr = (reg << 16) | chn;
151
152	spin_lock_irqsave(&emu->emu_lock, flags);
153	outl(regptr, emu->port + PTR2);
154	outl(data, emu->port + DATA2);
155	spin_unlock_irqrestore(&emu->emu_lock, flags);
156}
157
158int snd_emu10k1_spi_write(struct snd_emu10k1 * emu,
159				   unsigned int data)
160{
161	unsigned int reset, set;
162	unsigned int reg, tmp;
163	int n, result;
164	int err = 0;
165
166	/* This function is not re-entrant, so protect against it. */
167	spin_lock(&emu->spi_lock);
168	if (emu->card_capabilities->ca0108_chip)
169		reg = P17V_SPI;
170	else {
171		/* For other chip types the SPI register
172		 * is currently unknown. */
173		err = 1;
174		goto spi_write_exit;
175	}
176	if (data > 0xffff) {
177		/* Only 16bit values allowed */
178		err = 1;
179		goto spi_write_exit;
180	}
181
182	tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
183	reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */
184	set = reset | 0x10000; /* Set xxx1xxxx */
185	snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
186	tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* write post */
187	snd_emu10k1_ptr20_write(emu, reg, 0, set | data);
188	result = 1;
189	/* Wait for status bit to return to 0 */
190	for (n = 0; n < 100; n++) {
191		udelay(10);
192		tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
193		if (!(tmp & 0x10000)) {
194			result = 0;
195			break;
196		}
197	}
198	if (result) {
199		/* Timed out */
200		err = 1;
201		goto spi_write_exit;
202	}
203	snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
204	tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* Write post */
205	err = 0;
206spi_write_exit:
207	spin_unlock(&emu->spi_lock);
208	return err;
209}
210
211/* The ADC does not support i2c read, so only write is implemented */
212int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu,
213				u32 reg,
214				u32 value)
215{
216	u32 tmp;
217	int timeout = 0;
218	int status;
219	int retry;
220	int err = 0;
221
222	if ((reg > 0x7f) || (value > 0x1ff)) {
223		dev_err(emu->card->dev, "i2c_write: invalid values.\n");
224		return -EINVAL;
225	}
226
227	/* This function is not re-entrant, so protect against it. */
228	spin_lock(&emu->i2c_lock);
229
230	tmp = reg << 25 | value << 16;
231
232	/* This controls the I2C connected to the WM8775 ADC Codec */
233	snd_emu10k1_ptr20_write(emu, P17V_I2C_1, 0, tmp);
234	tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, 0); /* write post */
235
236	for (retry = 0; retry < 10; retry++) {
237		/* Send the data to i2c */
238		tmp = 0;
239		tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD);
240		snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, 0, tmp);
241
242		/* Wait till the transaction ends */
243		while (1) {
244			mdelay(1);
245			status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, 0);
246			timeout++;
247			if ((status & I2C_A_ADC_START) == 0)
248				break;
249
250			if (timeout > 1000) {
251				dev_warn(emu->card->dev,
252					   "emu10k1:I2C:timeout status=0x%x\n",
253					   status);
254				break;
255			}
256		}
257		//Read back and see if the transaction is successful
258		if ((status & I2C_A_ADC_ABORT) == 0)
259			break;
260	}
261
262	if (retry == 10) {
263		dev_err(emu->card->dev, "Writing to ADC failed!\n");
264		dev_err(emu->card->dev, "status=0x%x, reg=%d, value=%d\n",
265			status, reg, value);
266		/* dump_stack(); */
267		err = -EINVAL;
268	}
269
270	spin_unlock(&emu->i2c_lock);
271	return err;
272}
273
274static void snd_emu1010_fpga_write_locked(struct snd_emu10k1 *emu, u32 reg, u32 value)
275{
276	if (snd_BUG_ON(reg > 0x3f))
277		return;
278	reg += 0x40; /* 0x40 upwards are registers. */
279	if (snd_BUG_ON(value > 0x3f)) /* 0 to 0x3f are values */
280		return;
281	outw(reg, emu->port + A_GPIO);
282	udelay(10);
283	outw(reg | 0x80, emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
284	udelay(10);
285	outw(value, emu->port + A_GPIO);
286	udelay(10);
287	outw(value | 0x80 , emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
288}
289
290void snd_emu1010_fpga_write(struct snd_emu10k1 *emu, u32 reg, u32 value)
291{
292	unsigned long flags;
293
294	spin_lock_irqsave(&emu->emu_lock, flags);
295	snd_emu1010_fpga_write_locked(emu, reg, value);
296	spin_unlock_irqrestore(&emu->emu_lock, flags);
297}
298
299static void snd_emu1010_fpga_read_locked(struct snd_emu10k1 *emu, u32 reg, u32 *value)
300{
301	// The higest input pin is used as the designated interrupt trigger,
302	// so it needs to be masked out.
303	// But note that any other input pin change will also cause an IRQ,
304	// so using this function often causes an IRQ as a side effect.
305	u32 mask = emu->card_capabilities->ca0108_chip ? 0x1f : 0x7f;
306	if (snd_BUG_ON(reg > 0x3f))
307		return;
308	reg += 0x40; /* 0x40 upwards are registers. */
309	outw(reg, emu->port + A_GPIO);
310	udelay(10);
311	outw(reg | 0x80, emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
312	udelay(10);
313	*value = ((inw(emu->port + A_GPIO) >> 8) & mask);
314}
315
316void snd_emu1010_fpga_read(struct snd_emu10k1 *emu, u32 reg, u32 *value)
317{
318	unsigned long flags;
319
320	spin_lock_irqsave(&emu->emu_lock, flags);
321	snd_emu1010_fpga_read_locked(emu, reg, value);
322	spin_unlock_irqrestore(&emu->emu_lock, flags);
323}
324
325/* Each Destination has one and only one Source,
326 * but one Source can feed any number of Destinations simultaneously.
327 */
328void snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 *emu, u32 dst, u32 src)
329{
330	unsigned long flags;
331
332	if (snd_BUG_ON(dst & ~0x71f))
333		return;
334	if (snd_BUG_ON(src & ~0x71f))
335		return;
336	spin_lock_irqsave(&emu->emu_lock, flags);
337	snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTHI, dst >> 8);
338	snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTLO, dst & 0x1f);
339	snd_emu1010_fpga_write_locked(emu, EMU_HANA_SRCHI, src >> 8);
340	snd_emu1010_fpga_write_locked(emu, EMU_HANA_SRCLO, src & 0x1f);
341	spin_unlock_irqrestore(&emu->emu_lock, flags);
342}
343
344u32 snd_emu1010_fpga_link_dst_src_read(struct snd_emu10k1 *emu, u32 dst)
345{
346	unsigned long flags;
347	u32 hi, lo;
348
349	if (snd_BUG_ON(dst & ~0x71f))
350		return 0;
351	spin_lock_irqsave(&emu->emu_lock, flags);
352	snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTHI, dst >> 8);
353	snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTLO, dst & 0x1f);
354	snd_emu1010_fpga_read_locked(emu, EMU_HANA_SRCHI, &hi);
355	snd_emu1010_fpga_read_locked(emu, EMU_HANA_SRCLO, &lo);
356	spin_unlock_irqrestore(&emu->emu_lock, flags);
357	return (hi << 8) | lo;
358}
359
360int snd_emu1010_get_raw_rate(struct snd_emu10k1 *emu, u8 src)
361{
362	u32 reg_lo, reg_hi, value, value2;
363
364	switch (src) {
365	case EMU_HANA_WCLOCK_HANA_SPDIF_IN:
366		snd_emu1010_fpga_read(emu, EMU_HANA_SPDIF_MODE, &value);
367		if (value & EMU_HANA_SPDIF_MODE_RX_INVALID)
368			return 0;
369		reg_lo = EMU_HANA_WC_SPDIF_LO;
370		reg_hi = EMU_HANA_WC_SPDIF_HI;
371		break;
372	case EMU_HANA_WCLOCK_HANA_ADAT_IN:
373		reg_lo = EMU_HANA_WC_ADAT_LO;
374		reg_hi = EMU_HANA_WC_ADAT_HI;
375		break;
376	case EMU_HANA_WCLOCK_SYNC_BNC:
377		reg_lo = EMU_HANA_WC_BNC_LO;
378		reg_hi = EMU_HANA_WC_BNC_HI;
379		break;
380	case EMU_HANA_WCLOCK_2ND_HANA:
381		reg_lo = EMU_HANA2_WC_SPDIF_LO;
382		reg_hi = EMU_HANA2_WC_SPDIF_HI;
383		break;
384	default:
385		return 0;
386	}
387	snd_emu1010_fpga_read(emu, reg_hi, &value);
388	snd_emu1010_fpga_read(emu, reg_lo, &value2);
389	// FIXME: The /4 is valid for 0404b, but contradicts all other info.
390	return 0x1770000 / 4 / (((value << 5) | value2) + 1);
391}
392
393void snd_emu1010_update_clock(struct snd_emu10k1 *emu)
394{
395	int clock;
396	u32 leds;
397
398	switch (emu->emu1010.wclock) {
399	case EMU_HANA_WCLOCK_INT_44_1K | EMU_HANA_WCLOCK_1X:
400		clock = 44100;
401		leds = EMU_HANA_DOCK_LEDS_2_44K;
402		break;
403	case EMU_HANA_WCLOCK_INT_48K | EMU_HANA_WCLOCK_1X:
404		clock = 48000;
405		leds = EMU_HANA_DOCK_LEDS_2_48K;
406		break;
407	default:
408		clock = snd_emu1010_get_raw_rate(
409				emu, emu->emu1010.wclock & EMU_HANA_WCLOCK_SRC_MASK);
410		// The raw rate reading is rather coarse (it cannot accurately
411		// represent 44.1 kHz) and fluctuates slightly. Luckily, the
412		// clock comes from digital inputs, which use standardized rates.
413		// So we round to the closest standard rate and ignore discrepancies.
414		if (clock < 46000) {
415			clock = 44100;
416			leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_44K;
417		} else {
418			clock = 48000;
419			leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_48K;
420		}
421		break;
422	}
423	emu->emu1010.word_clock = clock;
424
425	// FIXME: this should probably represent the AND of all currently
426	// used sources' lock status. But we don't know how to get that ...
427	leds |= EMU_HANA_DOCK_LEDS_2_LOCK;
428
429	snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2, leds);
430}
431
432void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb)
433{
434	unsigned long flags;
435	unsigned int enable;
436
437	spin_lock_irqsave(&emu->emu_lock, flags);
438	enable = inl(emu->port + INTE) | intrenb;
439	outl(enable, emu->port + INTE);
440	spin_unlock_irqrestore(&emu->emu_lock, flags);
441}
442
443void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb)
444{
445	unsigned long flags;
446	unsigned int enable;
447
448	spin_lock_irqsave(&emu->emu_lock, flags);
449	enable = inl(emu->port + INTE) & ~intrenb;
450	outl(enable, emu->port + INTE);
451	spin_unlock_irqrestore(&emu->emu_lock, flags);
452}
453
454void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
455{
456	unsigned long flags;
457	unsigned int val;
458
459	spin_lock_irqsave(&emu->emu_lock, flags);
460	if (voicenum >= 32) {
461		outl(CLIEH << 16, emu->port + PTR);
462		val = inl(emu->port + DATA);
463		val |= 1 << (voicenum - 32);
464	} else {
465		outl(CLIEL << 16, emu->port + PTR);
466		val = inl(emu->port + DATA);
467		val |= 1 << voicenum;
468	}
469	outl(val, emu->port + DATA);
470	spin_unlock_irqrestore(&emu->emu_lock, flags);
471}
472
473void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
474{
475	unsigned long flags;
476	unsigned int val;
477
478	spin_lock_irqsave(&emu->emu_lock, flags);
479	if (voicenum >= 32) {
480		outl(CLIEH << 16, emu->port + PTR);
481		val = inl(emu->port + DATA);
482		val &= ~(1 << (voicenum - 32));
483	} else {
484		outl(CLIEL << 16, emu->port + PTR);
485		val = inl(emu->port + DATA);
486		val &= ~(1 << voicenum);
487	}
488	outl(val, emu->port + DATA);
489	spin_unlock_irqrestore(&emu->emu_lock, flags);
490}
491
492void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
493{
494	unsigned long flags;
495
496	spin_lock_irqsave(&emu->emu_lock, flags);
497	if (voicenum >= 32) {
498		outl(CLIPH << 16, emu->port + PTR);
499		voicenum = 1 << (voicenum - 32);
500	} else {
501		outl(CLIPL << 16, emu->port + PTR);
502		voicenum = 1 << voicenum;
503	}
504	outl(voicenum, emu->port + DATA);
505	spin_unlock_irqrestore(&emu->emu_lock, flags);
506}
507
508void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
509{
510	unsigned long flags;
511	unsigned int val;
512
513	spin_lock_irqsave(&emu->emu_lock, flags);
514	if (voicenum >= 32) {
515		outl(HLIEH << 16, emu->port + PTR);
516		val = inl(emu->port + DATA);
517		val |= 1 << (voicenum - 32);
518	} else {
519		outl(HLIEL << 16, emu->port + PTR);
520		val = inl(emu->port + DATA);
521		val |= 1 << voicenum;
522	}
523	outl(val, emu->port + DATA);
524	spin_unlock_irqrestore(&emu->emu_lock, flags);
525}
526
527void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
528{
529	unsigned long flags;
530	unsigned int val;
531
532	spin_lock_irqsave(&emu->emu_lock, flags);
533	if (voicenum >= 32) {
534		outl(HLIEH << 16, emu->port + PTR);
535		val = inl(emu->port + DATA);
536		val &= ~(1 << (voicenum - 32));
537	} else {
538		outl(HLIEL << 16, emu->port + PTR);
539		val = inl(emu->port + DATA);
540		val &= ~(1 << voicenum);
541	}
542	outl(val, emu->port + DATA);
543	spin_unlock_irqrestore(&emu->emu_lock, flags);
544}
545
546void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
547{
548	unsigned long flags;
549
550	spin_lock_irqsave(&emu->emu_lock, flags);
551	if (voicenum >= 32) {
552		outl(HLIPH << 16, emu->port + PTR);
553		voicenum = 1 << (voicenum - 32);
554	} else {
555		outl(HLIPL << 16, emu->port + PTR);
556		voicenum = 1 << voicenum;
557	}
558	outl(voicenum, emu->port + DATA);
559	spin_unlock_irqrestore(&emu->emu_lock, flags);
560}
561
562#if 0
563void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
564{
565	unsigned long flags;
566	unsigned int sol;
567
568	spin_lock_irqsave(&emu->emu_lock, flags);
569	if (voicenum >= 32) {
570		outl(SOLEH << 16, emu->port + PTR);
571		sol = inl(emu->port + DATA);
572		sol |= 1 << (voicenum - 32);
573	} else {
574		outl(SOLEL << 16, emu->port + PTR);
575		sol = inl(emu->port + DATA);
576		sol |= 1 << voicenum;
577	}
578	outl(sol, emu->port + DATA);
579	spin_unlock_irqrestore(&emu->emu_lock, flags);
580}
581
582void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
583{
584	unsigned long flags;
585	unsigned int sol;
586
587	spin_lock_irqsave(&emu->emu_lock, flags);
588	if (voicenum >= 32) {
589		outl(SOLEH << 16, emu->port + PTR);
590		sol = inl(emu->port + DATA);
591		sol &= ~(1 << (voicenum - 32));
592	} else {
593		outl(SOLEL << 16, emu->port + PTR);
594		sol = inl(emu->port + DATA);
595		sol &= ~(1 << voicenum);
596	}
597	outl(sol, emu->port + DATA);
598	spin_unlock_irqrestore(&emu->emu_lock, flags);
599}
600#endif
601
602void snd_emu10k1_voice_set_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
603{
604	unsigned long flags;
605
606	spin_lock_irqsave(&emu->emu_lock, flags);
607	outl(SOLEL << 16, emu->port + PTR);
608	outl(inl(emu->port + DATA) | (u32)voices, emu->port + DATA);
609	outl(SOLEH << 16, emu->port + PTR);
610	outl(inl(emu->port + DATA) | (u32)(voices >> 32), emu->port + DATA);
611	spin_unlock_irqrestore(&emu->emu_lock, flags);
612}
613
614void snd_emu10k1_voice_clear_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
615{
616	unsigned long flags;
617
618	spin_lock_irqsave(&emu->emu_lock, flags);
619	outl(SOLEL << 16, emu->port + PTR);
620	outl(inl(emu->port + DATA) & (u32)~voices, emu->port + DATA);
621	outl(SOLEH << 16, emu->port + PTR);
622	outl(inl(emu->port + DATA) & (u32)(~voices >> 32), emu->port + DATA);
623	spin_unlock_irqrestore(&emu->emu_lock, flags);
624}
625
626int snd_emu10k1_voice_clear_loop_stop_multiple_atomic(struct snd_emu10k1 *emu, u64 voices)
627{
628	unsigned long flags;
629	u32 soll, solh;
630	int ret = -EIO;
631
632	spin_lock_irqsave(&emu->emu_lock, flags);
633
634	outl(SOLEL << 16, emu->port + PTR);
635	soll = inl(emu->port + DATA);
636	outl(SOLEH << 16, emu->port + PTR);
637	solh = inl(emu->port + DATA);
638
639	soll &= (u32)~voices;
640	solh &= (u32)(~voices >> 32);
641
642	for (int tries = 0; tries < 1000; tries++) {
643		const u32 quart = 1U << (REG_SIZE(WC_CURRENTCHANNEL) - 2);
644		// First we wait for the third quarter of the sample cycle ...
645		u32 wc = inl(emu->port + WC);
646		u32 cc = REG_VAL_GET(WC_CURRENTCHANNEL, wc);
647		if (cc >= quart * 2 && cc < quart * 3) {
648			// ... and release the low voices, while the high ones are serviced.
649			outl(SOLEL << 16, emu->port + PTR);
650			outl(soll, emu->port + DATA);
651			// Then we wait for the first quarter of the next sample cycle ...
652			for (; tries < 1000; tries++) {
653				cc = REG_VAL_GET(WC_CURRENTCHANNEL, inl(emu->port + WC));
654				if (cc < quart)
655					goto good;
656				// We will block for 10+ us with interrupts disabled. This is
657				// not nice at all, but necessary for reasonable reliability.
658				udelay(1);
659			}
660			break;
661		good:
662			// ... and release the high voices, while the low ones are serviced.
663			outl(SOLEH << 16, emu->port + PTR);
664			outl(solh, emu->port + DATA);
665			// Finally we verify that nothing interfered in fact.
666			if (REG_VAL_GET(WC_SAMPLECOUNTER, inl(emu->port + WC)) ==
667			    ((REG_VAL_GET(WC_SAMPLECOUNTER, wc) + 1) & REG_MASK0(WC_SAMPLECOUNTER))) {
668				ret = 0;
669			} else {
670				ret = -EAGAIN;
671			}
672			break;
673		}
674		// Don't block for too long
675		spin_unlock_irqrestore(&emu->emu_lock, flags);
676		udelay(1);
677		spin_lock_irqsave(&emu->emu_lock, flags);
678	}
679
680	spin_unlock_irqrestore(&emu->emu_lock, flags);
681	return ret;
682}
683
684void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait)
685{
686	volatile unsigned count;
687	unsigned int newtime = 0, curtime;
688
689	curtime = inl(emu->port + WC) >> 6;
690	while (wait-- > 0) {
691		count = 0;
692		while (count++ < 16384) {
693			newtime = inl(emu->port + WC) >> 6;
694			if (newtime != curtime)
695				break;
696		}
697		if (count > 16384)
698			break;
699		curtime = newtime;
700	}
701}
702
703unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
704{
705	struct snd_emu10k1 *emu = ac97->private_data;
706	unsigned long flags;
707	unsigned short val;
708
709	spin_lock_irqsave(&emu->emu_lock, flags);
710	outb(reg, emu->port + AC97ADDRESS);
711	val = inw(emu->port + AC97DATA);
712	spin_unlock_irqrestore(&emu->emu_lock, flags);
713	return val;
714}
715
716void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data)
717{
718	struct snd_emu10k1 *emu = ac97->private_data;
719	unsigned long flags;
720
721	spin_lock_irqsave(&emu->emu_lock, flags);
722	outb(reg, emu->port + AC97ADDRESS);
723	outw(data, emu->port + AC97DATA);
724	spin_unlock_irqrestore(&emu->emu_lock, flags);
725}
726